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1. Introduction 

1.1 Leaf area index 

The green photosynthesizing leaf area of a canopy is an important characteristic of the status 
of the vegetation in terms of its health and production potential. At stand level, the amount 
of leaf area in a canopy is represented by a variable called the leaf area index (LAI), which is 
one of the key biophysical parameters in the global monitoring and mapping of vegetation 
by satellite remote sensing (Morisette et al., 2006). In this paper we adopt the, by now 
widely accepted, definition of LAI as the hemi-surface or half of the total surface area of all 
leaves or needles in the vegetation canopy divided by the horizontal ground area below the 
canopy. The definition is in line with the original definition of LAI, formulated for flat and 
(assumedly) infinitely thin leaves (Watson, 1947), as the one-sided leaf area per unit ground 
area. For coniferous canopies, the question arose on how to define the “one-sided” area of 
non-flat needles. While projected needle area formerly often has been used erroneously as a 
synonym to one-sided flat leaf area, it is now commonly accepted that the hemi-surface 
needle area represents the logical counterpart to the one-sided area of flat leaves (e.g. Chen 
& Black, 1992; Stenberg, 2006).  

LAI controls many biological and physical processes, driving the exchange of matter and 
energy flow. Because LAI responds rapidly to different stress factors and changes in climatic 
conditions, monitoring of LAI yields a dynamic indicator of forest status and health. The 
link between forest productivity and LAI, in turn, lies in that LAI is the main determinant of 
the fraction of incoming photosynthetically active radiation absorbed by the canopy 
(fAPAR). The absorbed photosynthetically active radiation (APAR) quantifies the energy 
available for net primary production (NPP) and is thus a critical variable in NPP and carbon 
flux models. NPP is related to APAR by the light-use-efficiency originally introduced by 
Monteith (1977) for agricultural crops.  

Traditionally, ground-based measurements of LAI have typically involved destructive 
sampling and determination of allometric relationships, e.g. between leaf area and the basal 
area of stem and/or branches carrying the leaves (the pipe model theory) (Shinozaki et al., 
1964; Waring et al., 1982). However, such “direct methods” are quite laborious and indirect 
measurements of LAI using optical instruments are today the preferred choice (Welles & 
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Cohen, 1996; Jonckheere et al., 2004). They provide inverse estimates of LAI based on the 
fraction of gaps through the canopy in different directions, which can be measured using 
devices such as the LAI-2000 Plant Canopy Analyzer (LI-COR, 1992) or hemispherical 
photography. A vast body of classical literature exists on the dependency between LAI and 
canopy gap fraction underlying these techniques (e.g. Wilson, 1965; Miller, 1967; Nilson, 
1971; Lang, 1986). In short, the inversion methods rely upon the assumption that leaves are 
randomly distributed in the canopy, in which case Beer’s law can be applied to plant 
canopies (Monsi & Saeki, 1953). However, as the organization of leaves (needles) in forest 
canopies is typically more aggregated (“clumped”) than predicted by a purely random 
distribution, the technique causes underestimation of LAI, especially in coniferous stands 
(e.g. Smith et al., 1993; Stenberg et al., 1994). Instead of the true LAI, the inversion of gap 
fraction data without correction for clumping yields the quantity commonly referred to as 
the “effective leaf area index” (Black et al., 1991). 

Monitoring LAI in a spatially continuous mode and on a regular basis is possible only using 
remote sensing. Estimation of LAI from optical satellite images is considered feasible 
because LAI is closely linked to the spectral reflectance of plant canopies in the shortwave 
solar radiation range (Myneni et al., 1997). The physical relationships between canopy 
spectral reflectances and LAI form the basis of retrieval algorithms used in current Earth 
observation programs (e.g. MODIS, CYCLOPES, GLOBCARBON products) for mapping 
LAI at global scales. They produce bi-weekly and monthly vegetation maps that are widely 
used by biologists, natural resources managers, and climate modelers, e.g. to track seasonal 
fluctuations in vegetation or changes in land use. The arrival of narrowband reflectance data 
(also known as hyperspectral or imaging spectroscopy data) opens up new possibilities for 
satellite-derived estimation/monitoring of variables connected to the status and structure of 
vegetation, including LAI. 

1.2 Spectral properties of boreal forests 

The boreal forest zone, which spreads through Fennoscandia, Russia, Canada and Alaska, is 
the largest unbroken forest zone in the world and accounts for approximately one fourth of 
the world’s forests. The boreal zone is a major store of carbon and thus plays an important 
role in determining global albedo and climate.  

The reflectance spectra of coniferous forests (even if they have the same leaf area) are very 
distinct from similar broadleaved forests. The reasons for the special spectral behaviour of 
coniferous forests are versatile, yet primarily related to their structural, not optical, 
properties. Firstly, a high level of within-shoot scattering of conifers was originally noted 
nearly four decades ago (Norman & Jarvis, 1975). More recently, Landsat ETM+ data and a 
forest reflectance model were used to show that the low near infrared (NIR) reflectances 
observed in coniferous areas can largely be explained simply by within-shoot scattering 
(Rautiainen & Stenberg, 2005). Secondly, absorption by coniferous needles is higher than 
that by broadleaved species (Roberts et al., 2004; Williams, 1991), a phenomenon which can 
partly contribute to the lower reflectances of conifer-dominated areas. Other explanations 
include, for example, that the tree crown surface of coniferous stands is more heterogeneous 
than in broadleaved stands (Häme, 1991; Schull et al., 2011). In other words, when surface 
roughness (i.e. crown-level clumping) increases, the shaded area within the canopy 
increases, thus leading to lower reflectances. Overall, these results highlight the importance 
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of various geometric properties as the main reason for the reflectance differences between 
broadleaved and coniferous stands.  

Remote sensing of the biophysical properties, such as LAI, of a boreal coniferous forest 
canopy layer is further complicated by the often dominating role of the understory in the 
spectral signal (Rautiainen et al., 2011; Rautiainen et al., 2007; Eriksson et al., 2006; Eklundh 
et al., 2001; Chen & Cihlar, 1996; Spanner et al,. 1990). Coniferous forests that are regularly 
treated according to forest management practices tend to have relatively clumped and open 
canopies. Thus, the role of the understory vegetation in forming boreal forest reflectance 
cannot be neglected (Pisek et al., 2011). 

1.3 Vegetation indices in LAI estimation 

Canopy biophysical variables, such as LAI, can be estimated from remotely sensed data by 
two types of algorithms: empirical models and methods that use physically-based radiative 
transfer (RT) models. In empirical algorithms, the estimation is based on statistical 
relationships modelled between concurrent ground reference measurements and surface 
reflectance data. These relationships are typically expressed in the form of vegetation 
indices (VI). VIs include various combinations of spectral bands designed to maximize the 
sensitivity to vegetation characteristics while minimizing it to atmospheric conditions, 
background, view and solar angles (Baret & Guyot, 1991; Myneni et al., 1995). Operational 
LAI algorithms at global-scale typically make use of RT models, but the empirical models 
usually outperform them in more localized applications. 

The design of a VI that is optimally correlated with a particular vegetation property requires 
good physical understanding of the factors affecting the spectral signal reflected from 
vegetation. The sensitivity of a VI to a vegetation characteristic is typically maximized by 
including bands with high sensitivity (e.g. high absorption) to the monitored entity and 
bands mostly unaffected by the same entity. The simplest forms of VIs are simple 
differences (RB1–RB2), ratios (RB1/RB2) and normalized differences [(RB1-RB2)/(RB1+RB2)] of 
the reflectances of two spectral bands (RB1, RB2). (In Table 2 we give examples of common 
VIs used in this study.) The most apparent characteristic of the green vegetation spectrum is 
the pronounced difference between the red and NIR reflectances, the so called red-edge 
around 700 nm. For example, the normalized difference vegetation index (NDVI) utilizes 
this difference and has been shown to correlate with many interrelated vegetation attributes, 
such as chlorophyll content, LAI, fractional cover, fAPAR and productivity. 

The most commonly used VIs were designed for broadband sensors (one spectral band 
spans about 50 nm or more) having red and NIR bands, such as NOAA AVHRR and 
Landsat MSS (e.g. Tucker, 1979). However, the basic VIs in red and NIR spectral range 
suffer from three well-known problems in LAI estimation: (1) they are not sensitive to LAI 
over its natural range but tend to saturate already at moderate levels of LAI, (2) they are 
sensitive to canopy background variability, and (3) the VI-LAI relationships are dependent 
on the vegetation type. These VIs are also sensitive to atmospheric noise and correction. 

The saturation of NDVI occurs typically at LAI levels of 2 to 6 depending on the vegetation 
type and environmental conditions (e.g. Sellers, 1985; Myneni et al., 1997). In general, NDVI 
saturates as the fractional cover of vegetation approaches one, although LAI still increases 
(e.g. Carlson & Ripley, 1998). Over conifer-dominated boreal forests, NDVI varies typically 
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in a narrow range and shows poor relationships with canopy LAI (Chen & Cihlar, 1996; 
Stenberg et al., 2004). The reason for this is the green understory, which results in a non-
contrasting background in the visible part of the spectrum (Nilson & Peterson, 1994; Myneni 
et al., 1997). 

Many modifications of basic VIs have been suggested to give better sensitivity to LAI. 
Typical modifications use other visible bands than red (e.g. the green vegetation index, 
GNDVI, Gitelson et al., 1996), try to reduce soil effects based on the soil line concept (e.g. the 
soil adjusted vegetation index, SAVI, Huete, 1988), or include short wave infrared (SWIR) 
bands. Many modifications also attempt to reduce atmospheric effects (e.g. the enhanced 
vegetation index, EVI, Huete et al., 2002). The soil line is based on the observation that soil 
reflectances fall in a line in the red-NIR spectral space (e.g. Huete, 1988). Many VIs utilize 
the parameterized soil line in their calculation, but these VIs have not been successful in 
boreal forests as bare soil is rarely visible (e.g. Chen, 1996). 

The sensitivity of shortwave infrared (SWIR) reflectance to forest biophysical variables has 
been recognized for a long time (e.g. Butera, 1986; Horler & Ahern, 1986) and several VIs 
utilizing the SWIR band have been designed. Rock et al. (1986) showed that the moisture 
stress index (MSI), i.e. the ratio of SWIR reflectance to NIR reflectance, was an indicator of 
forest damage. Later, the ratio has commonly been referred to as the infrared simple ratio 
(ISR, Chen et al., 2002; Fernandes et al., 2003). The SWIR reflectance has also been used for 
adjusting NDVI (Nemani et al., 1993) and SR (Brown et al., 2000). The reduced simple ratio 
(RSR) has been used specifically for estimating LAI (Brown et al., 2000; Stenberg et al., 2004) 
and has been employed also in regional and global-scale operational algorithms (Chen et al., 
2002; Deng et al., 2006). RSR seems to reduce the sensitivity to the type and amount of 
understory vegetation, because background reflectance varies less in SWIR than in visible 
and NIR (Brown et al., 2000; Chen et al., 2002). RSR has also some capability to unify 
coniferous and broadleaved forest types, which reduces the need for land cover type specific 
LAI algorithms. However, in comparison to ISR, the use of red band makes RSR sensitive to 
atmospheric effects (Fernandes et al., 2003). However, although inclusion of SWIR 
reflectance increases the sensitivity of VIs to LAI, these indices also have a tendency to 
saturate at high levels of LAI (e.g. Brown et al., 2000; Heiskanen et al., 2011). 

Imaging spectroscopy provides much narrower spectral bands than typical multispectral 
sensors. Due to the more detailed sampling of the vegetation spectra, such data can detect 
specific absorption features of vegetation and therefore improve the estimation of vegetation 
biochemical properties. For example, the SPOT 5 HRG sensors capture a spectral range from 
500 nm to 1750 nm with four broad bands, in comparison to Hyperion’s 242 (10 nm wide) 
bands between 400 nm and 2500 nm. At the canopy scale, the contents of biochemical 
components and LAI are highly inter-related (e.g. Asner, 1998; Roberts et al., 2004). 
Therefore, imaging spectroscopy could potentially improve LAI estimates. Furthermore, 
there is potentially complementary information outside the typical spectral bands of 
broadband sensors. 

One way to utilize imaging spectroscopy data is to calculate narrow-band VIs in a similar 
fashion as for broadband data but using narrower bands. The aim is to improve the 
sensitivity of the VI to a specific vegetation biochemical property. For example, Ustin et al. 
(2009) give a comprehensive review on VIs used as indicators of plant pigments 
(chlorophyll, carotenoids and anthocyanin). The methods of estimating the non-pigment 
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biochemical composition of vegetation (water, nitrogen, cellulose and lignin), on the other 
hand, are reviewed by Kokaly et al. (2009). Many of the developed indices have been 
designed to work at leaf level and do not necessarily upscale to canopy level, because of the 
high sensitivity to canopy structure, background, solar and view geometry. Another 
approach is to find iteratively the simple combinations of bands that give the best 
correlation with empirical data (e.g. Mutanga & Skidmore, 2004; Schlerf et al., 2005). 

Most chlorophyll indices exploit the information in the red edge around 700 nm (Ustin et al., 
2009). Imaging spectroscopy data also enables the estimation of the red edge position (REP), 
which is particularly sensitive to changes in chlorophyll content (e.g. Dawson & Curran, 
1998). Water indices, on the other hand, utilize the water absorbing regions in the SWIR 
region of the spectrum (e.g. Gao, 1996; Zarco-Tejada et al., 2003). Those indices seem 
particularly interesting for LAI estimation considering the importance of the SWIR spectral 
region in estimating LAI using broadband indices. 

There is growing evidence that imaging spectroscopy data can improve LAI estimates in 
comparison to broadband data by reducing the saturation effects. Depending on the 
vegetation type and range of LAI, different types of VIs have been found useful. However, 
the red edge indices have been most effective in estimating LAI of crops (Wu et al., 2010), 
grasslands (Mutanga & Skidmore, 2004) and thicket shrubs (Brantley et al., 2011). On the 
other hand, indices based on NIR and SWIR bands have been successful in broadleaved (le 
Maire et al., 2008) and coniferous forests (Gong et al., 2003; Schlerf et al., 2005; Pu et al., 
2008). The importance of the SWIR spectral region in estimating boreal forest LAI has also 
been emphasized by multivariate regression analysis (e.g. Lee et al., 2004). However, 
broadband sensors can also have advantages over narrowband sensors in LAI estimation, 
for example, by being less sensitive to noise due to the sensor, atmosphere and background 
(e.g. Broge & Leblanc, 2000). Although there are case studies from different biomes, the 
performance of narrowband VIs has been poorly assessed over European boreal forests. 

2. Case study 

2.1 Aims 

The aim of the study is to establish the extent to which vegetation indices can be used to 
measure variation in LAI based on a test site in southern boreal forest in Finland. We 
explore different VIs in LAI estimation during full leaf development. We compare the 
performance of narrowband VIs to traditional broadband VIs. The objective is to identify 
VIs, which are least sensitive to species composition and, on the other hand, perform well in 
coniferous stands. 

2.2 Materials and methods 

2.2.1 Study area 

The study area, Hyytiälä, is located in the southern boreal zone in central Finland (61° 50'N, 
24°17'E) and has an annual mean temperature of 3°C and precipitation of 700 mm. 
Dominant tree species in the Hyytiälä forest area are Norway spruce (Picea abies (L.) Karst), 
Scots pine (Pinus sylvestris L.) and Silver birch (Betula pendula Roth). Understory vegetation, 
on the other hand, is composed of two layers: an upper understory layer (low dwarf shrubs 
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or seedlings, graminoids, herbaceous species) and a ground layer (mosses, lichens). The 
growing season typically begins in early May and senescence in late August. We measured 
twenty stands from the Hyytiälä forest area in July 2010 (see Section 2.2.2, Table 1). The 
stands represented different species compositions that are typical to the southern boreal 
forest zone in Finland.  
 

Site Vegetation Site type Tree height, 
m 

Basal area, 
m2/ha 

LAI 

A4 Pine mesic 15.8 20.4 1.77 

A5 pine, understory broadleaf mesic 18.6 24.3 2.67 

B2 spruce, understory birch mesic 7.5 10 2.64 

D3 pine, understory spruce & birch sub-xeric 17.8 20.5 2.37 

D4 spruce, 25% birch mesic 16.5 27.5 3.72 

E1 birch, spruce understory mesic 19.1 10.7 2.58 

E5 50% spruce, 50% birch mesic 23.1 27.2 4.12 

E6 50% spruce, 40% birch, 10% pine mesic 10.2 22.2 3.34 

E7 Spruce mesic 13.3 31.7 3.91 

F1 birch, spruce understory mesic 13.8 20.9 3.37 

G4 spruce, 15% birch, 10% pine herb-rich 15.5 29.1 4.57 

H3 Birch herb-rich 14.9 10.7 2.63 

H5 Birch herb-rich 14.1 20.6 2.77 

I4 
birch, understory pine, spruce 
seedlings  

mesic 
2.4 4 2.61 

T Spruce mesic 24.6 56 3.43 

U16 Birch mesic 14 21 2.69 

U17 birch, 10% spruce herb-rich 11.7 27 3.35 

U18 65% pine, 25% spruce, 10% birch sub-xeric 16.5 26 3.45 

U26 20% pine, 70% spruce, 10% birch mesic 16.8 24.9 2.43 

U27 5% pine, 90% spruce, 5% birch mesic 15.2 20.9 2.63 

[pine = Scots pine, spruce = Norway spruce, birch = Silver birch] 

Table 1. Study stands.  

2.2.2 Ground reference measurements 

The LAI-2000 Plant Canopy Analyzer (PCA) is one of the most commonly used optical 
devices to measure LAI. The PCA’s optical sensor includes five concentric rings of different 
zenith angles (θ) (together covering almost a full hemisphere), which measure diffuse sky 

www.intechopen.com



 
Narrowband Vegetation Indices for Estimating Boreal Forest Leaf Area Index 

 

9 

radiation between 320-490 nm (LI-COR, 1992). Measurements by the PCA performed below 
and above the canopy yield canopy transmittances, T(θ), for each ring. Finally, LAI is 
calculated by numerical approximation of the integral (Miller, 1967): 

 LAI T d

/2

0

2 ln[ ( )]cos sin


       (1) 

There are four fundamental assumptions behind the LAI calculation method: 1. leaves 
(needles) are optically black in the measured wavelengths (implying that canopy 
transmittance closely corresponds to canopy gap fraction), 2. leaves (needles) are randomly 
distributed inside the canopy volume, 3. leaves (needles) are small compared to the area of 
view of the PCA’s rings, and 4. leaves (needles) are azimuthally randomly oriented. The LAI 
estimate produced by Eq. 1 is commonly called effective LAI as the foliage elements are not 
randomly organized but typically clumped (or grouped) together, which causes the estimate 
produced by the PCA to be smaller than the “true” LAI (Chen et al., 1991; Deblonde et al., 
1994).  

The LAI measurements can be done either with one or two PCA instruments. One PCA is 
used for small plants such as crops, but for taller plants (e.g. trees), two units are necessary. 
When only one instrument is used, the measurement is at first taken below and then above 
the canopy. If two instruments are used, one instrument remains above the canopy and the 
other one below the canopy. The use of two instruments is preferable since data are logged 
nearly simultaneously with both sensors. The LAI estimate is calculated by combining 
below and above canopy data. The measurements should be conducted under diffuse light 
conditions; for example, when the sky has a full cloud cover or the sun angle is low (less 
than 16 degrees). The radius of the sample plot should be at least three times the dominant 
tree height as the PCA instrument has a relatively large opening angle. 

In this study, the ground reference LAI (Table 1) was acquired by operating two LAI-2000 
PCA instruments simultaneously. The instruments were intercalibrated before 
measurements were performed. The reference sensor was located above the forest canopy 
and set at a 15-second logging interval, while the other sensor was used inside the forest. 
The sampling scheme was a ‘VALERI-cross’ (Validation of Land European Remote Sensing 
Instruments, VALERI) which consists of two perpendicular 6-point transects. The distance 
between two measurement points was four meters, so that the sampling scheme 
corresponded roughly to a 20 m x 20 m plot. Measurement height was kept constant at 0.7 
meters. 

2.2.3 Satellite data 

In this study, we used narrowband spectral data obtained from a Hyperion satellite image. 
Hyperion is a narrowband imaging spectrometer aboard the National Aeronautics and 
Space Administration (NASA) Earth Observer-1 (EO-1) satellite launched in 2000. Hyperion 
captures data in the ‘pushbroom’ manner in 7.7 km wide strips using 242 spectral bands. 
The spectral range of Hyperion is 356-2577 nm with each band covering a nominal spectral 
range of 10 nm. Each pixel in a Hyperion image corresponds to an area of 30 m x 30 m on 
the ground. During an acquisition, a scene with a length of either 42 km or 185 km is 
recorded. Hyperion is in a repetitive, circular, sun-synchronous, near-polar orbit at an 
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altitude of 705.3 km measured at the equator. Thus, it can image almost any point on Earth 
and it flies over all locations at approximately the same local time. The nominal revisit time 
is 16 days, but due to the possibility of tilting the sensor, the potential revisit frequency is 
higher. The scene used in this study was captured on 03 July 2010, and was provided 
courtesy of the U.S. Geological Survey (USGS) Earth Explorer service. 

Out of the potential 242 spectral bands, several lack illumination (due to the absorption in 
the atmosphere or a decrease of incident solar spectral irradiance in the longer infrared 
wavelengths) or have a very low spectral response. This leaves the user with 198 usable 
spectral bands: bands 8-57 in the visible and NIR (wavelengths 436-926 nm) and bands 77-
224 in SWIR (wavelengths 933-2406 nm) (Pearlman et al., 2003). Hyperion images have 
several known deficiencies which can be corrected using algorithms given in scientific 
literature. Firstly, Hyperion suffers from systematic striping in along-track direction of the 
image. The stripes are characteristic to all pushbroom sensors. Instruments belonging to 
this broad class have a different receiving element for each image line. Hyperion has thus 
256 radiation-sensitive elements for each spectral band, each seeing a separate 30 m strip 
of the ground, thus producing the 7.7 km wide image. The striping can be broadly 
divided into two classes, completely missing lines (due to non-functioning receiving 
elements) and actual stripes (arising from slightly different sensitivities of the 256 
receivers). We removed the actual striping using Spectral Moment Matching (SpecMM), 
outlined by Sun et al. (2008), which uses the average and standard deviation statistics 
between highly correlated bands to remove stripes. Next, the missing lines containing no 
information were identified and corrected using the values from spatially adjacent pixels 
using local destriping (Goodenough et al., 2003). The results of the destriping can be seen 
in Figure 1.  

  
Fig. 1. Hyperion band 8 (436nm) uncorrected image (left), and corrected using Spectral 
Moment Matching and local destriping (right). 

The second known defect in Hyperion imagery is a shift in the wavelength of each column 
in the across track direction from the band central wavelength. This shift, known as spectral 
smile, is also characteristic to pushbroom sensors and is a result of different optical paths 
leading to the different receiving elements. The shift is a function of wavelength and the 
position of the receiving element in the receiving array. As is the case for most instruments, 
the “smile” manifests itself in Hyperion imagery as a “frown”, with the wavelengths of the 
columns near the edges of each band shifting negatively from the bands average wavelength 
(Figure 2). The smile was corrected using the pre-launch laboratory measured spectral shift 
(Barry, 2001). We used interpolation to bring each individual pixel to a common central 
wavelength based on the pre-launch calibration measurements. 
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Fig. 2. Laboratory measured spectral shift of Hyperion (Barry, 2001).  

The signal received by the Hyperion instrument consists of the photons scattered by the 
atmosphere as well as the ground surface. To study surface reflectance, the influence of the 
atmosphere needs to be eliminated in a process commonly known as atmospheric 
correction. We performed this correction using an algorithm known as Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH, Matthew et al, 2000). FLAASH is 
an absolute atmospheric correction that incorporates the MODTRAN4 radiation transfer 
code to model the scattering and transmission properties of the atmosphere at the time of 
image capture (San & Suzen, 2010). The FLAASH algorithm is incorporated into the ITT 
Visual Information Solutions (ITT VIS) ENVI software. For processing, FLAASH requires an 
input value for visibility to estimate atmospheric aerosol levels, in addition to basic 
geographic and temporal details about the scene. The visibility can be recalculated by 
FLAASH, using a ratio between dark pixels at 600 nm and 2100 nm. However, a more 
accurate estimate of visibility was achieved using ground based optical measurements from 
a weather station in the area. 

The final processing stage is to resample the image pixels into a geographic coordinate 
system, known as geocorrection. This was done using a polynomial transformation to a 
vector base map from the National Land Survey of Finland. The Hyytiälä area contains 
numerous roads, providing a large number of easily identifiable potential ground control 
points (GCPs) at intersections. Around 20 GCPs were selected, with a root mean square 
error of 0.4 pixels being achieved. Bilinear interpolation was chosen for resampling the 
image pixels due to the better geometric accuracy over nearest neighbour. 

The final product is a geocorrected image of the surface hemispherical-directional 
reflectance factors (HDRF) of the Hyytiälä area. To validate the atmospheric correction, we 
compared the HDRF to a field measured reflectance factor. A soccer field of about 130 m by 
60 m in the area was sampled during the summer of 2010 every two to three weeks using an 
ASD handheld portable spectroradiometer covering a spectral range from 325-1075 nm. The 
sampling was done using a transect approach with 42 measurements at around 1 meter 
intervals. The final hemispherical-conical reflectance factor (HCRF) used for the comparison 
is an average of the transect representing the average for the whole field. While no ground 
measurements fell on the exact date of the Hyperion image, the ground measured spectra 
was interpolated to dates between two measurements. After interpolation the ground 
measured HCRF was binned into corresponding Hyperion bands using the spectral 
response of each band. 
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Fig. 3. Comparison of a soccer field’s spectral reflectance factors from in situ radiometric 
measurements and corrected Hyperion data. 

Overall, there is a very good correlation between the field measured reflectance and the 
fully processed Hyperion reflectance (Fig. 3). An overall RMSE of 1.8% is achieved, which 
gives us confidence in the validity of the pre-processing and atmospheric correction. 
However, as the in situ spectrum is considerably smoother than the one measured from the 
satellite, a considerable amount of noise is also present in the satellite-derived HDRF.  

2.2.4 Vegetation indices and statistical analysis 

First, we studied how HDRFs in single bands are correlated with LAI. Next, in order to 
evaluate narrow-band VIs for estimating LAI, we did regression analyses between various 
VIs and LAI. We used two approaches to select narrowband indices: 1) We made a literature 
survey for narrow-band VIs that have been designed to estimate foliage biochemical 
components. (A collection of VIs showing the highest R² with LAI are shown in Table 2.) 2) 
We calculated all the possible Ratio Indices (RI) and Normalized Difference Indices (NDI) of 
Hyperion bands and correlated them with LAI. In other words, the first approach also 
contains VIs combining several bands and the second approach aims to identify the simple 
two-band VIs that best correlate with LAI.  

To facilitate the comparison of narrowband VIs with broadband indices, we calculated 
synthetic HDRFs based on Landsat 7 ETM+ bands. The HDRFs were calculated according to 
Jupp et al. (2002) using the ETM+ spectral sensitivity functions, and Hyperion’s central 
wavelengths and bandwidths. Four broadband indices were calculated for comparison, SR, 
NDVI, ISR and RSR (Table 2). All these indices have been used for LAI estimation in various 
biomes. SR and NDVI were included for reference, and ISR and RSR because they have 
shown best performance over conifer-dominated boreal forests (see 1.3). 

We analyzed the data both by grouping all the sample plots together and separately for 
coniferous plots (> 75% of the trees were Scots pines or Norway spruces). In the birch-
dominated stands, the variation in LAI was too small for reliable regression analysis.  

We studied only linear relationships. The strength of the relationship was assessed by the 
coefficient of determination (R2) and the root mean square error (RMSE). 
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Abbr. Index Formula Reference Bands 
applied 

Indices concentrating on the red-edge 

SR Simple Ratio SR = RETM+4/RETM+3 
Rouse et al. (1974), 
Birth & McVey 
(1968) 

ETM+3, 
ETM+4 

NDVI 
Normalized Difference 
Vegetation Index 

NDVI = (RETM+4-
RETM+3)/(RETM+4+RETM+3)

Rouse et al. (1974) 
ETM+3, 
ETM+4 

REP Red Edge Position 
REP = 700+ (((R773 +1,5 
*R662) - R692) / (R733-R692)) 
*(740-700) 

Danson & Plummer 
(1995) 

773, 662, 
692, 733 

Indices concentrating on pigment content 

PSSRa 
Pigment-Specific 
Simple Ratio – chla 

PSSRa = R803/R681 Blackburn (1998) 681, 803 

Water sensitive indices 

MSI = 
ISR 

Moisture Stress Index 
= Infrared Simple Ratio

ISR = RETM+5/RETM+4 
Rock et al. (1986), 
Fernandes et al. 
(2002) 

ETM+4, 
ETM+5 

RSR  Reduced Simple Ratio 

RSR = (RETM+4/RETM+3) * 
((RETM+5_min – RETM+5) 
/(RETM+5_max – 
RETM+5_min)) 

Brown et al. (2000) 
ETM+3, 
ETM+4, 
ETM+5 

Table 2. Vegetation indices investigated in this study. The symbol R refers to the HDRF. 
Subscripts refer to the applied ETM+ band or the central wavelength (in nm) of the 
Hyperion band 

2.3 Results 

2.3.1 General characteristics of forest spectra 

Two examples of forest reflectance factors (HDRFs) are presented in Figure 4. To allow 
relating the vegetation spectra to satellite signals, the sensitivity functions of the 
corresponding ETM+ bands are shown. Note the correspondence of ETM+2 with the green 
peak, ETM+3 with the red local minimum and ETM+4 with the plateau in the NIR. The red-
edge slope (between ETM+ bands 3 and 4) is not covered by ETM+ bands. ETM+5 and 
ETM+7 catch the signal in the shortwave infrared region (SWIR-1 (here: 1470-1800 nm) and 
SWIR-2 (here: 2030-2360 nm) respectively), avoiding the two strong water absorption bands 
in-between. 

The average reflectance of coniferous stands is slightly lower in the green region and 
decidedly lower in the NIR than the reflectance of birch stands. In SWIR-1 (covered by 
ETM+5) the reflectances become more comparable, and in SWIR-2 (covered by ETM+7) the 
signals almost meet. 
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Fig. 4. Average conifer and birch-dominated stand spectra. The grey lines show the spectral 
sensitivity of the ETM+ bands. 

2.3.2 Regression analysis for single bands 

The different average HDRF for the two forest types (Fig. 4) results in different correlations 
of the satellite bands to LAI (Fig. 5).  

 
Fig. 5. Correlation coefficient of LAI with ETM+ and Hyperion spectral bands for all sample 
stands, and separately for conifer sample stands.  

The correlation coefficients for all stands varied between -0.6 and -0.038. All correlations 
were negative, except for the two Hyperion bands centred at 2345 nm and 2355 nm. Two 
important regions (green and NIR) had almost no correlation with LAI. Only the absorption 
peak of chlorophyll produced a strong negative correlation at 681nm. The SWIR correlations 
were also mostly negative. 

For conifer stands, correlation coefficients varied between -0.7 and 0.6. The first peak was at 
549 nm, in the middle of the green band, followed by a strong negative correlation in the red 
with a peak at 681 nm. In the NIR a strong positive correlation was observed again. A slight 
shoulder began at 712 nm, with a plateau at 752 nm. In the SWIR, correlation coefficients 
were very close to those of all stands. 

Fig. 5 also shows the correlation of the ETM+ bands to LAI. The lower spectral resolution 
averages wider wavelength ranges and therefore shows less variation in correlation 
coefficients.  
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2.3.3 Correlation of vegetation indices to LAI for all sample plots 

The best broadband index analysed here was the Infrared Simple Ratio (ISR, R2 = 0.56), 
followed by the Reduced Simple Ratio (RSR, R2 = 0.40) (Table 3). The best narrowband 
combinations (either RI or NDI) showed more potential with R2s exceeding 0.65 (Table 3, 
Fig. 6). If there were several indices based on neighbouring bands (within 10 nm) we chose 
the best one to Table 3. 
 

VI Bands applied R2 RMSE RMSE 
Conifer 

RMSE 
Broadleaf 

broadband indices using simulated ETM+

ISR ETM+4, ETM+5 0.56 0.44 0.42 0.25 

RSR ETM+3, ETM+4, ETM+5 0.40 0.52 0.59 0.31 

NDVI ETM+3, ETM+4 0.09 0.64 0.68 0.51 

SR ETM+3, ETM+4 0.04 0.66 0.73 0.46 

narrowband indices using Hyperion

RI 1134, 1790 0.71 0.36 0.34 0.38 

NDI 1134, 1790 0.68 0.38 0.36 0.39 

RI 732, 1790 0.67 0.38 0.42 0.31 

RI 1074, 1790 0.67 0.38 0.40 0.34 

RI 885, 1790 0.67 0.39 0.37 0.35 

RI 854, 1790 0.66 0.39 0.37 0.34 

RI 1003, 1639 0.66 0.39 0.39 0.26 

RI 1044, 1790 0.66 0.39 0.39 0.37 

NDI 732 1790 0.66 0.39 0.42 0.33 

NDI 1084, 1286 0.66 0.39 0.43 0.22 

Table 3. Indices most correlated with LAI for all sample plots. RMSE was also calculated 
separately for each forest class. Bands for Hyperion refer to the central wavelength (in nm). 

The best band combinations for RI and NDI indices were very similar (Fig. 6). A strong 
correlation with LAI existed for bands combining the region between 730 to 900 nm and 
1130 to 1350 nm. Another interesting region was within SWIR-1; especially strong was the 
correlation around 1780 and 1790 nm. These bands also showed up in the best performing 
indices for all forest classes combined (Table 3).  

The two best narrowband indices for all forest plots were the RI (R2 = 0.71, RMSE = 0.36) 
and NDI (R2 = 0.68, RMSE = 0.38) based on bands centred at 1134 and 1790 nm (Table 3). 
This is consistent with the best broadband index (ISR) which also combines NIR and SWIR. 
The same spectral regions are used by all the other best indices except two cases including a 
band in the red-edge (732 nm). Examples of the strongest relationships are shown in Fig. 7. 
However, when looking at the RMSE for conifer and broadleaf stands (Table 3) it became 
apparent that for some indices (e.g. NDI based on 1084 nm and 1286 nm: RMSE = 0.43 for 
conifers and RMSE = 0.22 for broadleaf) their LAI was correlated differently to the same VI.  
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Fig. 6. Matrixes showing the R2 between LAI and simple narrowband indices calculated for 
all possible combinations of Hyperion bands. The indices are defined as follows: 
RI=Band1/Band2, and NDI=(Band1-Band2)/(Band1+Band2). 

 

Fig. 7. The relationship of LAI and two best ratio indices (RI).  

2.3.4 Correlations for coniferous dominated forest plots 

The performance of the broadband indices for conifer-dominated stands was much better 
than over all sample stands. R2 now ranged from 0.60 to 0.79, and NDVI showed the best 
correlation with LAI, followed by SR.  

The best performing narrowband index over coniferous forest was neither RI nor NDI but 
REP (R² = 0.89) calculated according to the method of Danson & Plummer (1995) (Table 2). 
This index combined four bands in the visible and NIR; an area also represented in several 
of the other indices which best correlated with LAI in coniferous stands.  

The matrixes for all band combinations of Hyperion bands over conifer-dominated stands 
(Fig. 8) showed wider spectral regions of high correlation than for all stands (Fig. 6). 
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Fig. 8. Matrixes showing the R2 between LAI and two narrowband indices calculated for all 
possible combinations of Hyperion bands for conifer-dominated stands. 

 

Fig. 9. The relationship of LAI and the two best performing narrowband indices for conifer-
dominated stands.  

Most of the indices with the highest correlations to LAI in coniferous stands used bands 
around the red-edge. Almost all of them (e.g. the Pigment-Specific Simple Ratio Index for 
chlorophyll a, PSSRa) applied the Hyperion band centred at 681nm, the peak of chlorophyll 
a absorption. Exceptions were the RI and NRI using the bands centred at 1185 and 1790 nm 
(i.e. combining NIR and SWIR), and RI and NDI using bands centred at 518 and 773 nm (i.e. 
combining carotene absorption and NIR). 

Scatterplots for the two best indices for coniferous stands are shown in Fig. 9. In both cases, 
coniferous plots differed considerably from the other plots. This was indicated also by the 
high RMSE for all stands (up to 1.42, Table 4). However, for indices using NIR and SWIR 
(e.g. RI and NDI based on 1185 and 1790 nm) the differences were less pronounced. The VI 
showing the lowest RMSE for all stands (0.49) was the RI (1185 and 1790 nm) with an R2 for 
conifer stands of 0.86 and RMSE 0.29. 
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VI Bands applied R2 RMSE RMSE All 
stands 

broadband indices using simulated ETM+ 

NDVI ETM+3, ETM+4 0.79 0.36 1.20 

SR ETM+3, ETM+4 0.78 0.36 1.56 

ISR ETM+4, ETM+5 0.71 0.42 0.44 

RSR ETM+3, ETM+4, ETM+5 0.60 0.50 0.90 

narrowband indices using Hyperion 

REP 671, 702, 742, 783 0.89 0.26 1.29 

NDI 681, 773 0.88 0.27 1.02 

RI 681, 773 0.88 0.28 1.01 

RI 1185, 1790 0.86 0.29 0.49 

NDI 1185, 1790 0.86 0.30 0.50 

NDI 681, 742 0.85 0.30 1.01 

NDI 681, 824 0.85 0.30 0.98 

RI 681, 742 0.85 0.31 0.99 

NDI 518, 773 0.85 0.31 1.42 

PSSRa 803, 681 0.85 0.31 1.30 

RI 518, 773 0.85 0.31 1.39 

Table 4. Indices most correlated with LAI in conifer-dominated plots. R2 and RMSE for 
conifer-dominated stands, and RMSE separately for all stands. Bands for Hyperion refer to 
the central wavelength (in nm). 

2.4 Discussion 

In our case study, the narrowband VIs provided more accurate LAI estimates than the 
broadband VIs synthesized from the same data in a boreal forest study site. The best 
narrowband combinations showed relatively strong linear relationships with LAI (R2 > 
0.65), although the Hyperion image was acquired in the middle of the growing season when 
LAI is the highest. The relationships were even stronger if the analysis was restricted to the 
conifer stands (R2 > 0.85). The results are promising as common broadband VIs tend to 
saturate at the highest LAI values. The improvement of estimation accuracy is in agreement 
with the previous studies, which have emphasized the potential of narrowband VIs for 
estimating forest canopy LAI (e.g. Lee et al., 2004; Schlerf et al., 2005; Brantley et al., 2011; 
Wu et al., 2010). 

Most of the narrowband VIs showing the strongest relationships with LAI were based on 
reflectances in the far red and at the red edge (680—740 nm), NIR (e.g. 885 and 1134 nm) and 
SWIR (e.g. 1639 nm and 1790 nm) wavelength regions (Figure 10). Many of the most 
important spectral regions are not covered by the ETM+ spectral bands, and the spectral 
regions are very narrow in comparison to the ETM+ bands. 
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Fig. 10. Spectral regions used by the indices showing the strongest relationships with LAI 
over all sample stands and conifer stands. 

The NIR and SWIR spectral bands were particularly important when all sample plots were 
analyzed together. This is in agreement with the best broadband indices, ISR and RSR. The 
importance of NIR and SWIR bands has been emphasized also in previous studies testing 
narrowband VIs for estimating forest LAI (e.g. Lee et al., 2004; Schlerf et al., 2005). The leaf 
(needle) reflectance at those wavelengths is mainly controlled by water absorption, although 
leaf biochemical components such as proteins, cellulose and lignin also contribute to 
absorption in the infrared (e.g. Curran, 1989). The amount of water at the canopy level is 
directly related to LAI, which explains strong correlations. The bands centered at 1134 nm 
and 1790 nm are among the Hyperion bands, which are closest to the water absorption 
regions centered at approximately 1200 nm and 1940 nm. The spectral bands close to the 
water absorption regions at 970 nm and 1400 nm are also employed in some of the best 
indices. The spectral bands of the broadband sensors are usually placed in the middle of the 
atmospheric windows to avoid atmospheric absorption. However, it seems that narrow 
spectral bands close to the water absorption regions are particularly interesting for 
estimating LAI. In these wavelength regions, the reflectance seems to be relatively 
insensitive to tree species or composition of the understory vegetation, as suggested earlier 
by the studies using broadband indices (e.g. Brown et al., 2000). 

When pure coniferous stands were studied separately, the relationships became stronger 
and the far red and red edge spectral bands were included in several of the best VIs. 
However, the improvement in accuracy relative to the best VI based on NIR and SWIR 
reflectance (RI based on bands centered at 1185 nm and 1790 nm) was rather modest. The 
best broadband indices were NDVI and SR, which are based on ETM+ red and NIR bands. 
Usually, NDVI has shown relatively weak relationships with LAI in conifer dominated 
boreal forest (e.g. Stenberg et al., 2004).  

The strongest relationship with LAI was provided by the red edge position (REP) calculated 
by the method proposed by Danson and Plummer (1995). In general, the REP is considered 
to be sensitive to leaf and canopy chlorophyll content, so that increasing the amount of 
chlorophyll, or LAI, is related to the longer REP wavelength because of the widening of the 
chlorophyll absorption region at approximately 680 nm (Danson & Plummer, 1995; Dawson 
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and Curran, 1998; Sims & Gamon, 2002; Pu et al., 2003). In comparison to SWIR spectral 
bands, the far red and red edge spectral region is sensitive to species composition, shown as 
poor relationships over mixed vegetation. However, sometimes poor relationships between 
the REP and LAI have been reported even for pure coniferous stands (Blackburn, 2002). 
However, although the REP calculated in this study showed strong correlation with 
coniferous LAI, the estimated wavelengths do not correspond to the Red Edge Inflection 
Point (REIP), i.e. the steepest slope of the red-edge. The wavelengths are considerably 
longer. Therefore, the unusual inverse relationship between REP and LAI in this study is 
explained by the calculation method (Danson and Plummer, 1995). Alternative calculation 
methods for REP are summarized, for example, by Pu et al. (2003). 

Although many studies testing narrowband VIs for LAI estimation have stressed the 
potential of the red edge and SWIR spectral regions, the specific spectral bands providing 
the strongest relationships with LAI vary between the studies. Also in our case study, the 
optimal band combinations provided stronger relationships with LAI than VIs collected 
from the literature. This is somewhat expected, as the number of spectral bands and their 
possible combinations is so large that empirically determined optimal band combinations 
are likely to depend heavily on the local environmental conditions and type of satellite 
image data. For example, approximately 150 useful spectral bands of Hyperion make more 
than 20,000 two-band combinations. Because of this, the optimal indices cannot necessarily 
be generalized very well. Furthermore, a large number of spectral bands combined with a 
small number of sample plots increase the risk that the regression models are overfitted. 
However, this should be mostly a problem with multivariate approaches (e.g. Lee et al., 
2004). Moreover, when comparing broadband and narrowband indices, it should be noted 
that we used only synthesized ETM+ data and the results could differ to some extent if true 
ETM+ data would have been used instead (Lee et al., 2004). This is because the synthetic 
broadband data is affected by the lower signal-to-noise ratio of the narrow spectral bands, 
even if data are averaged. 

3. Future perspectives 

Wider use of imaging spectroscopy data is hampered by the availability of the data. Today, 
mostly airborne instruments are used to produce remote sensing data with high spectral 
resolution. Airborne measurements are associated with relatively small spatial coverage and 
high operating costs falling directly to data users. The Hyperion sensor used in this case 
study is a rare exception: it is the only true imaging spectrometer in orbit today, providing 
wide spectral coverage with uniform spectral resolution and contiguous bands. The scene, 
however, is about to change. At the end of the decade (i.e., around 2020), NASA is planning 
to launch the HyspIRI mission, providing narrowband data with routine global coverage 
(Samiappan et al., 2010). Before HyspIRI, several national space programs are striving to 
launch satellites with capability to produce narrowband data (e.g. the EnMAP instrument, 
Segl et al., 2010). Therefore, the need for developing algorithms that would make use of the 
advanced properties of narrowband data, compared to the more traditional multispectral 
data, is evident. 

In this case study, we used narrowband VIs to relate forest LAI to remotely sensed 
reflectance signals. Historically, vegetation indices have been among the very first tools in 
interpreting multispectral remote sensing data from vegetated areas. Later, physically-based 
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reflectance modelling has taken over the role of the preferred method in large-scale 
retrievals of vegetation biophysical variables. Similar developments may take place in the 
interpretation of narrowband imaging spectroscopy data. However, let us first take a closer 
look at narrowband indices as they are used in the current study. 

As discussed above (section 1.3), VIs are usually treated as empirical (or, at least semi-
empirical) tools in remote sensing. However, it has been known for a long time that the 
reflectance indices convey also some information on the physical processes related to the 
interaction of light with plant elements. Indeed, Myneni et al. (1995) showed that the 
common indices are actually derivatives of canopy reflectance and are physically related to 
abundances of absorbing pigments. For this reason, indices commonly make use of two 
spectral regions: one inside the spectral region where the absorption of a pigment is strong, 
and one outside the absorption band. The use of red and near-infrared wavelengths thus 
corresponds to measuring the abundance of one of the most vital plant pigments, 
chlorophyll.  

Can such an interpretation be extended to narrowband indices? From the point-of-view of 
the physics of radiative transfer, there is no fundamental difference between broad- and 
narrowband indices. However, for calculating a spectral derivative, there is little use of well-
tuned and potentially much noisier narrow spectral bands. For detecting pigments whose 
absorption spectra span tens, if not hundreds of nanometers, broadband indices seem a 
much more robust tool. Further, vegetation indices, especially early ones like the NDVI, 
have been shown both empirically and on the basis of theoretical studies, to be sensitive to 
factors others than those of interest, such as soil brightness changes and atmospheric effects. 
Most narrowband indices can be viewed as finely tuned versions of their older broadband 
counterparts. Site-specific selection of wavelengths leads to a better explanatory power of 
narrowband VIs as we also demonstrated in this case study. Unfortunately, the fine tuning 
for eliminating environmental effects makes narrowband indices potentially even more site-
specific than broadband ones. 

The comparison of narrowband and broadband VIs presented above did not concern indices 
capturing truly narrowband effects, e.g. the photochemical reflectance index PRI (Gamon et 
al., 1992) or various red edge parameters. Intrinsically narrowband VIs are based on effects 
that cannot be detected from broadband data. These indices are not more site-specific than 
broadband indices and do indeed, due to a finer spectral resolution, provide additional 
information on vegetation cover on all scales. Similarly, the red edge parameters calculated 
above make use of the high spectral resolution of narrowband data in a manner which is not 
site-specific. Therefore, it is not surprising that they provide a good fit for estimating forest 
stand variables regardless of dominating species. 

An alternative to using narrowband indices would be to invert a full canopy reflectance 
model: the goals of both methods are to retrieve information on some biophysical variable 
of interest (Rautiainen et al., 2010). As discussed in this chapter, the theoretical 
foundations of the two approaches are somewhat similar. However, obvious limitations of 
index-based inversions lie in that it is not possible to define a spectral index sensitive to 
only one process, nor is it possible to design a universal spectral index which would be 
optimal for all applications everywhere and all the time (Verstraete & Pinty, 1996). 
Further, since vegetation indices carry only part of the information available in the 
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original channel reflectances, they assume that the information of interest is contained 
exclusively in the observed spectral variations. VIs also often neglect the effects of surface 
anisotropy associated with the specific geometry of illumination and observation at the 
time of the measurements (Govaerts et al., 1999). Last, but not least, a fundamental 
shortcoming of the index-based approach lies in its potentially wide application area. A 
user not directly working in the field of remote sensing science may be distracted by a 
statistically strong dependence between a variable of interest (e.g. an ecological parameter 
describing diversity) and a vegetation index. However, canopy reflectance signals can 
carry information only on what are known as state variables of radiative transfer 
(abundances of optically active substances, canopy amount and structure, etc.). Other 
variables may be correlated with one or more of the state variables, but before drawing 
conclusions based on such correlations, the nature and application range of the correlation 
should be clarified. 

Naturally, physical canopy reflectance models are immune to the problems listed above. 
When working in the forward mode, a modern reflectance model can reliably predict the 
spectral reflectance signal of a vegetation canopy given the required inputs (e.g. 
Widlowski et al., 2007). When run in inverse mode, the models should be able to produce 
an estimate of the state variables of radiative transfer based on measured spectral 
reflectance values. Unfortunately, due to the large number of the state variables and the 
mathematical nature of the inverse problem, a robust result is difficult to achieve (Baret & 
Buis, 2008). Despite the present-day problems with inverting canopy reflectance models, it 
is clear that physical models hold a clear advantage over index-based biophysical 
parameter estimation, especially when using imaging spectroscopy data. Physical models 
account for changes in environmental conditions and estimate all state variables 
simultaneously. They also have the advantage of failing if unphysical data is fed to them 
(e.g. due to sensor failure or preprocessing error) instead of producing unrealistic results. 
The problem with the large number of state variables can be solved by the larger 
information content of imaging spectroscopy data (compared with that produced by 
multispectral sensors) and development of novel physically based parameterizations 
allowing a more efficient description of canopy structure. However, until the full potential 
of imaging spectroscopy has been utilized by the developers of physical models, 
narrowband vegetation indices remain valuable tools in exploring the richness of high 
spectral resolution data. 
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