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1. Introduction

In the last decades, the managers of water distribution systems have been concerned with
the reduction of energy consumption and the strong influence of climate changes on water
patterns. The subsequent increase in oil prices has increased the search for alternatives to
generate energy using renewable sources and creating hybrid energy solutions, in particular
associated to the water consumption.

According to Watergy (2009), about two or three percent of the energy consumption in the
world is used for pumping and water treatment for urban and industrial purposes. The con‐
sumption of energy, in most of water systems all over the world, could be reduced at least
25%, through performance improvements in the energy efficiency. Hence, it is noticeable the
importance of development of models which define operational strategies in pumping sta‐
tions, aiming at their best energy efficiency solution.

The consumption of electric energy, due to the water pumping, represents the biggest part
of the energy expenses in the water industry sector. Among several practical solutions, which
can enable the reduction of energy consumption, the change in the pumping operational
procedures shows to be very effective, since it does not need any additional investment but
it is able to induce a significant energy cost reduction in a short term. As well known, the
tasks of operators from the drinking network systems are very complex because several
distinct goals are involved in this process. To determine, among an extensive set of possibil‐
ities, the best operational rules that watch out for the quality of the public service and also
provide energy savings, through the utilization of optimization model tools which take into
consideration all the system parameters and components, is undoubtedly a priority.
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The technological advances in the computational area enabled, in the last years, the intensifi‐
cation of the quality of scientific works related to the optimization tools, as well as aiming at
the reduction of the energy costs in the operation of drinking systems. Nevertheless, most of
the optimization models developed was applied to specific cases.

The first studies to optimize the energy costs of pumping have been used for operational re‐
search techniques, such as linear programming (Jowitt and Germanopoulos, 1992), integer
linear programming (Little and Mccrodden, 1989), non-linear programming (Ormsbee et al.,
1989) and dynamic programming (Lansey and Awumah, 1994). The limitation of using these
models to real cases is mainly due to the complexity of the equations’ resolution to ensure
the hydraulic balance and the difficulty of generalizing such optimization models in any wa‐
ter supply system (WSS).

Brion and Mays (1991), in the attempt to reduce the operational costs in a drinking pipeline
in Austin, Texas (USA), had tested a model of optimization and simulation, achieving a re‐
duction of 17.3 % in the operational costs. Ormsbee and Reddy (1995) applied an optimiza‐
tion algorithm in Washington - DC and obtained significant results with the management
implementation provided by the model, observing a reduction of 6.9% in the costs with elec‐
tric energy. During this period, the use of evolutionary algorithms was quite limited. Wood
and Reddy (1994) were the pioneers in the use of such algorithms.

The remarkable use of evolutionary algorithms in this research topic in recent years is main‐
ly due to Genetic Algorithm (GA) provides a great flexibility in exploring the search space
and allows an easy link to other simulation models. However, in contrast the GA does not
solve problems with constraints. Once the operation in WSS is considered a complex proce‐
dure, with many constraints, there remains the doubt about the speed of the modelling and
the convergence for optimal solutions between the GA and hydraulic simulators.

Additionally the concern with the reduction of the computational time is due to the applica‐
bility of energy optimization models in real time (Martinez, et al., 2007; Jamieson, et al.,
2007, Salomons et al., 2007; Rao and Alvarruiz, 2007; Rao and Salomons, 2007; Alvis et al.,
2007). To reduce the computational time for seeking solutions with reduced energy costs,
these authors used the technique of Artificial Neural Networks (ANN) to reproduce the re‐
sults by the hydraulic simulator obtained by the EPANET (Rossman, 2000). Then, this new
tool based on ANN for the hydraulic simulation was connected with a GA model. After sev‐
eral analyses done in a hypothetical system and in two real case studies, the authors con‐
cluded the model GA-ANN found optimal solutions in a period 20 times lower when
compared to GA-EPANET. Shamir and Salomons (2008) have searched for reducing the
computational simulation time based on a scale model of a real case system for different op‐
erating conditions.

At the present research a different resolution was adopted. In order to reduce the computa‐
tional simulation time in the search for optimal solutions, a change in the GA algorithm type
was made, instead of replacing the hydraulic simulator model (EPANET) as former referen‐
ces. Thus, new algorithms were created which work directly with the infeasible solutions
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generated by a GA to make them feasible, through the development of a hybrid genetic al‐
gorithm (HGA) (i.e. genetic algorithm plus repair algorithms).

This new model determines, in discrete intervals (every hours) the best programming to be
followed by the pumps switch on / off, in a daily perspective of operation. In this way, the
decisions start to be orientated from the research of thousands of possible combinations, be‐
ing chosen, through an iterative process, the best energy management strategy that presents
the best energy savings.

The world’s economy is directly connected to energy and it is the straight way to produce
life quality for society. China is nowadays one of the biggest consumers of energy in the
world (Wu, 2009). In order to have enough energy to make its economy grow the prediction
of new solutions to produce sustainable energy in a most feasible way is imperative, not on‐
ly depending on conventional sources (i.e. fossil fuel) but using renewable sources. The in‐
crease of energy consumption and the desired reduction of the use of fossil fuels and the
raise of the harmful effects of pollution produced by non-renewable sources is one of the
most important reasons for conducting research in renewable and sustainable solutions. In
Koroneos (2003) analysis, renewable sources are used to produce energy with high efficien‐
cies, social and environmental significant benefits.

Renewable energy includes hydro, wind, solar and many others resources. To avoid prob‐
lems caused by weather and environment uncertainties that hinder the reliability of a con‐
tinuous production of energy from renewable sources, when only one source production
system model is considered, the possibility of integrating various sources, creating hybrid
energy solutions, can greatly reduce the intermittences and uncertainties of energy produc‐
tion bringing a new perspective for the future. These hybrid solutions are feasible applica‐
tions for water distribution systems that need to decrease their costs with the electrical
component. These solutions, when installed in water systems, take the advantage of power
production based on its own available flow energy, as well as on local available renewable
sources, saving on the purchase of energy produced by fossil sources and contributing for
the reduction of the greenhouse effect. In recent studies (Moura and Almeida, 2009; Ramos
and Ramos, 2009a; Ramos and Ramos, 2009b; Vieira and Ramos, 2008, 2009), the option to
mix complementary energy sources like hydropower, wind or solar seems to be a solution to
mitigate the energy intermittency when comparing with only one source. So, the idea of a
hybrid solution has the advantage of compensating the fluctuations between available sour‐
ces with decentralized renewable generation technologies.

In literature review, a sustainable energy system has been commonly defined in terms of its
energy efficiency, its reliability, and its environmental impacts. The basic requirements for an
efficient energy system is its ability to generate enough power for world needs at an afforda‐
ble price, clean supply, in safe and reliable conditions. On the other hand, the typical charac‐
teristics of a sustainable energy system can be derived from policy definitions and objectives
since they are quite similar in industrialized countries. The improvement of the efficiency in
the energy production and the guarantee of reliable energy supply seem to be nowadays
common interests of the developed and developing countries (Alanne and Saari, 2006).
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This work aims to present an artificial neural network model by the optimization of the best
economical hybrid solution configuration applied to a typical water distribution system.

2. Models formulation

2.1. Objective function

The search for the optimal control settings of pumps in a real drinking network system is
seen as a problem of high complexity, due to the fact that it involves a high number of deci‐
sion variables and several constraints, particular to each system. The decision variables are
the operational states of the pumps xt (x 1t, x 2t, …, x Nt), where N represents the number of
pumps and t is the time-step throughout the operational time.

To represent the states of the decision variables in each time-step, the binary notation was
used. The configuration of each pump is represented by a bit where 0 and 1 stated switch‐
ed on and off, respectively. The main goal of the model is to find the configuration of the
pumps’ status which proceeds to the lowest energy cost scenario for the operational time
duration.  To calculate this  cost,  several  variables must be considered,  in each time-step,
such as the variation of consumption, energy tariff  pattern and the operational status of
each pump.

The objective function is the sum of energy consumed by the pumps, in every operational
time, due to the water consumption and tanks’ storage capacity. It can be expressed accord‐
ing to the following equation:

Minimize Σ
n=1

N

Σ
t=1

24

CntEnt(Xnt) 1 (1)

where E and C stated the consumed energy (kWh) and the energy costs by pumps’ opera‐
tion in the time-step t.

2.2. Constraints

The main constraint of the model is the hydraulic balance verification for the network. To
establish such balance, the equations of the conservation of mass at each junction node and
the conservation of energy around each loop in the network are satisfied. In order to these
conditions be attended it is necessary to accomplish the hydraulic verifications to each sys‐
tem configuration. The hydraulic simulator EPANET (ROSSMAN, 2000) was used to per‐
form this purpose.

The constraints are implicit in the calculation of the objective function. These are equations
that need to be solved in order to obtain the total energy cost of the solution to be analyzed.
After accomplishing this stage, some variables are verified, from the hydraulic simulation,
aiming for obtaining the hydraulic performance of the system that it is evaluated by means
of explicit constraints, showed as follows:
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Pressure: for each time-step of operational time, the pressures in all the junction nodes must
be between the minimum and maximum limits.

Pmini ≤Pit ≤Pmaxi ∀i , ∀t (2)

where Pit represents the pressure on node i in time-step t, Pmin i and Pmax i are the mini‐
mum and maximum pressures required for node i.

Levels of storage tanks: The levels of storage tanks must be between the minimum and max‐
imum limits for each time-step. Besides at the end of the operational time duration, they
must be superior to the levels at the beginning of the time duration. This last constraint as‐
sures the levels of the tanks do not lessen with the repetitions of the operational cycles.

Smin j ≤S jt ≤Smax j∀ j , ∀t (3)

where Sjt: level of tank j in time-step t; Smin j e Smax j: minimum and maximum levels of
storage tank j.

Sj(24h )≤Sj(0h )∀ j (4)

Pumping power capacity: the power used by each pump during the operational time must
be inferior to its maximum capacity.

PPkt ≤PPmaxk ∀k (5)

where PPkt : used power by pump k in time-step t; PPmaxk: maximum capacity of the pump k.

Actuation of the pumps: The number of pumping start-ups in the operational strategy must
be inferior to a pre-established limit. This constraint, presented by Lansey and Awumah
(1994), influences in the maintenance of each pump, since the more it is put into action in a
same operational cycle, the bigger will be its wear. Lansey and Awumah (1994) suggest the
maximum pump start-ups 3 in 24 hours. A greater value can cause problems on the pumps
inducing the need of maintenance and repair and consequently the interruption of the sys‐
tem operation.

N Ak ≤NAmaxk (6)

where: NAk represents the number of start-ups for pump k and NAmaxk the maximum al‐
lowable pump start-ups for the pump k.
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2.3. Optimization algorithm

The definition of optimal control strategies in water distribution systems, where the rules
evaluate the behaviour of the system and make decisions at each time-step, requiring a great
computational demand. Among several available optimization methods, the Genetic Algo‐
rithm (GA) was the tool chosen for offering a great flexibility in search space, allied to the
possibility of use discrete variables. Besides these advantages, the technique has an easy ma‐
nipulation, which makes its connectivity with simulation models easier.

The model developed is composed by two modules that will work as a whole in a way the
hydraulic simulation routine is called to simulate each operational alternative scenarios giv‐
en by the GA, in the search of alternatives with better performance.

Figure 1. Stages of the optimization model

Further a Simple Genetic Algorithm (SGA), a Hybrid Genetic Algorithm (HGA) was also de‐
veloped. This algorithm was built from a combination of a conventional GA with a method
of correction of solutions and a specialized local search procedure. The goal is to find, in a
faster way, feasible solutions, which are difficult to be found by traditional genetic algo‐
rithms due to the tendency that the situation has to generate a high number of impracticable
hydraulic solutions.

The flowchart containing the steps of the optimization model is shown in the Figure 1.
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2.4. Prediction algorithm

The conception of an ANN in order to capture the best energy model domain from a config‐
uration model and economical simulator (CES) in a much more efficient way is based on the
following remarks: first of all, a robust data base has to be developed to create the input and
output data set that will be used in ANN conception and training; the data has to be ana‐
lysed to determine a structure that fits the problem and then to train and validate the ANN.

Figure 2. Flowchart for the developed ANN model.
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A flowchart describing the procedures of the designed ANN is shown on Figure 2.

The data used on this study is calculated by means of a CES model that gives an optimized
ranking of the best hybrid solution for each particular case, based on an economy analyses
for the production and consumption of energy (Figure 2). This data set is organized with the
subject that the study is concerned to evaluate the use of hybrid energy solutions in water
distribution systems based on micro-hydro, wind turbine and national electric grid. Hence,
the range of data is defined in order to adequate the installation of such energy converters.
The data range for flow, power head and water levels variation in reservoirs are used in a
hydraulic and power simulator (HPS) to determine the power consumed by the pump and
the power produced in a micro-hydro turbine installed in a gravity pipe branch whenever
there is energy available in the system.

3. Methodology

3.1. Simple Genetic Algorithm (SGA)

GA is a stochastic method of global search that develop such search through the evolution
of a population, where each element (or individual) is the representation of a possible solu‐
tion for the problem. The principle is based on the theory of natural selection and it was
firstly presented by Goldberg (1989).

At drinking systems’ operation, GA stands out for being very efficient when binary and dis‐
crete variables are used. They represent a set of optimal solutions and not only one. At each
new computational step, solutions containing the status of the pumps are evaluated and lat‐
er classified according to its fitness. The tendency is as the running proceeds, the elements
with less fitness disappear and the more adapted to the impositions (or constraints) of the
problem will arise.

GAs do not deal directly with the optimization problems that contain constraints. This im‐
pediment in the minimization procedure can be overcome employing the Penalty Methods,
on which pre-defined constraints are added to the objective function in terms of penalties,
turning the solution less apt as much as its violations occur. The Multiplicative Penalty
Method (MPM), presented by Hilton & Culver (2000), is then implemented in this model.
The penalty function is presented as follows:

PTR =∏
i=1

NTR
k (7)

where TR: type of constraint; NTR: amount of hydraulic elements (nodes, reservoirs or
pumps) which have violated certain constraints; k: coefficient which varies with the hy‐
draulic element and the type of violated constraint.

Table 1 shows the values of k depending on the type of violated constraint.
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TR Hydraulic Element Violated Constraint k

N1
Nodes

Pressure between the limits (min. and max.) 1.05

N2 Positive pressure (continuity of supply) 1.80

R1
Tanks

Water level between the limits (min. and max.) 1.20

R2 Water level at 24h greater than the initial level 1.50

B1
Pumps

Maximum capacity of pump 1.20

B2 Number of actuations 1.50

Table 1. Values of k

The values of k represent how the energy cost is increased for a particular type of violated
restriction (TR). These values were determined from the amount and importance of con‐
straints in the model. Analyzing the extreme values (1.05 and 1.80), for each node that ex‐
ceed their limits, increases 5% to the value of the objective function. It was adopted the
lower value for this violation because, commonly, the number of nodes in a WSS is higher
the amount of tanks and pumps. However, as the discontinuity of the supply occurs in the
system, it has great importance in the feasibility of the solution consequently a maximum
value was adopted for this type of violation, increasing by 80% the cost of energy. Following
this logic, the remaining violations have intermediate k values. When the constraint is not
violated the coefficient k has the unit value.

The first stage of the SGA (Figure 1) process is characterized by the generation of operation‐
al rules (randomly), the demand definition and the tariff costs. Next, these variables are
used by the hydraulic simulator (i.e. EPANET), which calculates the pressures in the pipe
system nodes, the energy consumed and the levels of the tanks, all of them being necessary
for the evaluation of the solution. The following stage is characterized by the calculation of
the objective function, which is obtained from the total energy cost and from the penalty
function, in case of infeasible solution. The process is repeated until the parameters of the
operational control meets the hydraulic requirements with the lowest cost possible.

3.2. Hybrid Genetic Algorithm

SGA makes use of the penalty method becoming the infeasible solutions into solutions with
reduced ability. The genetic operators only diversify the solutions, but do not become them
feasible. In this case, it can be confirmed the search process for solutions hydraulically feasi‐
ble, with minimum energy costs, is strongly stochastic. During the process of evaluation of
the objective function, the explicit restrictive variables can be evaluated every hour. Thus, at
this time interval, it is possible to verify the type of constraints that were violated. Because
of this, repair algorithms were created, and every hour they try to correct the solutions gen‐
erated by GA, becoming them hydraulically feasible. The HGA layout of the model is also
presented at Figure 3. Hence, each solution generated by GA is passed on to the repair algo‐
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rithms. After this stage two solutions are stored: the original, generated by GA, and the
modified solution, generated after the attempts of correction. If the penalty function of the
modified solution is zero, so it will be sent to a data bank, otherwise, this solution will be
discarded. Independent on the destiny of the modified solution, the original solution will be
conserved and sent to the next generations of the GA, avoiding a premature convergence of
the solutions.

The repair algorithms are only a set of rules that modify the decision variables trying to be‐
come solutions hydraulically feasible all hours (Figure 4).

Among the type of corrections presented in Figure 4, the one related to the maximum num‐
ber of pump start-ups is the only one that does not use the EPANET routines. This is the
first type of repair that occurs in infeasible solutions and aims mainly the reduction of the
pump start-ups, changing as little as possible the original configuration of the solution.

Figure 3. Flowcharts: SGA and HGA

Figure 5 illustrates this type of repair to a solution of a pump with six start-ups.

In Figure 5, with only four changes, it was reduced from six to two the number of start-ups.
Besides the considerable reduction, in the repaired solution is visible a greater uniformity of
pumps’ switch-on schedules. The changed solution has presented only two periods with the
pump switched-on. The use of long operation periods is a characteristic of commonly strat‐
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egies in real pump systems due to a lesser intervention in the operation and a wear reduc‐

tion of the pumps.

Figure 4. Type of corrections

Figure 5. Example of correction – Actuation as start-up of the pumps
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Finishing the iterations of the HGA, the solutions stored at the data bank (feasible solutions)
are sent to a process of specialized local search. This search algorithm is an iterative process
in which, every hour, the pumps are switched-off one by one, verifying if the constraints re‐
main inviolate. If the solution becomes hydraulically unfeasible, the initial solution is re‐
stored. The selected hour is the one that has the highest energy cost. The process is repeated
until there are no alterations that result in feasible solutions.

With the utilization of the specialized local search algorithm it is possible to evolve good sol‐
utions in local optimal solutions. These solutions would probably require great computa‐
tional efforts to be found by the conventional GA.

3.3. Artificial Neural Network

The data of renewable sources performance characteristics is included in the CES model to
determine the best hybrid energy solution to be selected. One of the resources data is the
wind turbine power curve of a selected wind turbine, which corresponds to the local wind
source along an average year for the region under analysis (Figure 6) and the wind annual
average speed applied to the wind turbine. In Table 2 is presented an example of data set
range to be used in the CES model to determine the inputs and outputs of the developed
ANN. Those data is used to calculate all energy and economic parameters to be included in
the CES model to complete the data needed to train the ANN.

Figure 6. Wind energy: Wind Turbine Power Curve for an Enercon E33 and Wind source for one year at Lisbon region

Based on a basic data range, depending on the system characteristics (Table 2), to be used in
the CES model and from auxiliary hydraulic and energy formulations, the complete input
data is then obtained (Table 3) being: (1) Pump power (kW); (2) Pump energy consumption
(kWh); (3) Turbine power (kW) - average output; (4) Flow (m3/s) - annual average flow; (5)
Gross head (m); (6) Pumping head (m); (7) Head losses (m); (8) Power net head (m); (9) De‐
sign pumping flow rate (l/s); (10) Wind speed (m/s) - annual average; and (11) Wind turbine
power (kW) - annual average output.

In the end of the modelling process the input data set is built in a matrix of [11 x 19,602]
(Table 3), which by the interaction of the wind velocity data and the water flow yields in the
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output matrix of [5 x 19,602] (Table 4), representing the Net Present Value (NPV) of each hy‐
brid solution configuration, as well as the number of wind turbines to be installed.

Wind speed annual

average (m/s)
Flow (l/s) Power net head (m) Gross Head (m)

1.5 10 2 10

2.0 20 7 16

2.5 30 13 21

3.0 40 18 27

3.5 50 24 32

4.0 60 29 38

4.5 70 35 43

5.0 80 40 49

5.5 90 46 54

6.0 100 51 60

6.5 150 57 66

7.0 200 62 71

7.5 250 68 77

8.0 300 73 82

8.5 350 79 88

9.0 400 84 93

9.5 450 90 99

10.0 500 95 104

10.5 550 101 110

11.0 600 106 116

11.5 650 112 121

12.0 700 117 127

12.5 750 123 132

13.0 800 128 138

13.5 850 134 143

14.0 900 139 149

14.5 950 145 154

15.0 1000 150 160

Table 2. Basic data set range used in CES.
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The ANN data set created to be used in water distribution systems is then ready to deter‐
mine the NPV of each hybrid system evaluated for each type of configuration (e.g. grid, grid
+ hydro, grid + wind, grid + hydro + wind).

Pump

power

kW/h (1)

Pump

primary load

kW/d (2)

Turbine

mean

output

power kW

(3)

Annual

average

flow m3/s

(4) Z m (5)

Pumping

head m (6)

Head loss

m (7)

Power

head m

(8)

Design

flow rate

L/s (9)

Wind

speed

m/s (10)

Wind turbine

mean output

power kW (11)

…. …. …. …. …. …. …. …. …. …. ….

0.322 2.895 0.587 0.01 16 24 8 7 16 3 15

0.398 3.584 1.016 0.01 21 29 8 13 16 3 15

0.475 4.274 1.446 0.01 27 35 8 18 16 3 15

0.552 4.964 1.876 0.01 32 41 8 24 16 3 15

0.628 5.653 2.306 0.01 38 46 8 29 16 3 15

0.705 6.343 2.735 0.01 43 52 8 35 16 3 15

0.781 7.032 3.165 0.01 49 57 9 40 16 3 15

0.858 7.722 3.595 0.01 54 63 9 46 16 3 15

0.935 8.412 4.025 0.01 60 69 9 51 16 3 15

1.011 9.101 4.454 0.01 66 74 9 57 16 3 15

1.088 9.791 4.884 0.01 71 80 9 62 16 3 15

1.165 10.481 5.314 0.01 77 86 9 68 16 3 15

1.241 11.170 5.744 0.01 82 91 9 73 16 3 15

1.318 11.860 6.173 0.01 88 97 9 79 16 3 15

1.394 12.549 6.603 0.01 93 102 9 84 16 3 15

…. …. …. …. …. …. …. …. …. …. ….

Table 3. Input data set for the system characteristics used in ANN.

Matlab® is used for the ANN development. The creation of an ANN should comprise the
following steps: (i) patterns definition; (ii) network implementation; (iii) identification of the
learning parameters; (iv) training, testing and validation processes. A new neural network
model of hybrid energy must be compared with an energy configuration model and eco‐
nomical simulator (CES) using the following procedures: CES is used to obtain data applied
in the training process and in reliable neural network tests, together with an hydraulic and
power simulator model (HPS) for a large range of flow rates, gross heads, pumping and
power heads and wind velocities. That data, available on Ramos and Ramos (2009b) re‐
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search, uses the HPS to hydraulically balance the water distribution system, in a village of
Portugal, determining the hydraulic behaviour of the all system including the most suitable
pump and turbine operation for each flow condition.

NPV€ Grid NPV€ Grid+Hydro NPV€ Grid+Wind NPV€ Grid+Hydro+Wind
Wind Turbine

Installed

-59.00 1812.00 -571464.00 -569553.00 1

-78.00 6617.00 -571495.00 -564747.00 1

-96.00 12391.00 -571526.00 -558973.00 1

-115.00 17197.00 -571557.00 -554168.00 1

-133.00 22971.00 -571588.00 -548394.00 1

-152.00 27776.00 -571619.00 -543588.00 1

-170.00 33550.00 -571650.00 -537814.00 1

-189.00 38356.00 -571680.00 -533009.00 1

-207.00 44130.00 -571712.00 -527235.00 1

… … … … …

-226.00 48935.00 -316043.00 -266690.00 2

-244.00 54710.00 -316077.00 -260916.00 2

-263.00 59514.00 -316111.00 -256110.00 2

-282.00 65289.00 -316146.00 -250337.00 2

-300.00 70094.00 -316180.00 -245531.00 2

-319.00 75868.00 -316214.00 -239757.00 2

-337.00 80674.00 -316248.00 -234951.00 2

-356.00 86447.00 -316282.00 -229177.00 2

-374.00 91253.00 -316317.00 -224372.00 2

… … … … …

-393.00 97027.00 109886.00 207679.00 3

-411.00 101832.00 109850.00 212483.00 3

-430.00 107606.00 109813.00 218258.00 3

-448.00 112411.00 109778.00 223062.00 3

-467.00 118185.00 109741.00 228838.00 3

-485.00 122991.00 109706.00 233644.00 3

-504.00 128765.00 109669.00 239416.00 3

-522.00 133570.00 109633.00 244223.00 3
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-541.00 139344.00 109597.00 249997.00 3

-559.00 144150.00 109561.00 254802.00 3

Table 4. Input data set for the best economic configuration used in ANN.

In the ANN code running, the process of training and simulation for each system character‐
istic is analysed. In the training mode is introduced the configuration parameters. Those pa‐
rameters are standard limits (max and min), number of neurons on the hidden layer, limit
number of epochs, final error desired, validation rate and activation function used in the
hidden layer. With the best ANN configuration for each possible hybrid system and new da‐
ta set for inputs, a validation process is made and the results are verified in terms of correla‐
tion and relative error among the values of CES base model and the ANN.

4. Case studies

4.1. Optimization of the pumps’ schedule in the Fátima system

The drinking system of Fátima is composed of 22 water sources, 10 treatment plants, 36
pump-stations and 64 tanks. The water is distributed to the consumers through 1111 km by
a supply and distribution network system. Nowadays, the system is managed by the com‐
pany Veolia – Águas de Ourém, which is responsible for the catchment, water treatment and
distribution (Figure 7).

Figure 7. Drinking system of Cascalheira’s tank

The supply system chosen for this case study supplies the tank Fazarga with an elevation
of 402 m. This tank is responsible for the service to the demands of the region of Fátima and
other close locations. This supply system has a pump station (PS) located in the proximi‐
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ties of the tank Cascalheira (elevation: 375 m). This last one is supplied by EPAL (Portu‐
guese Lisbon Water Company) and provides water, by gravity, to the locations of Aljustrel
and Fontainhas.

According to former description, the water storage of the tank Cascalheira is done by EPAL.
The cost attributed to Veolia by this supply is related only to the effluent volume from this
tank and it is not dependent of any alteration in the operation of the pump-station between
tanks of Cascalheira and Fazarga. The reduction of this cost would only be possible with the
implementation of water loss control by leakage. The level of the tank Cascalheira is always
maintained close to the maximum limit in a way that it increases the reliability of the sys‐
tem. Thus, in the optimization model, it was chosen to consider only the variation of the lev‐
el of the tank Fazarga at downstream of the pump-station.

The tank of Cascalheira has the storage capacity of 4000 m³ of water, whereas Fazarga has a
total volume of 347 m³ and operates with the initial, minimum and maximum levels of 2.0
m, 0.3 m and 2.3 m, respectively. The pump-station comprises two pumps of Grundfos
NK65-250 type which work for an average flow of 42 1/s with an efficiency of 65%.

The average time variation of the consumption in the region of Fátima during the day was
obtained from the sensors located at the exit of the tank Fazarga. The period analyzed was
from March to September, 2007. The water consumption in this year is more noticeable for
comprising spring and summer. Figure 8 presents the average time variation calculated.

The hours with the pump working are considered as regular and discrete intervals by the
optimization algorithm. Thus, for this case study, a day in which the pumps remained
switched-on, in intervals similar to the format considered in the optimization model, were
chosen. The hydraulic model of the system was built, in which the tanks Cascalheira and Fa‐
zarga were considered as reservoir and storage tank, respectively.

The variation in the level of the tank of Fazarga during the day calculated by the hydraul‐
ic simulator was similar to the real values. The maximum number of pump start-ups (Na
max) used by Veolia was three (pump 1) and the level of the tank at the end of the opera‐
tional time is very close to the initial  one (Figure 9).  The variation of the energy rate is
presented in Table 5.

Hour 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Tariff 0,0465 0,0465 0,0465 0,0465 0,0465 0,0465 0,0465 0,0465 0,0465 0,0761 0,1299 0,1299

Hour 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Tariff 0,1299 0,0761 0,0761 0,0761 0,0761 0,0761 0,0761 0,0761 0,1299 0,1299 0,0761 0,0465

Table 5. Hour vs Energy Tariff (€/kWh) for Fátima system
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Figure 8. Pattern demand of Fátima system

Figure 9. Control pump strategy
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Both GA models presented in this analysis were implemented to determine the best opera‐
tional strategy with a reduced energy cost in the system Cascalheira/Fazarga. Figure 10
presents the evolution of the objective function with the computational time, in minutes.

Figure 10. Convergence of the fitness functions

It is possible to evaluate the efficiency of the HGA model. Only with the feasible solutions
obtained with 20 generations, from the repair algorithms and from the specialized local search
system, it is possible to find a local optimal solution in about 5 minutes, whereas the SGA
took a little more than 33 minutes to find a good solution, with also a bit higher energy cost
when compared to the solution found by the HGA. The difficulty for GA to find a good
feasible solution can quickly be confirmed. Such behaviour occurs due to the high level of
randomness existent in GA models. The alterations of the solutions provided by the genetic
operators diversify the type of answer without a guarantee of the evolution in each genera‐
tion. Among all possible solutions, the probability of extracting, for each pump, a solution
with at most three start-ups is 0.0173. Now, it is possible to confirm the difficulty of obtain‐
ing a feasible solution, because besides the determination of a solution it is necessary the other
constraints (pressure limits, water levels in tanks and power pumps start-ups) be satisfied.
These constraints are dependent on the complexity of the drinking system to be evaluated.

The energy cost due to the operation was 22.22 euros (date: 07 (day)/12 (month)/07 (year)).
The pumps remained switched-on during 12 hours. A period of two hours (13h and 22h) be‐
longs to the period with the most expensive energy tariff (Figure 11). The variation in the
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reservoir level is the main factor in the decision making the operation and the variation of
the energy tariff is the second reason.

The best solution obtained by HGA, in each iteration step, is selected from a set of solutions
containing only individuals hydraulically feasible. The objective function for this case is the
total energy cost. For SGA while the model does not find a feasible solution, the objective
function starts to be the sum between the energy cost and the penalty function. The opera‐
tional strategy found by the HGA and the variations of the water level in the Fazarga tank
for the real situation and the solution with reduced energy cost are shown at Figures 11 and
12. From Figures 9, 11 and 12 it is possible to make a comparison between the operational
strategies presently adopted by the water manager company and the one obtained by HGA
optimization model. The variation of the energy tariff was well explored in the solution with
an important reduction of the energy cost (HGA). It is possible to observe a significant dif‐
ference from the strategies, being noticeable that the pumps do not work in hours with ener‐
gy tariff more expensive. With the implementation of the optimization model an economy of
31% was achieved for the period chosen for the analysis.

Figure 11. Control pump strategy (HGA).

In operational terms, the strategy obtained from the HGA can be considered more daring.
In the critical time (1:00 p.m.) the level of the tank in the present operation by the water
company achieved values superior to 1m. However based on former mentioned, the mini‐
mum water level in the Fazarga tank is 0.30m. In case of desirable an economic solution
with higher levels in the tanks, it is easy to increase the minimum limit of the water level
in the constraints of the HGA developed model.  The importance between the minimum
water level attained in the tank and the energy costs to be paid by the water company will
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depend on the water company priorities, economic and social impacts, and performance or
feasibility factors.
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Figure 12. Water level of Fazarga tank

4.2. Prediction of hybrid energy solutions in Espite system

Espite is located in Ourém and it is a small system that distributes water to Couções and
Arneiros do Carvalhal villages and the average flow in this pipe system is approximately 7
l/s. This system is hydraulically analysed to determine the best hydro solution. Then ANN is
applied to establish the best economical hybrid solution, employing the same data set used
to developed ANN model. A simplified scheme of Espite water drinking system is present‐
ed in Figure 13.

Demand point
Carvalhal 1

Demand point
Carvalhal 2 Demand point

Couções

Tank Couções

Tank Carvalhal

Turbine

Pump Carvalhal
2

Pump Carvalhal
1
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Node 2
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Figure 13. Scheme of Espite water distribution system
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Figure 14. Elevation and length profile of Espite pipeline

The pump station considered in the analysis is Pump Carvalhal 1 and 2 and the micro hydro
power plant will be installed in the gravity pipe system between node 5 and Tank Carvalhal.
The population consumption (i.e. demand points) must be guaranteed and the tanks water
level variation should vary between recommended limits. The elevation profile of Espite
system is established in Figure 14, where (1) Reservoir 01; (2) Pump R01; (3) Node 1; (4)
Tank ASJ; (5) Node 2; (6) Node 3; (7) Node 4; (8) Node 5; (9) Turbine, Tank Carvalhal,
Pumps Carvalhal 1 & 2,; (10) Node 6; (11) Tank Couções and (12) Demand point Couções.

The HPS model is used to verify all hydraulic parameters and the system behaviour when a
hydropower is installed. Rule-based controls are defined in the optimisation process to
guarantee that the limit tank levels are always respected. In order to determine the most ad‐
equate hydro turbine in this water pipe system, regarding the importance to always main‐
tain a good system operation management and the satisfactory demand flows, the
evaluation of the available energy and the characteristic turbine curve compatible with the
all operating and hydraulic constrains must be developed. According to Araujo (2005) and
Ramos et al. (2010), a characteristic curve for the turbine is evaluated to define the most ade‐
quate turbine selection a key for the successful of this solution. The system is then analysed
using the electricity tariff for the worst conditions. The energy report of the original situa‐
tion is shown in Table 6.

Energy Report

Pump Station Use*(%) Consumption

kWh/m3

Max. Power kW

Carvalhal 1 100,00 0,78 4,51

Carvalhal 2 100,00 0,78 4,51

Table 6. Pump cost with original situation. *basis reference

To reduce the pump consumption,  the optimization of  the time pumping is  considered,
turning it on in the low electricity tariff period and turning it off in the higher tariff peri‐
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od, always imposing tank levels’ restriction to satisfy the minimum and maximum advisa‐
ble values for its good operation. Figure 15 shows the system behaviour regarding the water
level variation and the optimized pump operation time. Table 7 shows the savings ach‐
ieved with the water level control and pump operation optimization for the energy tariff
pattern adopted.

Figure 15. System behaviour with reservoir level control and pump operation optimization: water level variation in
Couções tank, electricity tariff and pump and turbine operation time.

Energy Report

Pump Station Use*(%) Consumption

kWh/m3

Max. Power kW Saving (%)

Carvalhal 1 65.09 0,55 3.24 58.19

Carvalhal 2 65.09 0,55 3.24 58.19

Table 7. Pump benefits with optimization of water level control and pump operation
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The energy production in the hydro power is calculated using the hydraulic turbine selected
considering a sell rate of 0.10€/kWh for 24 hour production as shown in Table 8 as well as
the saving achieved with this energy configuration. The operating point of the turbine corre‐
sponds to a power net head of 40 m and an average flow of 6.6 l/s determined by the HPS
model based on extended period simulations of 24h.

Energy Report

Turbine Production

kWh/m3

Max. Power kW Power/day kW Saving (%)

Carvalhal 0.07 2.12 49.04 63.35

Table 8. Energy production in the hydropower solution.

Figure 16. NPV results by ANN and CES models for the case study.

After the calculation of the pump consumption and the turbine production, the values are
inserted in the ANN model developed and compared with the results obtained with the CES
model. For the analysis of the best hybrid energy solution it takes into account that the wind
speed in the region of this case study has an average value of 5 m/s. It was considered the
wind turbine model SW Skystream 3.7 with a rated power of 1.8 kW and a market price of €
15,000 and a micro hydro turbine (or a pump as turbine – PAT) with a market price estimat‐
ed in € 2,500 with a nominal power of 3.14 kW. For a lifetime analysis of 25 years, the ANN
results show that the best hybrid solution for this case study is a grid + hydro with an NPV
of €18,966, and the CES results point out for the same solution a NPV of €18,950, with a rela‐
tive error of 0.08% and a correlation coefficient of 0.999996. Figure 16 presents the results for
all configurations calculated by ANN and CES models showing clearly the best solution.
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The negative value of NPV in Grid+Wind and Grid+Hydro+Wind is derived from initial in‐
stallation costs of the wind turbine and its small energy production. For the case study a big‐
ger wind turbine with a higher installed power capacity wasn’t chosen because the wind
speed in the case study area is very low and wind turbines that have a satisfactory energy
production for these wind speeds are extremely expensive, being inadequate to the case
study that is a small system and without many resources to be invested.

5. Conclusions

5.1. Optimization of the pumps’ schedule in the Fátima system

The feasibility of the developed HGA model in the search of the best operational strategy for
a lowest energy cost in the real Fátima system was analysed. Two algorithms were devel‐
oped and linked to the GA. The first one, a repair algorithm from an analysis done in the
unfeasible solutions generated by the GA, alters the decision variables in the attempt of
making these solutions feasible. After finishing the generations of the GA, the second algo‐
rithm acts in these solutions, making a local search in the attempt of finding optimal locals.

The efficiency of the algorithm developed HGA in the search of the solution with lowest op‐
erational cost is confirmed, whereas the convergence occurred six times faster. One of the
biggest limitations of the GA is the treatment of problems with high quantity of constraints.
The application of penalties only allows the identification of unfeasible solutions. In prob‐
lems of this kind it is probable that along the candidates’ generation, the quantity of unfeasi‐
ble candidates does not decrease, making the search of good solutions very difficult. With
the implementation of repair algorithms, the appearance of super-candidates occurs in less
time, since the alterations in the individuals are done directly in its problematic genes.

An evaluation analysis about the necessity of use genetic operators, when these algorithms
are applied directly in a large set of solutions generated randomly, also shows final good
results. To determine the best strategy among thousands of possible solutions it must also be
taken into consideration the hydraulic reliability of the system.

The HGA model presented can be implemented in any network. Furthermore, its applica‐
tion is practical and useful, being able to be used by water supply companies, making easier
the best decision aiming at the energy efficiency in pumping systems.

5.2. Prediction of hybrid energy solutions in Espite system

The current research work aims at the prediction analysis about the best energy system con‐
figuration, depending on the renewable available sources of the region, and the optimiza‐
tion of operating strategies for the water distribution systems (WDS), which have about 80%
of their costs associated to the energy consumption. Hence an integrated methodology
based on economical, technical and hydraulic performances has been developed using the
following steps: (i) Artificial Neural Network (ANN) to determine the best hybrid energy
system configuration; (ii) for the ANN training process, a configuration and economical base
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simulator model (CES) is used; (iii) as well a hydraulic and power simulator model (HPS) to
describe the hydraulic behaviour; (iv) an optimization based-model to minimize pumping
costs and maximize hydraulic reliability and energy efficiency is then applied.

The objective is to capture the knowledge domain in much more efficient way than a CES,
ensuring a good reliability and best economical hybrid energy solution in the improvement
of energy efficiency and sustainability of WDS. In this case study the installation of a micro
hydro using water level controls and pump operation optimization shows the improvement
of the energy efficiency in 63.35%. In this methodology to determine the best hybrid energy
solution, the ANN has demonstrated significant reduction in time modelling, with a good a
correlation and mean relative error.
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