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1. Introduction 

The observed biophysical cover of the earth’s surface, termed land-cover is composed of 
patterns that occur due to a variety of natural and human-derived processes. On the other 
hand Land-use is human activity on the land, influenced by economic, cultural, political, 
historical, and land-tenure factors. Remotely-sensed data (i.e., satellite or aerial imagery) can 
often be used to define land-use through observations of the land-cover (Brown, et al., 2000; 
Karl & Maurer, 2010). Up-to-date land-use information is of critical importance to planners, 
scientists, resource managers, and decision makers.  

Optical remote sensing (RS) plays a vital role about defining LUC (land use/cover) and 
monitoring interactions between nature and human activities. Additionally, RS provides 
time, energy and cost saving. Today, optical RS data such as satellite sensor images and 
aerial photos are used widely to detect LUC dynamics. LUC mapping outcomes are used for 
global, regional, local mapping, change detection, landscape planning and driving 
landscape metrics.  

RS image classification is a complex process and requires consideration of many factors. The 
major steps of image classification may include i) determination of a suitable classification 
system, ii) image preprocessing iii) selection of training samples, iv) selection of suitable 
classification approaches and post-classification processing, and v) accuracy assessment. 
Additionally, the user’s need, scale of the study area, economic condition, and analyst’s 
skills are important factors influencing the selection of remotely sensed data, the design of 
the classification procedure, and the quality of the classification results (Lu and Weng 2007).  

LUC mapping has been used for various purposes in landscape planning and assessment 
such as, deriving landscape metrics (Southworth et al., 2010, Huang et al., 2007), 
landscape monitoring (Özyavuz et al., 2011, Berberoglu and Akin 2009), LUC change 
modeling (e.g., SLUETH (Clarke, 2008)), agricultural studies (agricultural policy 
environmental extender model (APEX) (Gassman et al., 2010); soil water assessment tool 
(SWAT) (Betrie et al. 2011)) and environmental processes (revised universal soil loss 
equation (RUSLE) (Renard et al., 1997)).  
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This chapter evaluates classification methods together with optical remote sensing data, and 
ancillary data integration to improve classification accuracy of LUC mapping. 

2. LUC classification schemes 

Standardization is one of the most discussed issues in LUC classification studies, and 
scientist and map developers were aware that using a common classification schemes might 
be more comparable and available. The first standardization works started in USA. Today 
there are several LUC schemes on the world according to region and scale. This chapter will 
discuss three largely used schemes; i) USGS (US geological survey) Anderson, ii) CORINE 
(Coordination of information on the environment) and iii) EUNIS (European Nature 
Information System) habitat schemes.  

2.1 USGS Anderson classification schemes 

This classification scheme was utilized within large number of models in the context of land 
physical dynamics and natural risk assessment. USGS classification scheme is based on 
James Anderson’s system. This scheme is included nine main categories and four different 
levels (Anderson et al., 1976).  

Level I is suitable for 1/250.000 – 1/150.000 scale imags like MODIS and Envisat MERIS. 
Level II is useful for higher spatial resolution satellite sensor images with a scale of 1:80,000. 
Level III is suitable for 1:20,000 to 1/80,000 scale images such as, Landsat 4-7 . Level IV is the 
most useful for images at scales larger than 1:20,000 (Ikonos, Kompsat, Rapid eye, Formosat, 
Geoeye, World view and aerial photos). Categories are designed to be adaptable to the local 
needs. Sample of Level I categories and forest land levels are showed in table 1.  

 

LEVEL I LEVEL II LEVEL III LEVEL IV 

1 Urban or Built-up 
Land 
2 Agricultural Land 
3 Rangeland 
4 Forest Land 
5 Water 
6 Wetland 
7 Barren Land 
8 Tundra 
9 Perennial Ice or 
Snow 

41 Broadleaved Forest 
(generally deciduous) 
42 Coniferous Forest 
43 MixedConifer-
Broadleaved Forest 

421 Upland conifers 
422 Lowland 
conifers 

4211 White pine 
4212 Red pine 
4213 Jack pine 
4214 Scotch pine 
4215 White 
spruce 
4219 Other 

 

Table 1. USGS classification scheme for level I of forest cover.  

2.2 CORINE classification scheme 

The European council found EEA (European environmental agency) in 1990 to search and 
discuss the environmental issues all around the Europe. LUC of Europe is one of the most 

www.intechopen.com



Land Use/Cover Classification Techniques  
Using Optical Remotely Sensed Data in Landscape Planning 

 

23 

important data to define environmental strategies.  CORINE system aims at collecting 
comparable and consistent land cover data across Europe. This information system, offers the 
essential elements for the applications of nature conservation, urban planning and resource 
management. The European nomenclature distinguishes 44 different types of land cover. 
Individual countries can supplement these categories with a more detailed level if they desire 
so. CORINE Land Cover is bridging the gap between the local (micro) and the EU (macro) 
scales. CORINE Land Cover is a platform of communication not only for environmental 
information, but also for the policies that shape the environment (figure 1). 

 
Fig. 1. The legend of CORINE LUC classes codes and colors (EEA 2012b). 

2.3 EUNIS habitat classification scheme 

The EUNIS habitat classification is a common reporting language on habitat types at 
European level, sponsored by the EEA. It originated from a combination of several habitat 
classifications - marine, terrestrial and freshwater. The terrestrial and freshwater 
classification builds upon previous initiatives, notably the CORINE biotopes classification 
(Devillers & Devillers-Terschuren 1991), the Palaearctic habitats classification (Devillers & 
Devillers-Terschuren 1996), of the EU Habitats Directive 92/43/EEC, the CORINE Land 
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Cover nomenclature (Bossard et al. 2000), and the Nordic habitat classification (Nordic 
Council of Ministers 1994). The marine part of the classification was originally based on the 
BioMar classification (Connor et al 1997), covering the North-East Atlantic. The EUNIS 
habitat classification introduced agreed criteria for the identification of each habitat unit, 
while providing a correspondence with these earlier classification systems. 

The habitat classification forms an integral part of the EUNIS, developed and managed by 
the European Topic Centre for Nature Protection and Biodiversity (ETC/NPB in Paris) for 
the EEA and the European Environmental Information Observation Network (EIONET). 
The EUNIS web application (http://eunis.eea.europa.eu) (EEA 2012a) provides access to 
publicly available data in a consolidated database.  

The information includes: 

 Data on Species, Habitats and Sites compiled in the framework of NATURA2000 (EU 
Habitats and Birds Directives), 

 Data collected from frameworks such as EIONET, data sources or material published by 
ETC/NPB (formerly the European Topic Centre for Nature Conservation). 

 Information on Species, Habitats and Sites taken into account in relevant international 
conventions or from International Red Lists. 

 Specific data collected in the framework of the EEA's reporting activities, which also 
constitute a core set of data to be updated periodically. 

The resulting system of classification is still somewhat transitional. Down to level 3 
(terrestrial and freshwater) and level 4 (marine), EUNIS habitats are now based on 
physiognomic and physical attributes, together with some floristic criteria. There are 10 
main habitat categories in this scheme. Coastal habitats and main categories as an example 
were presented in this chapter (table 2). Detailed information can be found in revised EUNIS 
habitat classification report of Davies et al. (2004).  

LEVEL I LEVEL II LEVEL III 

A. Marine habitats 
B. Coastal habitats 
C. Inland surface waters 
D. Mires, bogs and fens 
E. Grasslands and lands dominated 
by forbs, mosses or lichens 
F. Heathland, scrub and tundra 
G. Woodland, forest and other 
wooded land 
H. Inland unvegetated and sparsely 
vegetated habitats 
I. Regularly or recently cultivated 
agricultural, horticultural and 
domestic habitats 
J. Constructed, industrial and other 
artificial habitats 

B1 Coastal dunes and 
sandy shores 
B2 Coastal shingle 
B3 Rock cliffs, ledges 
and 
shores, including the 
supralittoral 

B1.1 Sand beach 
driftlines 
B1.2 Sand beaches above 
the driftline 
B1.3 Shifting coastal 
dunes 
B1.4 Coastal stable dune 
grassland (grey dunes) 
B1.5 Coastal dune heaths 
B1.6 Coastal dune scrub 
B1.7 Coastal dune woods 
B1.8 Moist and wet dune 
slacks 
B1.9 Machair 
 

Table 2. Main EUNIS habitat classes and sample levels of coastal habitats.  
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3. Remotely sensed data sources 

Data characteristics are the most important issue to select appropriate available one for a 
LUC mapping. Both airborne and spaceborne data have various spatial, radiometric, 
spectral and temporal resolutions. Large numbers of studies have focused on characteristics 
of remotely sensed data (Barnsley 1999, Lefsky and Cohen 2003). Additionally, scan width 
(cover size in one scene), data availability (accessibility) and lunch date (data archive 
potential) are the other important factors (Table 3).     

Sensor Organization 
Spatial 

resolution 
Spectral 

resolution 
Radiometric 
resolution 

Temporal 
resolution 

Imaging 
Swath 

Lunch 
date 

Geoeye Geoeye ABD 
Pan: 0.41m 
MS: 0.61m 

4 VNIR 
bands (450-

920nm) 
11 bit ~3 days 15X15km 2008 

Quickbird-2 
Digital globe 

ABD 
0.61m 

4 VNIR 
bands (450-

890) 
11 bit 3.5 days 16.5X16.5km 2002 

Ikonos Geoeye ABD 
Pan: 1m 
MS: 4m 

4 VNIR 
bands (450-

880nm) 
11 bit 3.5 days 11X11km 1999 

Rapideye 
Rapideye AG 

Germany 
5m 

4 VNIR 
bands and 
red edge 

(440-850nm) 

12 bit 
5.5 days at 

nadir 
77X77km 2008 

World view (2) 
and (3)* 

Digital globe 
ABD 

Pan: 0.5m 
MS: 2m at 

nadir 

4 VNIR 
standart 

bands & 4 
VNIR unique 
bands (400-

1040nm) 

11 bit 1-3days 16.4X16.4km 
2009 (2) 
2014 (3) 

Spot 5 
SpotIMAGE 

France 

Pan:2.5m 
VNIR:10m 
SWIR:20m 

3 VNIR & 1 
SWIR bands 
(490-1750) 

8 bit 26 days 60X60km 2002 

AVIRIS 
airborne 

hyperspectral 
NASA ABD 17m 

224 VNIR & 
SWIR bands 

(400-2500nm) 
16 bit airborne 11X11km - 

Alos (AVNIR2) JAXA Japan 10m 
4 VNIR 
bands 

8 bit 46 days 70X70km 2006 

ASTER Japan&ABD 
VNIR: 15m 
SWIR: 30m 
TIR: 90m 

4 VNIR 
bands 

6 SWIR 
bands 

5 TIR bands 
(520-

11650nm) 

VNIR:8 bit 
SWIR: 8 bit 
TIR: 12 bit 

16 days 60X60km 1999 

Landsat 8* NASA ABD 
Pan: 15m 
MS: 30m 

5 VNIR 
bands 

2 SWIR 
bands 

1 cirrus band 
(433-2300nm) 

8 bit 16 days 185X185km 
Dec. 
2012 

CHRIS proba 
hyperspectral 

ESA EU 17-34m 
18-62 VNIR 
bands (400-

1100nm) 
16 bit 16 days 15X15km 2002 
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Sensor Organization 
Spatial 

resolution 
Spectral 

resolution 
Radiometric 
resolution 

Temporal 
resolution 

Imaging 
Swath 

Lunch 
date 

Hyperion 
hyperspectral 

NASA ABD 30m 
220 VNIR & 
SWIR bands 

(400-2500nm) 
16 bit 16 days 7.7X185km 2000 

EnMAP* DLR Germany 30m 
244 VNIR & 
SWIR bands 
(420-2450) 

14 bit 4 days 30X30km 
2014-
2015 

MODIS NASA ABD 250-1000m 
36 VNIR & 

SWIR & TIR 
bands 

12 bit 1 day 2330km 2000 

MERIS ESA EU 300-1200m 
15 VNIR 

bands 
16 bit 1 day 1150km 2002 

AVHRR 
NOAA 15 

NASA ABD 1090m 
6 VNIR &  
TIR bands 

10 bit 1 day 1446km 
1978 
1998 

 

Table 3. The most used optical sensor specifications in LUC mapping. (*) planned missions. 

4. LUC mapping techniques 

Suitable remotely sensed data, classification systems, available classifier and number of training 
samples are prerequisites for a successful classification. Cingolani et al. (2004) identified three 
major problems when medium spatial resolution data are used for vegetation classifications: i) 
defining adequate hierarchical levels for mapping, ii) defining discrete land-cover units 
discernible by selected remote-sensing data, and iii) selecting representative training sites. In 
general, a classification system is designed based on the user’s need, spatial resolution of 
selected remotely sensed data, compatibility with previous work, image-processing and 
classification algorithms, and time constraints. Such a system should be informative, exhaustive, 
and separable (Jensen 1996, Landgrebe 2003). In many cases, a hierarchical classification system 
is adopted to take different conditions into account (Lu and Weng 2007).  

4.1 Image pre-processing 

Image pre-processing includes geometric correction or image registration, atmospheric 
correction and radiometric calibration essentially. In addition, topographic correction and 
noise reduction may be applied if necessary. Optical images from current systems have 
already corrected geometrically (Landsat TM/ETM, MODIS) or can be corrected using freely 
available software or tools (e.g. BEAM for MERIS and CHRIS and MRT toolbox for MODIS).  

Accurate geometric rectification or image registration of remotely sensed data is a 
prerequisite for a combination of different source data in a classification process. Many 
textbooks and articles have described this topic in detail (Jensen 1996, Toutin 2004). However, 
Geometric correction output should have the transformation rms. errors (RMSE) less than 1.0 
pixel, indicating that the images are located with an accuracy of less than a pixel. 

Atmospheric and radiometric corrections may not be necessary if a single image is used, but 
multitemporal or multisensor data are needed atmospheric and radiometric correction and 
calibration. A variety of methods, ranging from simple relative calibration such as, dark-
object subtraction to calibration approaches based on complex models (e.g. MODTRAN, 6S, 
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ATCOR2), have been developed for radiometric and atmospheric normalization and 
correction (Chavez 1996, Heo and FitzHugh 2000, Hadjimitsis et al. 2004, Ozyavuz et al. 
2011) (Figure 2).   

 

  
 

Fig. 2. (a) Non-corrected  data, (b) Atmospherically corrected and haze removed Landsat 
TM data using ATCOR2 model (Özyavuz et al. 2011)  

4.2 Classification techniques 

There are two basic approaches to the classification process: supervised and unsupervised 
classification. With supervised classification, one provides a statistical description of the 
manner in which expected land cover classes should appear in the imagery, and then a 
procedure (known as a classifier) is used to evaluate the likelihood that each pixel belongs to 
one of these classes. With unsupervised classification, a very different approach is used. 
Here another type of classifier is used to uncover commonly occurring and distinctive 
reflectance patterns in the imagery, on the assumption that these represent major land cover 
classes. The analyst then determines the identity of each class by a combination of 
experience and ground truth (i.e., visiting the study area and observing the actual cover 
types) (Eastman 2003). Three essential parts are vital in a LUC mapping in classification 
stage; training, classifying and testing (accuracy assessment).  

4.2.1 Classifiers 

In this chapter four different classifiers and approaches were evaluated in the example of 
Landsat TM sub-scenes recorded over Eastern Mediterranean coastal part. Methods and 
performances were assessed based on accuracy, capability and applicability. This 
assessment covered traditional (minimum distance, maximum likelihood, linear 
discriminant analyses), machine learning (decision tree, artificial neural network, support 
vector machine), fuzzy (linear mixture modeling, fuzzy c-means, artificial neural network, 
regression tree) and object based classifiers for LUC mapping. The summary of the 
techniques and classifiers for various purposes were provided in table 4. 

a b 
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Criteria Categories Characteristics Example of 
classifiers 

Whether 
training 
samples are 
used or no 

Supervised 
Classification 
approaches 

Land cover classes are defined. 
Sufficient reference data are available 
and used as training samples. The 
signatures generated from the training 
samples are then used to train the 
classifier to classify the spectral data 
into a thematic map. 

Maximum likelihood 
(MLC), minimum 
distance (MD), 
Artificial neural 
network (ANN), 
decision tree (DT) 
classifier.  

 Unsupervised 
classification 
approaches 

Clustering-based algorithms are used 
to partition the spectral image into a 
number of spectral classes based on the 
statistical information inherent in the 
image. No prior definitions of the 
classes are used. The analyst is 
responsible for labeling and merging 
the spectral classes into meaningful 
classes. 

ISODATA, K-means 
clustering algorithm. 

Whether 
parameters 
such as mean 
vector and 
covariance 
matrix are used 
or not 

Parametric 
classifiers 

Gaussian distribution is assumed. The 
parameters (e.g. mean vector and 
covariance matrix) are often generated 
from training samples. When 
landscape is complex, parametric 
classifiers often produce ‘noisy’ results. 
Another major drawback is that it is 
difficult to integrate ancillary data, 
spatial and contextual attributes, and 
non-statistical information into a 
classification procedure. 

MLC and Linear 
discriminant analysis 
(LDA) 

 Non-
parametric 
classifiers 

No assumption about the data is 
required. Non-parametric classifiers do 
not employ statistical parameters to 
calculate class separation and are 
especially suitable for incorporation of 
non-remote-sensing data into a 
classification procedure. 

ANN, DT, Support 
vector machine 
(SVM), evidential 
reasoning, expert 
system. 

Which kind of 
pixel 
information is 
used 

Per-pixel 
classifiers 

Traditional classifiers typically develop 
a signature by combining the spectra of 
all training-set pixels from a given 
feature. The resulting signature 
contains the contributions of all 
materials present in the training-set 
pixels, ignoring the mixed pixel 
problems. 

MLC, MD, SVM, 
ANN, DT 

 Subpixel 
classifiers 

The spectral value of each pixel is 
assumed to be a linear or non-linear 
combination of defined pure materials 
(or endmembers), providing 
proportional membership of each pixel 
to each endmember. 

Fuzzy-set classifiers, 
subpixel classifier, 
spectral mixture 
analysis. 
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Criteria Categories Characteristics Example of 
classifiers 

Which kind of 
pixel 
information is 
used 

Object-
oriented 
classifiers 

Image segmentation merges pixels into 
objects and classification is conducted 
based on the objects, instead of an 
individual pixel. No GIS vector data 
are used. 

eCognition. 

 Per-field 
classifiers 

GIS plays an important role in per-field 
classification, integrating raster and 
vector data in a classification. The 
vector data are often used to subdivide 
an image into parcels, and 
classification is based on the parcels, 
avoiding the spectral variation 
inherent in the same class. 

GIS-based 
classification 
approaches. 

Whether 
output is a 
definitive 
decision about 
land cover 
class or not 

Hard 
classification 

Making a definitive decision about the 
land cover class that each pixel is 
allocated to a single class. The area 
estimation by hard classification may 
produce large errors, especially from 
coarse spatial resolution data due to 
the mixed pixel problem. 

MLC, MD, ANN, DT, 
SVM 

 Soft (fuzzy) 
classification 

Providing for each pixel a measure of 
the degree of similarity for every class. 
Soft classification provides more 
information and potentially a more 
accurate result, especially for coarse 
spatial resolution data classification. 

Fuzzy-set classifiers, 
subpixel classifier, 
spectral mixture 
analysis. 

Whether 
spatial 
information is 
used or not 

Spectral 
classifiers 

Pure spectral information is used in 
image classification. A ‘noisy’ 
classification result is often produced 
due to the high variation in the spatial 
distribution of the same class. 

Maximum likelihood, 
minimum distance, 
artificial neural 
network. 

 Contextual 
classifiers 

The spatially neighbouring pixel 
information is used in image 
classification 

Iterated conditional 
modes, point-to-
point contextual 
correction, and 
frequency-based 
contextual classifier. 

 Spectral-
contextual 
classifiers 

Spectral and spatial information is 
used in classification. Parametric or 
non-parametric classifiers are used to 
generate initial classification images 
and then contextual classifiers are 
implemented in the classified images. 

ECHO, combination 
of para metric or 
non-parametric and 
contextual 
algorithms. 

Table 4. A taxonomy of image classification methods (Lu and Weng 2007). 

4.2.1.1 Model based classifiers (traditional)  

Model based classifiers are run using basic statistical theories like mean, variance and 
standard deviation of the dataset. The most used ones at the literatures are supervised MLC, 
MD, LDA and unsupervised k-means.  

www.intechopen.com



 
Landscape Planning 

 

30

The minimum distance classifier is used to classify unknown image data to classes which 
minimize the distance between the image data and the class in multi-feature space. The 
distance is defined as an index of similarity so that the minimum distance is identical to the 
maximum similarity. If a pixel closer than to mean of a signature pixels, it classifies as same 
as nearest one.  In figure 3, the nearest signature mean to unclassified pixel is settlement, 
thus it will be  assigned to settlement class according to MD classifier. 

  
Fig. 3. MD classifier concept 

The MLC procedure is based on Bayesian probability theory. Using the information from a 
set of training sites, MLC uses the mean and variance/covariance data of the signatures to 
estimate the posterior probability that a pixel belong to each class. MLC procedure is similar 
to MD with the standardized distance option. The difference is that MLC accounts for 
intercorrelation between bands. By incorporating information about the covariance between 
bands as well as their inherent variance, MLC procedures what can be conceptualized as an 
elliptical zone of characterization of signature. It calculates the posterior probability of 
belonging to each class, where the probability is highest at mean position of the class, and 
falls off in an elliptical pattern away from the mean.   

The LDA classifier conducts linear discriminant analysis of the training site data to form a 
set of linear combination that expresses the degree of support for each class. The assigned 
class for each pixel is then that class which receives the highest support after evaluation of 
all functions. These functions have a form similar to that of a multivariate linear regression 
equation, where the independent variables are the image bands, and the dependent variable 
is the measure of support. In fact, the equations are calculated such that they maximize the 
variance between classes and minimize the variance within classes. So that class separation 
becomes easier.  

In k-means unsupervised technique, K-means clustering technique is used to partition a n-
dimensional imagery into K exclusive clusters. This method begins by initializing k 
centroids (means), then assigns each pixel to the cluster whose centroid is nearest, updates 
the cluster centroids, then repeats the process until the k centroids are fixed. This is a 
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heuristic, greedy algorithm for minimizing SSE (Sum of Squared Errors), hence, it may not 
converge to a global optimum. Since its performance strongly depends on the initial 
estimation of the partition, a relatively large number of clusters are generally recommended 
to acquire as complete an initial pattern of centroids as possible (Richards & Jia, 1999). 

All of the model based classifiers were compared each other using the same training data set 
in order to ensure the comparability of each technique. Landsat TM image recorded in 
August 2010 over the Eastern Mediterranean coastal zone of Turkey was used. Main LUC 
classes were coniferous tree, deciduous tree, permanent farmlands, temporary irrigated 
farmlands, temporary non-irrigated farmlands, bulrush, grassland, bareground, water 
bodies, settlement, sand dunes(figure 4). 

 
Fig. 4. Model based LUC classification results using strong training dataset and 
unsupervised K-means classification result in sample study area (in yellow). 

4.2.1.2 Data dependent (machine learning classifiers)   

Data dependent classifiers are based on non-parametric rules. Particularly, the machine 
learning classifiers use different approaches according to classifier type. In this chapter, 
largely used non-parametric classifiers were assessed such as ANN, DT and SVM.  

The ANN is one of several artificial intelligence techniques that have been used for 
automated image classification as an alternative to conventional statistical approaches. 
Introductions to the use of ANNs in remote sensing are provided in (Kohonen 1988), 
(Bishop 1995) and (Atkinson and Tatnall 1997). The multilayer perceptron described by 

MLC MD 

LDA K-means 

Adana City 

Mediterranean Sea 
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(Rumelhart et al. 1986) is the most commonly encountered ANN model in remote sensing 
(because of its generalization capability). The accuracy of an ANN is affected primarily by 
five variables: (1) the size of the training set, (2) the network architecture, (3) the learning 
rate, (4) the learning momentum, and (5) the number of training cycles. 

Size of the training set is the most important part in all LUC classifications. If training pixel 
counts are enough, accuracy of a LUC map would be better than less training pixels.  

Network architecture of an ANN is similar to the small part of a neural network (NN) system 
of human brain. Essentially, there are 3 parts in a NN as input, hidden and output nodes 
(figure 5). Input nodes are the image bands (e.g. for Landsat TM 6 nodes except thermal 
band) in a LUC mapping using optical images. Hidden node count depends on the user or 
previous experiences. There are two way to detect optimal hidden node count; (i) user may 
check the literature deals with the similar or same area of study site to find the optimal 
hidden node counts, (ii) user may apply several possibilities itself to find optimal hidden 
node count checking the accuracy of each applications. According to literature, if a NN 
system uses the one hidden layer, it is two or three times more than the input nodes 
generally (Berberoglu et al. 2009). Output nodes counts are equal the class count. Each 
output nodes are produced a class probability.  

 
Fig. 5. NN architecture  

The learning rate, determines the portion of the calculated weight change that will be used for 
weight adjustment. This acts like a low-pass filter, allowing the network to ignore small 
features in the error surface. Its value ranges between 0 and 1. The smaller the learning rate, 
the smaller the changes in the weights of the network at each cycle. The optimum value of 
the learning rate depends on the characteristics of the error surface. Lower learning rates are 
require more cycles than a larger learning rate.   

Learning momentum is added to the learning rate to incorporate the previous changes in 
weight with the current direction of movement in the weight space. It is an additional 
correction to the learning rate to adjust the weights and ranges between 0.1 and 0.9.  

Number of training cycles is defined according to training error of a NN system. When the 
training error became optimal, training cycles are sufficient. 

In this chapter NN architecture was defined based on previous literature. Berberoglu 1999, 
designed a NN architecture for Eastern Mediterranean LUC mapping. Several NN 
architectures were tried in that literature and the highest performance was taken in four 
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layer architecture. This NN was included 2 hidden layers. First hidden layer was included 
nodes two times more than input and the second hidden layer was contained  nodes three 
times more than first hidden layer. Learning rate and learning momentum have defined 
according to training error (table 5). 
 

Parameters                       Values 
Input layer 6 nodes 
1. Hidden layer 12 nodes 
2. Hidden layer 36 nodes 
Output layer 11 nodes 
Learning rate 0.001 
Learning momentum 0.5 
Number of cycles 44864 

Table 5. ANN parameters and values  

DT is a non-parametric image classification technique. A decision tree is composed of the 
root (starting point), active node or internode (rule node) and leaf (class). The root is starting 
point of the tree, active node creates leaves and the leaves are a group of pixels that either 
belong to same class or are assigned to a particular class (figure 6). 

 
Fig. 6. Decision tree architecture  

A Decision Tree is built from a training set, which consists of objects, each of which is 
completely described by a set of attributes and a class label. Attributes are a collection of 
properties containing all the information about one object. Unlike class, each attribute may 
have either ordered (integer or a real value) or unordered values (Boolean value) (Ghose et 
al. 2010). 

Most of the DT algorithms generally use the recursive-partitioning algorithm, and its input 
requires a set of training examples, a splitting rule, and a stopping rule. Splitting rules are 
determined tree partitioning. Entropy, gini, twoing and gain ratio are the most used 
splitting rules at the literature (Quinlan 1993, Zambon et al. 2006, Ghose et al. 2010). The 
stopping rule determines if the  training samples can split further. If a split is still possible, 
the samples in the training set are divided into subsets by performing a set of statistical test 

Root 

Active node 

Leaf 
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defined by the splitting rule. This procedure is recursively repeated for each subset until no 
more splitting is possible (Ghose et al 2010).  

In this chapter, gain ratio, entropy and gini splitting algorithms have been used to find the 
most accurate one, and entropy accuracy was determined almost 3% more accurate than the 
gain ratio. Gini resulted the poorest performance for the study area. Stopping criteria and 
active nodes were determined according to fallowing rule; 

If a subset of classes determined as pure, create a leaf and assign to interest class. If a subset 
having more than one class creates active nodes applying splitting algorithm, continue this 
processes until class leafs became purer.  

The SVM represents a group of theoretically superior machine learning algorithms. SVM 
employs optimization algorithms to locate the optimal boundaries between classes. 
Statistically, the optimal boundaries should be generalized to unseen samples with least 
errors among all possible boundaries separating the classes, therefore minimizing the 
confusion between classes. In practice, the SVM has been applied to optical character 
recognition, handwritten digit recognition and text categorization (Vapnik 1995, Joachims 
1998). SVM uses the pairwise classification strategy for multiclass classification. SVM can be 
used linear and non-linear form applying different kernel functions. In this chapter only 
sigmoidal non-linear kernel were used because, model based classifiers have already 
worked well if data histogram is linear. All data based models were run non-linearly, and 
sigmoidal application takes less time than other non-linear kernels. Different kernel 
functions like radial basis function, linear function or polynomial function may be applied. 
Even the accuracy of the SVM classifier may change when used the one kernel. For example, 
in polynomial kernel function, accuracy of SVM is various according to applied polynomial 
order (Huang et al. 2002). 

All data dependent classifiers which were introduced in this chapter were evaluated in the 
Eastern Mediterranean environment (figure 7).   

4.3 Accuracy assessments  

A classification accuracy assessment generally includes three basic components: sampling 
design, response design, and estimation and analysis procedures (Stehman and Czaplewski 
1998). Selection of a suitable sampling strategy is a critical step (Congalton 1991). The major 
components of a sampling strategy include sampling unit (pixels or polygons), sampling 
design, and sample size (Muller et al. 1998). Possible sampling designs include random, 
stratified random, systematic, double, and cluster sampling. A detailed description of 
sampling techniques can be found in previous literature such as Stehman and Czaplewski 
(1998) and Congalton and Green (1999).  

The error matrix approach is the one most widely used in accuracy assessment (Foody 
2002). In order to properly generate an error matrix, one must consider the following factors: 
(1) reference data collection, (2) classification scheme, (3) sampling scheme, (4) spatial 
autocorrelation, and (5) sample size and sample unit (Congalton and Plourde 2002). After 
generation of an error matrix, other important accuracy assessment elements, such as overall 
accuracy, user accuracy, producer accuracy (table 6), and kappa coefficient can be derived. 
Kappa is the difference between the observed accuracy and the chance agreement divided 
by one minus that chance agreement (Lillesand and Kiefer 1994).  
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Fig. 7. Data dependent LUC classification results using strong training dataset 

 

Error matrix 
Agricultur

e 
Forest Water 

Total classified 
pixels 

User accuracy 

Agriculture 
Forest 
Water 

Total ground 
truth pixels 

32 
5 
2 

39 

7 
34 
2 

43 

1 
1 
36 
38 

40 
40 
40 
120 

32 / 40 = 80% 
34 / 40 = 85% 
36 / 40 = 90% 

 

Producer 
accuracy 

32 / 39 
82% 

34 / 43 
79% 

36 / 38 
95% 

  

Overall  accuracy                                                            Correct pixels / Total pixel = 32+34+36 /  
                                                                                            120 = 85% 

Table 6. Error matrix and accuracy calculations 

Overall classification accuracies and kappa coefficiencies of each classification using weak 
(6962 training pixels) and strong (16300 training pixels) training dataset were evaluated 
(table 7). In addition, each of the LUC user, producer and kappa accuracies were compared 
using strong training dataset to assess results in detail (table 8).  No ancillary data integrated 
to the classifications, however, it was discussed in section 5.  

ANN DT 

SVM 
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Classifier 

Accuracies (%) 

 Weak Strong 
 Overall Kappa Overall Kappa 

M
B

 

MLC 69.5 65.6 85.6 83.8 
MD 67.6 63.3 72 68.5 
LDA 73.5 70 80.5 78 
K-means Overall =  57.3 Kappa =  52.1 

D
D

 ANN 70.5 66.5 76.9 74.2 
DT 73 69.5 82.5 80 
SVM 74 70 79.2 76.7 

Table 7. Overall and kappa accuracies of model based (MB) and data dependent (DD) 
classifiers using weak and strong training dataset  

Overall classification accuracies indicated that MLC was the most accurate model based 
classifier when the strong training dataset was used. However, LDA with weak training 
dataset performed accurately because of  its distance separation algorithm. On the other 
hand, unsupervised k-means classifier was the least accurate one due to the fact that no 
training pixels were used.  

 

 
Fig. 8. Visual detail of a small subview; (a) Ground truth, (b) MLC, (c) MD, (d) LDA, (e) 
ANN, (f) DT and (g) SVM results   
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SVM has a reasonable performance than other data dependent classifiers using weak training 
dataset. However, the largest accuracy was resulted in DT classifier using strong dataset.  

SVM classified forestlands, grassland and permanent farmlands more accurate than other 
classifiers. There was not significant difference in built up areas among classifiers. The most 
accurate sand dunes, bulrush and irrigated farmland class accuracies were resulted from DT 
classifier. DT, LDA, SVM showed reasonably well performance with both weak and strong 
training data sets (figure 8). 

In general, data dependent classifiers performed well with weak training dataset. Especially 
SVM was successful in vegetative area separation. It is clear that if more detailed 
classification scheme required (e.g. forest tree species) using weak training dataset, SVM 
might be first option in terms of classification accuracy. On the other hand, application of 
SVM is time costly when using standard PC and laptops. 

Three accuracy calculation methods were shown in table 8, however, major question is 
which one should be used? Large number of studies have utilized the kappa coefficiencies 
as an ideal approache for LUC classification.  

A number of criteria were selected for the comparison of both model based and data 
dependent classifiers as (a) Overall accuracy, (b) classification speed, (c) input parameter 
handling, (d) hardness in application, (e) accuracy with different training sizes and accuracy 
difference between each class or classification stability (table 9).  
 

Criteria MLC MD LDA k-means ANN DT SVM 
Overall accuracy **** ** **** * *** ***** **** 

Classification speed ***** ***** **** **** ** *** * 
Input parameter handling ***** ***** ***** ***** *** *** ** 
Hardness in application ***** ***** **** ***** *** ** * 
Accuracy with different 
training sizes 

**** * **** No 
training 

*** ***** ***** 

Classification stability *** *** **** * *** ***** *** 

Table 8. Comparing hard classifiers (***** stars and * star refer the most accurate and the 
poorest performances respectively).  

4.3.1 Soft (fuzzy) classifiers  

Defining “what is in a pixel?” numerically, very important for understanding the earth 
surface in remote sensing science. Increased spatial information may be valuable in a variety 
of situations. The forthcoming range of satellite spectrometers (e.g. MODIS, MERIS) 
provided detailed attribute information at relatively coarse spatial resolutions (e.g. 250m, 
500m, 1km) (Aplin and Atkinson 2001). 

Traditional hard per-pixel classification of remotely sensed images is limited by mixed 
pixels (Cracknell 1998). Soft classification overcomes this limitation by predicting the 
proportional membership of each pixel to each class. Mapping is generally achieved through 
the application of a conventional statistical classification, which allocates each image pixel to 
a land cover class. Such approaches are inappropriate for mixed pixels, which contain two 
or more land cover classes, and fuzzy classification approach is required (Foody 1996). 
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Fuzzy logic models constitute the modeling tools of soft computing. Fuzzy logic is a tool for 
embedding structured human knowledge into workable algorithms. There are two main 
types of sets. The ‘crisp (or classic) sets’ and the ‘fuzzy sets’. For example, a crisp set can be 
defined by a membership function:  

In crisp sets a function of this type is also called characteristic function. Fuzzy sets can be 
used to produce the rational and sensible clustering. For fuzzy sets there exists a degree of 
membership μs(X) that is mapped on [0, 1]. In the case of LUC map, every area 
simultaneously belongs to interest LUC clusters with a different degree of membership 
(Kandel, 1992). 

 

                  

                          (1)
                            

 

There are several soft classification techniques and these are variable according to training 
and testing dataset, scale of the study. In this frame, linear mixture modeling (LMM), 
Regression tree (RT), multi linear regression (MLR) and artificial neural network (ANN) soft 
classification techniques were evaluated in Eastern Mediterranean area called Upper Seyhan 
Plane (USP). Berberoglu et al. (2009), was focused on these four soft classification techniques 
to map percentage of tree cover using ENVISAT MERIS (full spatial resolution 300m) 
dataset and vegetation metrics. These metrics and more information about ancillary data 
integration were discussed in section 5.  

For the accuracy assessment of a LUC or fuzzy map, we need to get high resolution ground 
truth data. Crisp data is adequate for the hard classifications, however assessment of a soft 
classification needs fuzzy ground truth like real forest cover in study scale  quantitavely. 
High spatial resolution Ikonos (4m) satellite images of three selected plots were used to 
derive training and testing ground data. Ikonos images were classified as forest and non-
forest classes and, results rescaled to MERIS spatial resolution. 80% of this tree cover dataset 
was used as training data and 20% were separated for accuracy assessment. Linear (LMM 
and MLR) and non-linear (ANN and RT) techniques were compared.    

LMM is one of the most used fuzzy techniques in the literature (Berberoglu &  Satir 2008) 
and based on the assumption that class mixing is performed in a linear manner and 
therefore adopts a least squares procedure to estimate the class proportions within each 
pixel. The idea is that a continuous scene can be modeled as the sum of the radiometric 
interactions between individual cover types weighted by their relative proportions (Graetz 
1990). The form of mixture model is: 

 
         
                         (2) 

          

Vi = Ʃfjrij + ei 
j=I 

n 

1 if  X  S 

0 if  X  S 

μs(X)  = 
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Where Vi is the value of a pixel in input i, fj the fractional abundance of endmember j in 
input i, rij is the value of the highest endmember j in input i, ei is the residual error 
associated with input i and n is the number of endmembers. Equation (2) is constrained by 
the assumption that the sum of the input components in each grid should equate to 1.0 as 
defined by equation (3): 

        
         (3) 

           

LMM needs pure pixels for each class to define the endmembers. Class membership 
functions are obtained based on endmember spectral characteristics (figure 9). 

 
Fig. 9. Methodology for application of LMM 

MLR refers to relating a response variable Y to a set of  predictors xi in the form 
(e.g.Chatterjee and Price, 1991): 

 Y = b0 + b1.x1 + b2.x2 + ….+ bp.xp   (4) 

Where the b0 is the constant value and b1 refers to coefficient of the first variable x1 
(waveband). An advantage of linear regression is that it is easy to implement. MLR models 
are computationally efficient and can also predict confidence intervals for the obtained 
coefficients and the predicted data. Some of variable was eliminated using stepwise 
regression models.  

The RT method has in recent years become a common alternative to conventional soft 
classification approaches, particularly with MODIS data (Hansen et al. 2005). The basic 
concept of a decision tree is to split a complex decision into several simpler decisions that 
can lead to a solution that is easier to interpret. When the target variable is discrete (e.g. 
class attribute in a land cover classification), the procedure is known as decision tree 
classification. By contrast, when the target variable is continuous, it is known as decision 
tree regression. In an RT, the target variable is a continuous numeric field such as 
percentage tree cover. Splitting algorithms were introduced in data dependent classifiers 
section. Splitting rules were contained only crisp equations. However, splitting rules were 
contained regression equation for each rule additionally in RT. In this study fallowing RT 
rules were applied to derive tree cover percentage (table 10).  

 Ʃ fj = 1 
i=I 

n 
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 Condition Target variable (percentage tree cover) 
Rule 
1 

Band 3 > 4448 
Band12<31651 

66.2 – 0.1033 (band02) + 0.0509 (band03) + 0.0388 (band01) + 
0.0014 (band07) – 0.0009 (band06) + 0.0012 (band04) – 0.0014 
(band08) + 0.00012 (band12) – 0.0007 (band09) + 0.002 (band05) 

Rule 
2 

Band 3>4448 –96.3 – 0.2479 (band02) + 0.1819 (band01) + 0.0672 (band07) + 
0.0883 (band03) – 0.04 (band06) – 0.0459 (band08) – 0.0414 
(band09) + 0.00472 (band12) + 0.095 (band05) – 0.00379 
(band10) + 0.0101 (band04) 

Rule 
3 

Band 3>4448 
Band12>31651 

–95.5 + 0.00571 (band10) 

Table 10. Regression tree rules for tree cover percentage from MERIS data. 

Correlation coefficiencies of each result with testing dataset from LMM, MLR, ANN and RT 
were 0.68, 0.69, 0.68 and 0.71 respectively. The most accurate result was obtained using RT 
technique.  

These techniques are not only used to map two classes but also can be applied for more LUC 
class. In this frame, LMM and ANN fuzzy classification techniques were compared in almost 
same area as RT classification by Şatır (2006) (figure 10). Only forested areas were selected in 
Şatır’s study. Training and testing dataset were derived from Landsat TM/ETM for each LUC.  

 
 

 
Fig. 10. Study area boundary for LMM and ANN fuzzy classifiers comparison.  
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Turkish pine (pinus brutia), Crimean pine (pinus nigra), Lebanese cedar (cedrus libani), taurus 
fir (abies cilicica) and juniper (juniperus excelsa) were classified in detailed classification 
scheme. In addition, bareground, farmlands, forestlands and water bodies were classified in 
general classification scheme. LMM, ANN fuzzy classifications and ANN hard classification 
results were compared to see hard and soft classification accuracy difference and the best 
fuzzy classification technique (figure 11).         

 
 
 
 

 
 

Fig. 11. Soft classification results (a: Turkish pine, b: Crimean pine, c: Juniper, d: Lebanese 
cedar, e: Taurus fir and f: General soft classification of forest).  

LMM and ANN fuzzy classifications using medium spatial resolution data (300m)  resulted 
reasonable classification outcomes if the training data set is large enough. On the other 
hand, in general both fuzzy classifications were more accurate than the hard classification 
results (table 11). 

Fuzzy classifications are ideal for LUC mapping using coarse or medium spatial resolution 
data. However, fuzzy classification is not necessary in LUC mapping using very high spatial 
resolution data (e.g. 0.5m or 1m). High spatial resolution data have the characteristic that 
group of pixel shows the similar spectral characteristics. Object based classification 
techniques are suggested in this point.  
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  Accuracies (%) 

Detailed classifications LMM ANN (soft) ANN (hard) 

Bareground 78 72 60 

Farmland 60 58 12 

Water bodies 99 98 85 

Turkish pine 85 89 56 

Crimean pine 60 63 30 

Lebanese cedar 35 40 8 

Taurus fir 26 31 0 

Juniper 34 44 7 

Overall 60 62 33 

General classifications LMM ANN (soft) ANN (hard) 

Bareground 79 72 70 

Farmland 59 55 18 

Forest 84 83 45 

Water bodies 99 100 85 

Overall 80 78 57 

Table 11. Accuracy comparisons of fuzzy classification methods in different classification 
schemes.  

4.3.2 Object based classification 

Many complex land covers exhibit similar spectral characteristics making separation in 
feature space by simple per-pixel classifiers difficult, leading to inaccurate classification. 
Therefore, an object-based classification is a potential solution for the classification of such 
regions. The specific benefits are an increase in accuracy, a decrease in classification time 
and that it helps to eliminate within-field spectral mixing (Berberoglu et al., 2000). The 
object-based classification approach involved the integration of vector data and raster 
images within a geographical information system (GIS) and enabled the knowledge free 
extraction of image object primitives at different spatial resolutions, the so-called 
multiresolution segmentation. The segmentation operated as a heuristic optimization 
procedure which minimized the average heterogeneity of image objects at a given spatial 
resolution for the whole scene (Bian et al. 1992). The objective was to construct a 
hierarchical net of image objects, in which fine objects were sub-objects of coarser 
structures. Due to the hierarchical structure, the image data were simultaneously 
represented at different spatial resolutions. The defined local object-oriented context 
information was then used together with other (spectral, form, texture) features of the 
image objects for classification. At the next stage, supervised per-field classification was 
performed using the nearest neighbor algorithm utilizing field boundary data generated 
as a result of the segmentation procedure. Objects are segmented in the image and all 
objects are created object layer. Two or more object layer is called object hierarchy (figure 
12).  
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Fig. 12. Image – object hierarchy 

Basically, there are three steps in object based classification as segmentation, classification 
and per field integration. An image was divided segments dependent on pixel spectral 
similarities, structure of the image and surface texture characteristics. This progress is up to 
variables like scaling factor, smoothness vs. compactness and shape factors (figure 13). 

 

 
Fig. 13. (a) non-segmented image, (b) segmented image using scale factor 50, (c) segmented 
image using scale factor 10.  

Each segments are contained a group of pixels and scaling factor is defined minimum pixel 
counts which have similar spectral characteristics in a segment. Compactness and 
smoothness are important for creating pixel groups. Shape factor is deal with boundary of a 
segment. Scale factor is variable according to the study scale and ideal scale can be found 
trying different scale factors. When the sensitive LUC analyze is necessary, compactness 
factor should be high and smoothness should be low (e.g. vegetation classification in 
CORINE level 3 and more). Shape factor is very important if shape of the LUC objects have 
a dominant characteristic (e.g. agricultural lands, roads and buildings).  
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Each LUC class can be defined using different dataset and rules according to characteristics 
of LUC. In this chapter, object and pixel based classifications were evaluated in a 
Mediterranean agricultural land called Lower Seyhan Plane (LSP) (figure 14). 

Especially in agricultural land, object based classification is the most suitable technique. 
Most of the agricultural fields has regular shape and contains one dominant crop in a field 
in one time.  In winter time dominant crop is wheat in the study area, summer period 
includes corn, soybean and cotton. Mapping the farmlands may be inappropriateusing only 
one optical image. Multitemporal object based classification approach was used to map LUC 
in LSP. Two Landsat TM images from March and April were classified together, and June, 
August images and some of physical variables like distance from cost line and distance from 
built up areas were added to create rules for each LUC. In this chapter only winter crop 
pattern discussed using LDA classifier, and rule dependent object based classification were 
compared each other to see accuracy difference in each LUC (figure 15).  

 

 

 

 
Fig. 14. Lower Seyhan Plane (in yellow)  
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Fig. 15. LDA pixel based and object based classification results of LSP 

Pixel based LDA classifier was failed in onion, sour orange, settlement, bulrush and sand 
dunes using March and April images. However, June and August images, distance from built 
up areas, distance from cost line were integrated in rule dependent object based classification 
and kappa coefficient was increased 28% in general. Sour orange, bulrush, sand dunes and 
settlement accuracy were raised impressively. One of the advantages in rule dependent 
classifiers was allowed to add new class during the classification. In this study, saline 
vegetation and natural grasslands were included to improve classification accuracy (table 12). 

 
 
 

LUC Object based 
classification 

LDA Difference 

Wheat %100 %100 - 
Onion %48 %15 %33 
Potato %84 %84 - 
Citrus %95 %23 %72 
Water bodies %100 %100 - 
Fallow %96 %96 - 
Bareground %85 %89 %4 
Bulrush %95 %34 %61 
Forest %100 %88 %12 
Sand dunes %100 %40 %60 
Settlement %95 %30 %65 
Natural grasslands %74 - - 
Saline vegetation %95 - - 
Overall Kappa %90 %62 %28 

Table 12. Kappa accuracy of each LUC and difference between object and pixel based 
classifications 
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5. Ancillary data integration  

Remotely sensed data may not be enough to map all LUC accurately alone. Ancillary data 
provide additional information on physical land dynamics, vegetation, climate, social 
geography and surface variability in LUC classification. When suitable ancillary dataset 
used, classification accuracy would be more accurate. In this chapter, only elevation 
(physical), texture (surface variability) and vegetation data (vegetation indices) were 
discussed in USP using DT and RT classifiers.  

5.1 Physical data integration  

Land physical dynamics such as elevation is vital physical input to LUC mapping. Digital 
elevation models (DEM) can be derived from stereo image pairs (e.g. ASTER) or radar (e.g. 
SRTM). Especially, vegetation formation and species vary according to elevation, aspect and 
climate. Using these ancillary data may improve accuracy of LUC maps (Coops et al. 2006, 
Şatır 2006). It is also possible to integrate soil characteristics into LUC mapping, because 
vegetation distribution and plant species are strongly dependent on soil depth, texture and 
moisture.    

DEM was integrated to the DT and MLC classification in Eastern Mediterranean area 
discussed in section 4. Overall accuracy of the classification was increased approximately 
4% and particularly bulrush, sand dunes and forestlands classified more accurately using 
DT. If topography vary in a study area, integrating the DEM may improve the LUC 
mapping accuracy. However, MLC classification overall accuracy was stable with and 
without DEM information. Most of the ancillary data increased the accuracy when using 
non-parametric techniques because parametric techniques like MLC uses the statistical 
equation to calculate distance of each LUC signature mean to the unknown pixel. However, 
DT creates rules based on the training data ranges, including elevation and spectral 
wavebands.  

5.2 Surface texture data  

Some of the variables can be produced using image wavebands such as surface texture and 
vegetation metrics. Surface textures are also used widely in LUC mapping. Many texture 
measures have been developed (Haralick et al. 1973, Kashyap et al. 1982, He and Wang 1990, 
Unser 1995, Emerson et al. 1999) and have been used for image classifications (Franklin and 
Peddle 1989, Narasimha Rao et al. 2002, Berberoglu et. al. 2000). Franklin and Peddle (1990) 
found that textures based on a grey-level co-occurrence matrix (GLCM) and spectral 
features of a SPOT HRV image improved the overall classification accuracy. Gong et al. 
(1992) compared GLCM, simple statistical transformations (SST), and texture spectrum (TS) 
approaches with SPOT HRV data, and found that some textures derived from GLCM and 
SST improved urban classification accuracy. Shaban and Dikshit (2001) investigated GLCM, 
grey-level difference histogram (GLDH), and sum and difference histogram (SADH) 
textures from SPOT spectral data in an Indian urban environment, and found that a 
combination of texture and spectral features improved the classification accuracy. The  
results based solely on spectral features increased about 9% to 17% with an addition of one 
or two texture measures. Furthermore, contrast, entropy, variance, and inverse difference 
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moment provided larger accuracy and the most appropriate window size was 7X7 and 9X9. 
Multiscale texture measures should be incorporated with original spectral wavebands to 
improve classification accuracy (Shaban and Dikshit 2001, Podest and Saatchi 2002, Butusov 
2003). Recently, the geostatistic-based texture measures were found to provide better 
classification accuracy than using the GLCM-based textures (Berberoglu et al. 2000). For a 
specific study, it is often difficult to identify a suitable texture because texture varies with 
the characteristics of the landscape under investigation and the image data used. 
Identification of suitable textures involves determination of texture measure, image band, 
the size of moving window, and other parameters (Chen et al. 2004). The difficulty in 
identifying suitable textures and the computation cost for calculating textures limit the 
extensive use of textures in image classification, especially in a large area (Lu and Weng 
2007).  

To test the texture data on classification accuracy, five different GLCM was derived such as, 
variance, contrast, dissimilarity, homogeneity, entropy. These measurements incorporated 
with Landsat spectral wavebands in Eastern Mediterranean region. Overall accuracy was 
unchanged, however accuracies of settlement and agricultural land classes were increased 4-
5%. However, accuracy of bareground and sand dunes decreased using DT classifier.       

5.3 Vegetation indices 

Vegetation metrics are another ancillary data for more accurate LUC mapping. Deriving the 
metrics is dependent on the spectral resolution of an optical image. A vegetation index 
derived from combination of image wavebands. The most used vegetation indices are 
normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), 
normalized difference water index (NDWI), green vegetation index (GVI) and perpendicular 
vegetation index (PVI) at the literature. Vegetation indices indicate health condition (NDVI) 
and water content (NDWI) of the vegetation canopy. There are many textbooks and papers 
about calculation of vegetation indices. These indices provide extra information for LUC 
classification to discriminate subtle classes. 

For instead, NDVI calculated using red and near infrared band (NIR) combination as shown 
in following equation (Rouse et al 1974); 

  NIR – RED / NIR + RED  (5) 

NDVI data was included to Landsat TM data to show the effect of a vegetation index on 
LUC mapping. Overall accuracy was unchanged significantly, but sand dunes, baregrounds, 
deciduous classes were classified more accurately.  

Besides, there are some indices specifically designed for sensors. For example; Envisat 
MERIS data has own chlorophyll index called MERIS terrestrial chlorophyll index (MTCI). 
Additionally, vegetation metrics such as fraction of photosynthetically active radiation 
(fPAR), leaf area index (LAI) and fraction of green vegetation covering a unit area of 
horizontal soil (fCover) can be obtained using specific equations from MERIS data. 
Berberoglu et al. (2009) used this vegetation metrics to improve RT soft classification 
accuracy using MERIS data. When only MERIS wavebands used to determine the tree cover 
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percentage, correlation coefficiency obtained as 0.58. Vegetation metrics and MERIS 
wavebands enhanced accuracy to 0.67.     

6. Conclusions 

This chapter has demonstrated various issues in LUC classification including, ability of 
optical remotely sensed data, different classifiers, training data size and ancillary data in the 
example of Eastern Mediterranean region. Parametric, non-parametric hard and soft LUC 
mapping techniques in local scale were assessed. Main findings of this chapter are: 

Selection of a classification scheme and the optical data are vital for a reliable result in LUC 
mapping. Remotely sensed data must be defined according to the mapping scale and study 
purpose. LUC classification scheme and level should be defined based on optical data ability 
such as spatial and spectral resolution. Image pre-processing such as, geometric registration, 
atmospheric correction, geometric correction and radiometric calibration are essential parts 
in change detection studies.   

Training data size, quality and mapping details are also important to select suitable classifier 
for LUC mapping. MLC, LDA, and DT techniques are useful for hard classification outputs. 
On the other hand, to derive a continuous map like cover percentage of each LUC or 
probability of each LUC needs soft classifiers such as RT and LMM. Training data size and 
quality affect the classification accuracy and classifier selection. Although model based 
classifiers has potential when strong training data set was used. In this case, data dependent 
classifiers can be chosen for better accurate LUC map. Linear techniques are suitable if 
mixture degree is small in a pixel. LMM is ideal if there are enough training data and pure 
pixel for each LUC. However, if training pixel size and pure pixels are weak, non-linear 
techniques like RT or ANN are suggested.  

Hard classifiers were performed inaccurately with coarse spatial resolution images (e.g. 
MODIS, MERIS, NOAA, SPOTveg) because of mixed pixel problem. Fuzzy classifiers are 
reduced this problem and provided better accuracy than hard classification. Hard pixel 
based mapping techniques were successful using medium spatial resolution data (e.g. 
Landsat TM/ETM, Aster and Alos AVNIR) in regional and local scale, however, for the 
specific purposes like detailed crop pattern mapping or urban pattern mapping, object 
based classification approach was recommended for more reliable LUC mapping. Object 
based classification is appropriate when using very high spatial resolution data (e.g. rapid 
eye, Ikonos, Aerial photos, Geoeye). In segmentation stage of object based classification, 
pixels were merged to create each segment or object according to spectral, structural and 
textural similarities. This method is tolerated the pixel misclassification if there is a pixel 
noise in an area (Figure 15). 

In this chapter ancillary data integration were also discussed using several data from 
satellite remote sensing sensors. Three types of ancillary data were integrated to the DT hard 
classifier. DEM resulted the largest improvement in overall classification accuracy among 
others. Surface texture and vegetation indices were improved the accuracy of specific land 
cover types. When all data used together, overall classification accuracy were reduced. 
Additionally, more ancillary data is not important to enhance classification accuracy.  
Success of the ancillary data varies based on classification target, study area characteristics 
and remotely sensed data.  
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