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Estimation of the Separable MGMRF  
Parameters for Thematic Classification 

Rolando D. Navarro, Jr., Joselito C. Magadia and Enrico C. Paringit  
University of the Philippines, Diliman, Quezon City 

Philippines 

1. Introduction 

Because of its ability to describe interdependence between neighboring sites, the Markov 
Random Field (MRF) is a very attractive model in characterizing correlated observations 
(Moura and Balram, 1993) and it has potential applications in areas of remote sensing, such 
as spatio-temporal modeling and machine vision. In this study, we model image random 
field conditional to the texture label as a Multivariate Gauss Markov Random Field 
(MGMRF); whereas; the thematic map is modeled as a discrete label MRF (Li, 1995). The 
observations in the Gauss Markov Random Field (GMRF) are distributed with the Gaussian 
distribution.  

There are some MGMRF models where the interaction matrices are modeled in some 
simplified form, including the MGMRF with isotropic interaction matrix which we shall 
refer here as Hazel’s GMRF (Hazel, 2000), The MGFMRF with anisotropic interaction matrix 
proportional to the identity matrix which we shall refer here as Rellier’s GMRF (Rellier et. 
al., 2004), and the Gaussian Symmetric Clustering (GSC) (Hazel, 2000). 

From these developments, the model for anisotropic GMRF was generalized and its 
parameter estimator for an arbitrary neighborhood system is characterized (Navarro et al., 
2009). Using our model, the classification performance was analyzed and compared with the 
GMRF models in literature.  

Spectral classes are explored in segmenting image random field models to be able to extract 
the spatial, spectral, and temporal information. A special case is addressed when the 
observation includes spectral and temporal information known as the spectro-temporal 
observation. With respect to the spectral and temporal dimensions, the separability structure 
is considered based on the Kronecker tensor product of the GMRF model parameters. 
Separable parameters contain less parameters, compared with its non-separable counterpart. 
In addition, the spectral and temporal dimensions on a separable model can be analyzed 
separately. We analyzed whether the separability of the GMRF parameters would improve 
the classification of the thematic map. 

2. Image random field modelling and thematic classification 

This section covers statistical background in characterizing random fields based on the MRF. 
Then, we will present estimation for the thematic map and image random field parameters. 
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Finally the thematic map classifier is presented based on the Iterated Conditional Modes 
(ICM) algorithm. 

2.1 Markov random fields 

A random field  : Z Z ss   where s  is a site on the lattice   with the neighborhood 
system   with parameter Π  is a MRF if for s   (Winkler, 2003). 

    ; ;p p Z Z Π Z Z Πs ss s  (1) 

where  :   Ζ Ζ t sts
is the random field which consists of observations of the neighbors 

of .s  Similarly,  :   Ζ Ζ t sts
  

is the random field, which consists of observations 
that exclude .s  

2.2 Thematic map modeling 

Let  L L s s   be denoted as the thematic map, where  1, ,L Ms   is the labeled 
thematic class at site s and M is the number of thematic classes. The thematic map is 
modeled as a discrete space, discrete domain MRF with parameters 

    ,1a bm m M  φ r r   where am is the singleton potential coefficient for the 
th

m thematic class, br are made up by the pairwise potential coefficients, and  is region of 
support (Jeng & Woods, 1991) or the neighborhood set (Kasyap & Chellappa, 1983). Its 
conditional probability density function (pdf) is given by 

      

 

exp ,
1

,

exp ,
1

M
a b V L Lm mm

p L
M

a b V L l Lll

    
    

 

 
 
 

 
 
 

1 r s s rLs r
L φs s

r s s r
r





 (2) 

(Li, 1995), where 

  1
,

1 .

x y
V x y

x y








 
 

2.3 Image random field modeling 

The observation 
s
Y

 
given the thematic map L  is modeled with the conditional 

distribution     ~ ,N L LNY L μ Σs s s . It is conditionally dependent on L
s
, the thematic 

class at site s , and it is driven by an autoregressive Gaussian colored noise process 

  ~ , .1N LN NX L 0 Σs s  
Two noise processes 

s
X and s rX are statistically independent if 

the corresponding thematic classes L
s
and L s r are different for all r  and .s   This 

model tends to avoid the blurring effect created between segment boundaries which, in 
turn, may yield poor classification performance. The resulting equation can be written as 
follows: 

          
 


    .L LL L L

s s r
s s s r s s r s

r

X Y μ θ 1 Y μ


 (3) 
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The noise process has the following characterization:  

     1; NE sX L Θ 0   (4) 

  
 

     



 



 
  



1

cov , ;

otherwise

p

L L

N N

L

L L
s s r

s

s s r r s s

Σ r 0

X X L Θ θ Σ 1 r

0

  (5) 

      
 

 
1

cov , ; .
p

Ls s r s r 0
X Y L Θ Σ 1  (6) 

The conditional probability on the other hand is given as 

  
   

 





   
 

1
1 22

1 1
, ; exp .

22

T

N
p L

L
s s s s s

s

Y Y L Θ X Σ X
Σ

 (7) 

2.4 Maximum pseudo-likelihood estimation 

The maximum pseudo-likelihood estimation (MPLE) combines sites to form the pseudo-
likelihood function from the conditional probabilities (Li, 1995). The pseudo-likelihood 
functions for the thematic map random field and image random field parameters are given 
as follows:  

    ;PL p L 


 s s

s

φ L φ


 (8) 

    
 1

, ;

M

m m

PL p 

 

 s s

s

Θ L Y Y L Θ


 (9) 

where  m  is the collection of sites with the
thm thematic class. The MPLE possesses an 

invariance property, that is, if Π̂  is the MPLE of the parameter Π , then for an arbitrary 
function ,   ˆ Π  is the MPLE of the parameter  . Π  The proof is similar to that of the 
invariance property of the MLE (Casella and Berger, 2002) since the form of the pseudo-
likelihood function is analogous that of the likelihood function, depending on the parameter 
given the data. Moreover, the MPLE converges to the MLE almost surely as the lattice size 
approaches infinity (Geman and Greffigne, 1987). 

2.5 Thematic classification 

The thematic map can be recovered by the maximum a posteriori probability (MAP) rule. It 
can be implemented using a numerical optimization technique such as Simulated Annealing 
(SA) (Jeng & Woods, 1991). Although the global convergence employing SA is guaranteed 
almost surely, its convergence is very slow (Aarts & Korts, 1987; Winkler, 2006). An 
alternative to this is to use the ICM algorithm (Besag, 1986) given as  

    ˆ arg max , ; ; .
1

L p L m p L m
m M

  
 

Y L Θ L φs s ss s   (10) 
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This is interpreted as the instantaneous freezing of the annealing schedule of the SA. 
However, since  ;p Y L Θ is difficult to evaluate, alternatively, it is replaced by its pseudo-
likelihood (Hazel, 2000) given as  

    


; , ; .p p s s
s

Y L Θ Y Y L Θ


 (11)  

Hence, the classifier is reduced to  

    
  

  
1

ˆ arg max , ; ; .
m M

L p p L ms s s s s
s

Y Y L Θ L φ


 (12) 

The ICM algorithm, unlike the SA, is only guaranteed to converge to the local maxima. This 
problem can be alleviated by initializing the thematic map from the Gaussian Spectral 
Clustering (GSC) model (Hazel, 2000).  

2.6 Numerical implementation 

The MPLE-based estimators are not in their closed form and must be evaluated numerically. 
The pseudocode for estimating the parameters is presented below.  

Initialize L , φ , andΘ  

Estimate φ  

Estimate Θ  

Estimate  mμ given  m
r
θ and  mΣ  

Estimate  m
r
θ given  mΣ and  mμ  

Estimate  mΣ given  mμ and  m
r
θ  

Estimate L
s
 by the ICM Algorithm 

The image random field parameters are estimated using a method with some resemblance to 
the Gauss-Seidel iteration method (Kreyzig, 1993). The convergence criterion for estimating 
these parameters using this iteration method has yet to be established. As a precautionary 
measure, a single iteration was performed. This method was also applied in estimating the 
image random field estimators in Rellier’s GMRF (Rellier, et. al., 2004).  

3. Spectro-temporal MGMRF modelling 

The spectro-temporal observation image random field will be characterized with hybrid 
separable MGMRF parameters. 

3.1 Image random field modeling 

We let M1 - number of lines, M2 - number of samples, N1 - number of spectral bands, and N2 
- number of temporal slots. The image random field is characterized as follows: 

Lattice     
1 2 1 1 2 2
, :  1 ,  1s s s M s M      

Thematic Class   
1 2

,s s
L L
s
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The thematic class L
s
 at a given site s  is modeled to be fixed over time. 

Observation          
1 2 1 2 1 2 1 2 1 2

, , ,1,1 , , , , , ,

T

s s s s s s k l s s N N
W W W 

s
Y Y    

The observation 
s
Y  is a multispectral and mono-temporal vector of reflectance of the given 

spatial location  
1 2
,s s measured at the

th
k spectral band with wavelength

k
  , for 

1
1 k N  , and at the 

th
l  temporal slot with time 

l
T T  for 

2
1 l N  . More specifically, the 

  
1

1
th

k l N   element of 
s
Y  denoted as  , ,k l

Y
s

 is given as    
1 2

, , , , ,k l s s k l
Y W
s

.  

Let us consider the matrix
#

s
Y  defined by rearranging the elements of the spectro-temporal 

observation
s
Y  with the reshape operator  #

1 2
, ,reshape N N

s s
Y Y . The reshape function 

given as  
1 2

, ,reshape N NB A  transforms the vector   1 2
N N

k
a A   into the 

1 2
N N matrix   1 2

N N

ij
b

 B   by the mapping  
1

1ij k i j N
b a

  
  for all 

1
1 i N   and 

2
1 j N  , i.e.  

 

     

     

     

2

2

1 1 1 2

, 1,1 , 1, 2 , 1,

, 2 ,1 , 2 , 2 , 2 ,#

, ,1 , , 2 , ,

.

N

N

N N N N

Y Y Y

Y Y Y

Y Y Y



 
 
 
 
 
  

s s s

s s s

s

s s s

Y





   



 (13) 

The matrix
#

s
Y is characterized by allocating the reflectance across the bands for a given time 

by column and the reflectance across time for a given band by row. 

3.2 Separable structure of the covariance matrix 

There is a growing interest in modeling the covariance structure with more than one attribute. 
For example, in spatio-temporal modeling, the covariance structure of “spatial” and “temporal” 
attributes is jointly considered (Kyriakidis and Journel, 1999; Huizenga, et. al., 2002). On the 
other hand, in the area of longitudinal studies the covariance structure between “factors” and 
“temporal” attributes are jointly considered (Naik and Rao, 2001). Both studies mentioned 
above considered covariance matrices with a separable structure between these attributes. 

In the realm of remote sensing, few studies have  been conducted combining the covariance 
structure involving spectro-temporal attributes. Campbell and  Kiiveri demonstrated canonical 
variates calculations are reduced to simultaneous between-groups and within-group analyses 
of a linear combination of spectral bands over time, and the analyses of a linear combination of 
the time over the spectral bands (Campbell and Kiiveri, 1988). 

In light of recent literature, we propose to model the GMRF models as applied to remote 
sensing image processing where the covariance structure of the “spectral” and “temporal” 
attributes is characterized jointly. The separable covariance structure associated with the 
matrix Gaussian distribution has been considered.  

3.2.1 Non-separable covariance structure 

The matrix observation driven by a colored noise and its vectorized distribution, is assumed 
to be a realization from the process whose conditional form is given by 
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  ~ ,
N N

N L
s s
X L 0 Σ . The covariance matrix  L

s
Σ  does not have any special structure, 

except it has to be a positive definite symmetric matrix. This covariance matrix structure 
referred to as an unpatterned covariance matrix (Dutilleul, 1999). The statistical 
characterization is similar to the MGMRF discussed in Section 2.3.  

3.2.2 Matrix gaussian distribution 

Let
#

X be a random matrix distributed as
    # # 1 2

,
~ , ,

m n
NX M Ξ Ξ where

# m nM  is the 
expectation matrix,

 1 m mΞ  is the covariance matrix across the rows, and
 2 n nΞ  is the 

covariance matrix across the columns. Hence, the pdf of 
#

X  is given as 

 
     

         
1 1

1 2# # # # #
2 22 1 2

1 1
exp

2
2

T

n mmn
p tr



   
     

  
X Ξ X M Ξ X M

Ξ Ξ
 (14) 

(Arnold, 1981). Also, if we stack the matrix 
#

X  into the random vector  #

vecX X , 

then  ~ ,
mn

NX M Ξ  where  # mn
vec M M   is the expectation matrix and 

   2 1 mn mn  Ξ Ξ Ξ   is the covariance matrix (Arnold, 1981), and its pdf is given as 

  
 

   1
1 22

1 1
exp .

22

T

mn
p


      

X X M Ξ X M
Ξ

 (15) 

We model the associated noise process 
#

s
X  as a matrix Gaussian distribution, i.e. 

        1 2 1 2

1 2#
,~ , ,N N N NN L Ls s sX L 0 Σ Σ  where 

    1 1
1 N N

L


s
Σ   is the covariance matrix 

across the bands, and 
    2 2

2 N N
L


s

Σ   is the covariance matrix across time. Stacking the 

matrix 
#

s
X  into a random vector   1 2

# N N

vec 
s s

X X   corresponds to the vectorized colored 

noise with conditional distribution 
        

1 2 1 2

2 1

~ ,
N N N N

N L L
s s s
X L 0 Σ Σ . 

3.2.3 Separable covariance structure 

The spectro-temporal, separable covariance matrix model (Lu and Zimmerman, 2005; 
Fuentes, 2006) has the form 

          2 1
m m m Σ Σ Σ  (16) 

for 1 m M   where          1 1
11 N N

ijm m  Σ  is the covariance matrix across bands and 

         2 2
22 N N

klm m  Σ  is the covariance matrix across time. Now, since 

         1 2 1 2

2 1
~ N N N NN L L s s sX L 0 Σ Σ  (17) 

           1 2

2 1
~ ,N NN L L Ls s s sY L μ Σ Σ  (18) 
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then, the covariance is given as (Arnold, 1981): 

             1 2
, , , ,cov , kk llk l k lX X L L  s ss s L;Θ   (19) 

             1 2
, , , ,cov , kk llk l k lY Y L L  s ss s L;Θ  . (20) 

This corresponds to the product of the variance associated with the reflectance at the 
th

k  
spectral band 

   1

kk
L
s

 and the variance associated with the reflectance at the 
th

l  temporal 
slot 

   2

ll
L
s

. Likewise, the cross-covariance is given as (Arnold, 1981): 

             1 2
, ,, ,cov , ik jlk li jX X L L  s sss L;Θ  (21) 

             1 2
, ,, ,cov , ik jlk li jY Y L L  s sss L;Θ . (22) 

This corresponds to the product of the covariance associated with the reflectance at the 
th

i and the
th

k  spectral band 
   1

ik
L
s

 and the covariance associated with the reflectance at 

the 
th

j and the 
th

l  temporal slot 
   2

jl
L
s

. 

The number of parameters in the unpatterned covariance matrix is 

   1 2 1 21 2 1 2N N N N N N   . On the other hand, the number of parameters for a 

separable covariance matrix is    1 1 2 21 1 2N N N N      , which has fewer parameters 

compared to its non-separable counterpart. 

3.2.4 Separable of interaction matrix structure 

We can also model the interaction matrix coefficients with a separable structure for all 

r  and 1 m M   of the form 

          2 1
m m m r r rθ θ θ  (23) 

where 
    1 1

1 N N
m


r
θ   is the interaction matrix across the bands and 

    2 2
2 N N

m


r
θ   is the 

interaction matrix across time. In the next section, the interaction matrix coefficient  m
r
θ  

can be made separable for r  and1 m M  provided that  mΣ is separable. 
Furthermore, if  mΣ  is separable, then the following is the resulting statistical 
characterization of 

s
X :  

 1; NE    sX L Θ 0  (24)  

 

       
                     

2 1

2 1
1

2 2 1 1
cov , ;

otherwise

p

L L L L

N N

L L

L L L L
 



  

  

       





s s r s s r

s s

s s r r s s r s s

Σ Σ r 0

X X L Θ θ Σ 1 θ Σ 1 r

0 0

  (25)  
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        
     

2 1
cov , ; .L L L LL L

      
s s r s s r

s s r s sX Y L Θ Σ 1 Σ 1  (26)  

The covariance matrix, from the above equation,  cov , ;
s s r

X X L Θ  has a separable 

structure between the spectral domain and temporal dimensions. It has a form analogous to 

that of what is shown in (4) through (6), which is intuitively appealing.  

The number of parameters in the unpatterned interaction matrix coefficient is 2 2 2
1 2 .N N N  

On the other hand, the number of parameters for the separable interaction matrix coefficient 

is 2 2
1 2N N , which has fewer parameters compared to its non-separable counterpart. 

3.2.5 Separable mean structure 

Likewise, we can also model the mean with a separable structure of the form 

          2 1
m m m μ μ μ  (27)  

for 1 m M  where     11 1Nm μ  is the mean across the bands and     22 1Nm μ   is 

the mean across time. The number of parameters in the unpatterned mean vector is 

1 2N N N . On the other hand, the number of parameters for the separable mean vector is 

1 2N N  which has fewer number of parameters compared to its non-separable counterpart. 

3.2.6 Hybrid separable structure 

Finally, we can model the GMRF parameters as having a hybrid separability structure, that 

is, some of its parameters are separable while the rest are not. Hence, there are eight 

combinations to consider. As shown in Section 5.2, it is impossible to model a separable 

interaction matrix with a non-separabable matrix. This leave us six cases to consider in this 

study. 

4. Estimation of thematic map parameters 

The MPLE of φ  is obtained by taking the derivative of  log PL φ with respect to 

 
1m m M

a
 

and  b r r  , then equating to zero (Li, 1995). Accordingly, the estimators are 

obtained numerically by solving the following set of simultaneous nonlinear equations:  

 

 

 
 

1

exp ,

 ,  1

exp ,

m

mL mM

l
l

a b V L m L

a m M

a b V L l L





 


 

 
    

     
 

    
 


 
 

s

r s s r
r

s s
r s s r

r

1




 
 (28)  

 

   

 
 1

1

exp , ,

,      ,  .

exp ,

M

l
l

M

l
l

a b V L l L V L l L

V L L b

a b V L l L

 
 


 


 

 
      

    
 

    
 

 
 

 

t s s t s s r
t

s s r r
s s

t s s t
t

r





 

 (29)  

www.intechopen.com



 
Estimation of the Separable MGMRF Parameters for Thematic Classification 

 

107 

5. Important MGMRF specifications 

This section provides important characterizations enable us to derive the estimators of the 

GMRF parameters in the next section. We present a simple, yet powerful, method to derive 

the MPL estimators of the mean and the interaction matrix. Finally, new problems arise in 

estimating the multivariate observation GMRFs, which were not encountered in the 

univariate case, are discussed. 

5.1 MPL-based method technique of deriving mean and the interaction matrix 
estimators 

In this section, a method of deriving the MPL estimators for the mean and the vectorized 

interaction coefficients are presented regardless of separability. The MPL estimator of the 

interaction matrix coefficients can be derived by taking the matrix derivative of the log of 

the pseudo-likelihood function with respect to the interaction matrix coefficient or with 

respect to its vectorized version from the equivalence relation (Neudecker, 1969) 

 
   f f

vec
vec

 
  

 
P P

X X
 (30)  

where  f X  , and ,  
m nX P  . The latter expression is preferred, since it is easier to 

evaluate. The following proposition provides a simple way of deriving the MPL estimators, 

where the estimator is either the mean or the vectorized interaction matrix coefficient 

(Navarro, et. al., 2009). 

Proposition 1  Let   1q
m

Φ  , 1 m M   be a vector of parameters which is either the 
mean or the vectorized interaction matrix coefficient. Suppose that 

s
X  can be expressed in 

the form  

  L s s s sX P Q Φ  (31)  

where   1N  
s s
P P Θ L  ,   N q 

s s
Q Q Θ L   is independent of  L

s
Φ , and the 

covariance matrix  mΣ , 1 m M   is known, then the MPL estimator for  mΦ , 

1 m M   is obtained by solving the equation 

  
 

1
1  .T

q
m

m




 s s
s

Q Σ X 0


 (32)  

Proof From (7) and (9), the log pseudo-likelihood of the image random field conditional 

to the thematic map is given as 

      
 

1

1

1
log log 2 log  .

2

M
T

m m

PL N L L 

 

       s s s s
s

Θ L Σ X Σ X


 (33)  

Taking the gradient of the log pseudo-likelihood function in (33) with respect to  mΦ  for 
1 m M  , and equating to 1q0  yields 
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       

 

1
1

1

1
log .

2

M
T

q
l l

PL L
m m




 

 
  
   s s s

s

0 Θ L X Σ X
Φ Φ

 (34) 

Since 

 
         

           

1 1

1 1 12

TT

T T T T

L L L L

L L L L L L

 

  

  

  

s s s s s s s s s s

s s s s s s s s s s s s

X Σ X P Q Φ Σ P Q Φ

P Σ P P Σ Q Φ Φ Q Σ Q Φ
 (35) 

then taking the gradient in (34) with respect to Φ yields 

 

           

      

   

1 1 1

1

1

2 2

2

2  .

T T T
L m L m

T
L m

T
L m

L L L L

L L

L

  
 








 


 



s s

s

s

s s s s s s s s s s

s s s s s

s s s

X Σ X Q Σ P 1 Q Σ Q Φ 1
Φ

Q Σ P Q Φ 1

Q Σ X 1

 (36)  

Finally, substituting the result of (36) into (34) gives us the identity 

    
 

 
 

1 1
1

1

.
M

T T
q L m

l l m

L m 
 

  
   

s
s s s s s

s s

0 Q Σ X 1 Q Σ X
 

 (37)  

5.2 Interaction matrix identities 

From the covariance identity 

    cov , ; cov , ;T
 s s r s r sX X L Θ X X L Θ  (38)  

(Ravishanker and Dey, 2002), from (5), we obtain the following relationship: 

        1 .TL L L L
 r s s r s sθ Σ θ Σ  (39)  

One consequence of this result is that 
s

X can be written as follows: 

                    1  
S

T
L L L LL L L L L L L

 


  



       
s s r s s r

s s s r s s r s s r s s s r s
r

X Y μ θ 1 Y μ Σ θ Σ 1 Y μ


 (40) 

where
S

 , a subset of  which represents the symmetric neighborhood set (Kashyap and 

Chellappa, 1983), is defined as follows: 
S S

   r r   and   .
S S

    r r฀    

Another consequence of (39) are the specifications of the interaction matrices in the 

separable case. If the interaction matrices are modeled as separable, then by (39), we obtain 

                             2 1 2 1 1 1
T

Tm m m m m m m m m m 
      r r r r r rθ θ θ Σ θ θ Σ Σ θ Σ  (41)  

for 1 m M  . The RHS of (40) can be made separable if  mΣ is also separable. Hence, 
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                                  
                           

                         

1
2 1 2 1 2 1 2 1

1 1
2 1 2 1 2 1

1 1
2 2 2 1 1 1

.

T

T T

T T

m m m m m m m m

m m m m m m

m m m m m m



 

 

 

    

     
 

 

r r r r

r r

r r

θ θ Σ Σ θ θ Σ Σ

Σ Σ θ θ Σ Σ

Σ θ Σ Σ θ Σ

 (42)  

The identification of  mrθ  is completely specified from (39) if we take 

                  1
1 1 1 1T

m m m m


 r rθ Σ θ Σ  (43)  

                  1
2 2 2 2T

m m m m


 r rθ Σ θ Σ , (44) 

which is analogous to the relation in (39). 

By considering the hybrid separability cases which involve a separable interaction matrix 

and a non-separable covariance matrix, the expression      1Tm m m
rΣ θ Σ  is not separable, 

in general. This implies that  mrθ  cannot be expressed in the form 

         2 1
m m m   r r rθ θ θ  for Sr  ,1 m M   and thus these cases are not possible. 

6. GMRF parameter estimation 

This section proposes an estimation procedure for the GMRF parameters for both separable 
and non-separable cases based on the MPL. 

6.1 Mean parameter estimation 

Proposition 2  Assume that the interaction matrix coefficients  mrθ  for r  , 

1 m M  and the covariance matrices  mΣ  for 1 m M   are known. Then the mean 

parameters are estimated as follows: 

a. Non-Separable Case: 

           
 

1

1ˆ

T

N NL m L m
m

m m m m
 




 

  

    
       

     
  

s r s r
r r

s r r

μ I θ 1 Σ I θ 1
   

(45) 

         
 

1

T

N L m L m
m

m m m
 


 

  

    
     

     
  

s r s r
r s r s r

s r r

I θ 1 Σ Y θ 1 Y
 

 

for 1 m M  . 

b. Separable Case: 

In addition, if we assume the following for 1 m M  : 
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 
   1

mμ  is estimated, given that 
   2

mμ  is known  

 
   2

mμ  is estimated, given that 
   1

mμ  is known. 

Thus 

   

              
    

 

              
 

1 1

1

1

1

2 21

2 1

ˆ

T
T

N N N NL m L m
m

T
T

N N L m L m
m

m

m m m m m

m m m m

 

 




 

  


 

  

    
         

     
    

      
     

  

  

s r s r

s r s r

r r

s r r

r s r s r

s r r

μ

μ I I θ 1 Σ I θ 1 μ I

μ I I θ 1 Σ Y θ 1 Y

 

 





 (46)

 

   

              
    

 

              
 

2 2

2

2

1

1 11

1 1

ˆ

T
T

N N N NL m L m
m

T
T

N N L m L m
m

m

m m m m m

m m m m

 

 




 

  


 

  

    
         

     
    

      
     

  

  

s r s r

s r s r

r r

s r r

r s r s r

s r r

μ

I μ I θ 1 Σ I θ 1 I μ

I μ I θ 1 Σ Y θ 1 Y

 

 





 (47)

 

for 1 m M  .  

Proof 

a. The proof for the non-separable case is derived by applying Proposition 1 (Navarro, et. 
al., 2009). 

b. From (3), sX can be written as follows: 

          .NL L L LL L L
  

 

   
         
   

 
s r s s r s

s s r s s r r s s
r r

X Y θ 1 Y I θ 1 μ
 

 (48) 

For the separable case, the mean can be written as follows: 

 

         
                  

                  
1 1

2 2

2 1

2 1 2 1

1 2 1 2

1

1 .

N N

N N

m m m

m m m m

m m m m

 

    

    

μ μ μ

μ I μ μ I μ

I μ μ I μ μ

 (49) 

Plugging the results of (49) into (48) yields 

       
        

       
        

1

2

2 1

1 2
.

N NL L L L

N NL L L L

L L L L

L L L L

 

 

 
 

 
 

   
          
   
   

          
   

 

 

s r s s r s

s r s s r s

s s r s s r r s s s
r r

s r s s r r s s s
r r

X Y θ 1 Y I θ 1 μ I μ

Y θ 1 Y I θ 1 I μ μ

 

 

 (50) 
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 1


      1

m mΦ μ , 1 m M   

For this case, we recognize the following from (50): 

 

   
    1

2
.N NL LL L

 


 
    
 


s r s

s r s s
r

Q I θ 1 μ I


 (51)  

By applying Preposition 1 and rearranging terms, we obtain (46). 

 2


      1

m mΦ μ , 1 m M   

For this case from (50), we recognize 

    
    2

1
.N NL LL L

 


 
    
 


s r s

s r s s
r

Q I θ 1 I μ


 (52) 

by applying Preposition 1 and rearranging terms, we obtain (47). 

6.2 Interaction matrix parameter estimation 

Proposition 3 Assume that the mean vectors  mμ  for 1 m M  and the covariance 

matrices  mΣ for 1 m M  are known, then interaction matrix parameters are estimated 

by solving the simultaneous linear equations given as follows: 

a. Non-Separable Case: 

      m m mH Ψ Γ  (53) 

where 

        
 

1
, , ,  ,  T

S S
m

m row col m m m



           
 s t s r

s

H A Σ A r t 


 (54) 

         
 

1
, ,  S

m

m row m m m



 
   
 
 
 s t s

s

Γ A Σ Y μ t 


 (55) 

      ˆ ,  Sm row vec m rΨ θ r   (56) 

and 

                  1
, , .N N N NL m L mm m m m m




       

s-r s rs r s-r s rA Y μ 1 I K Σ Σ Y μ 1 I  (57) 

From the invariance property of the MPL, the complete set of non-separable interaction 
matrix estimators is estimated as follows:  
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      ˆ ˆ , ,m reshape vec m N Nr rθ θ  (58) 

          1ˆ ˆTm m m m


 r rθ Σ θ Σ  (59)  

for 
S

r  , 1 m M  .  

b. Separable Case: 

In addition, if we assume the following for 
S

r   and 1 m M  : 

 
   1

m
r
θ  is estimated, given that 

   2

m
r
θ  is known  

 
   2

m
r
θ  is estimated, given that 

   1

m
r
θ  is known 

then 

            k k k
m m mH Ψ Γ  (60)  

where 

              
 

1
, , ,  ,  

k k k T
S S

m

m row col m m m



           
 s t s r

s

H A Σ A r t


   (61)  

             
 

1
, ,  

k k
S

m

m row m m m



 
   
 
 
 s t s

s

Γ A Σ Y μ t


  (62)  

          ˆ ,  
k k

Sm row vec m rΨ θ r   (63) 

for 1 2k   and 

              
1 2 1 2 1

1 2
, , ,

T T

N N N N Nm vec m m   s r r s rA θ I I K I A  (64)  

              
2 2 1 2 1

2 1
, , , .

T T

N N N N Nm vec m m   s r r s rA I θ I K I A  (65)  

From the invariance property of the MPL, the complete set of separable interaction matrix 
estimators is estimated as follows for 

S
r   , 1 m M  , 1 2k  :  

          ˆ ˆ , ,
k k

k km reshape vec m N Nr rθ θ  (66)  

                  1
ˆ ˆk k k T k

m m m m


r rθ Σ θ Σ  (67)  

and also 
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          2 1ˆ ˆ ˆm m m r r rθ θ θ  (68) 

for 
S

r   and 1 m M  . 

Proof 

a. The proof for the non-separable case is derived by applying Proposition 1 (Navarro, et. 
al., 2009). 

b. From (3), sX can be written as 

 

         , .
S

Tvec L L vec L


    s s s s s r s r s
r

X X Y μ A θ


 (69) 

The above expression can also be written using the following matrix identities (Magnus and 
Neudecker, 1999) 

 
     Tvec vec ABC C A B  (70) 

where m nA  , n pB  , and .p qC   

  T T T  A B A B  (71)  

 
   ,

T
m nvec vecA K A  (72)  

where m nA  . In addition, from the identity (Magnus and Neudecker, 1999) 

 
        ,n q m pvec vec vec     A B I K I A B  (73)  

where 
m nA   and 

p qB  , it follows that 

 

           
            2 1 2 1

2 1

2 1
, .N N N N

vec m vec m m

vec m vec m

 

    

r r r

r r

θ θ θ

I K I θ θ
 (74)  

Furthermore, since 

 

          
                      

                      
1 1

2 2

2 1

2 1 2 1

1 2 1 2

1

1

N N

N N

vec m vec m

vec m vec m vec m vec m

vec m vec m vec m vec m



    

    

r r

r r r r

r r r r

θ θ

θ I θ θ I θ

I θ θ I θ θ

 (75)  

then, 

 
               

            
2 1 2 1 1

2 1 2 1 2

2 1
,

1 2
, .

N N N N N

N N N N N

vec m vec m vec m

vec m vec m

    

    

r r r

r r

θ I K I θ I θ

I K I I θ θ
 (76) 
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Plugging the results of (76) into (69) yields 

 

           
           

1 1
,

2 2
,

S

S

T

T

L L vec L

L L vec L





  

  





s s s s r s r s
r

s s s r s r s
r

X Y μ A θ

Y μ A θ





 (77)  

 1


        1

m vec m
t

Φ θ , ,  1
S

m M  t   

For this case, we recognize from (77), 

  (1)
,

T ms s tQ A . (78)  

By applying Preposition 1 and rearranging terms, we obtain the following expression  

               
 

        
 

1 1 1 11 1
, , , .

S

T

m m

m m m vec m m m m 

  

   s t s r r s t s
r s s

A Σ A θ A Σ Y μ
 

 (79)  

By aggregating the equation in (79) for St  , the interaction matrix coefficients are 
estimated by solving the simultaneous linear equations in (60) for 1.k    

 2


        2

m vec m
t

Φ θ , ,  1
S

m M  t   

For this case, we recognize from (77)  

  (2)
,

T ms s tQ A . (80)  

By applying Preposition 1 and rearranging terms, we obtain the following expression  

               
 

        
 

2 2 2 21 1
, , , .

S

T

m m

m m m vec m m m m 

  

   s t s r r s t s
r s s

A Σ A θ A Σ Y μ
 

 (81)  

By aggregating the equations in (79) for St  , the interaction matrix coefficients are 
estimated by solving the simultaneous linear equations in (60) for 2.k    

6.3 Covariance matrix parameter estimation 

Since
s
X is dependent on a covariance matrix in finding the MPL estimator of  mΣ , for all 

1 m M  is cumbersome to derive. As an alternative, we estimate the covariance matrix as 
the sample covariance matrix given that the mean vectors  mμ for 1 m M  and the 
interaction matrix coefficients  m

r
θ , for ,r  1 m M  are known, then the covariance 

matrix parameters are estimated as follows: 

a. Non-Separable Case: 

      

1ˆ T

m

m
r m 

  s s
s

Σ X X


 (82)  
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b. Separable Case: 

In addition, if we assume the following for 1 m M  : 

 
   1

mΣ  is estimated, given that 
   2

mΣ  is known  
 

   2

mΣ  is estimated, given that 
   1

mΣ  is known 

then 

      
    

 

1
1 2# #

2

1ˆ ˆ T

m

m m
r m N





  s s
s

Σ X Σ X


 (83)  

      
    

 

1
2 1# #

1

1ˆ .T

m

m m
r m N





  s s
s

Σ X Σ X


 (84)  

The above estimators are not in their closed form. The estimators can be solved iteratively 
using the flip-flop algorithm (Dutilleul, 1999). 

7. Data preparation 

The multispectral and multitemporal satellite image under consideration is the ‘Butuan’ 
image acquired from the LANDSAT TM. The image shows the scenery of Butuan City and 
its surroundings in Northeastern Mindanao, Philippines. It consists of six spectral bands and 
four temporal slots with a dynamic range of 8 bits. The images were captured 
chronologically on the following dates: August 1, 1992, August 7, 2000, May 22, 2001, and 
December 3, 2002. The images were radiometrically corrected, geometrically co-registered 
with each other, and have been resized to 600 x 800 pixels. The image in Fig. 1 is a gray-
scaled RGB realization captured on May 22, 2001. 

 

Fig. 1. RGB image of ‘Butuan’ captured on May 22, 2001.  
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The thematic classes were established by employing the k-means algorithm (Richards and 
Jia, 2006). The thematic classes were identified and their mean reflectance vector form the 
training data are shown in Table 1. 

 

M Thematic Class Landsat TM Band Number 

1 2 3 4 5 7 

1 Thick Vegetation 62 48 33 91 69 29 

2 Sparse Vegetation 70 58 43 99 83 37 

3 Built Up Areas 77 63 54 75 78 41 

4 Body of Water 72 41 29 12 13 11 

5 Thin Clouds 104 84 76 88 85 53 

6 Thick Clouds 197 190 190 144 167 115 

Table 1. Average reflectances from the training data.  

Training and verification sites were obtained from a random sample of 1200 sites. The first-
order neighborhood system in the MRF modeling of the thematic map and the image were 
used.  

8. Discussion 

8.1 Non-separable case 

The classification performance of our model with non-separable MGMRF parameters, as 
compared to the GSC, Hazel's, and Rellier's models are presented in Table 2.  

 

Model Accuracy 

GSC 55.3% 

Hazel’s GMRF 45.6% 

Rellier’s GMRF 83.1% 

Our Model 84.3% 

Table 2. Classification Accuracy of Different MGMRF models. 

The GSC model has a low accuracy compared to the remaining MGMRF models. It 
substantiates that Markov dependence would yield a better accuracy to the thematic map 
classification than to the site independence model. 

It is noticeable that Hazel’s GMRF presents a relatively poor classification accuracy which is 
attributed to the bilateral symmetry imposed into the interaction matrices, that is, 
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    L Lr s r sθ θ  (85)  

(Hazel, 2000) which in general, does not hold the multivariate case. This relation, however, 
holds in the univariate case (Kashyap and Chellappa, 1983) as well as the Rellier’s GMRF.  

On the other hand, anisotropic models, such as Rellier’s GMRF, and our model exhibited a 
substantially better classification performance as compared to the GSC. Since the covariance 
matrix estimators used a sub-optimal alternative, some slight performance degradation has 
resulted. 

8.2 Hybrid separable case 

Denote Sμ , Sθ , and SΣ  to be the separable indicators for the mean, interaction matrix, and 
covariance matrix, respectively.  

8.2.1 Hybrid separable GSC model 

Since the GSC model is a degenerate form of our MGMRF with zero interaction matrices, the 
separability structure of the mean and covariance matrices are examined. The results are 
presented in Table 3 showed that no improvement in the classification performance, 
regardless of separability of the parameters. 

 

SΣ  
Sμ  

Accuracy 

0 0 55.3% 

0 1 54.2% 

0 0 54.3% 

1 1 54.1% 

Table 3. Classification Accuracy of Hybrid Separable GSC models. 

8.2.2 Hybrid separable anisotropic GMRF model 

The hybrid separable anisotropic MGMRF shows the separability of the covariance matrix 

has a slight improvement in performance over a non-separable spectro-temporal 

observation. As discussed in Section 5.2, the hybrid separable model with separable 

interaction matrix, together with a non-separable matrix, were excluded in the model 

performance as these modes are not possible. The classification accuracy is presented in 

Table 4. 

 

SΣ  
Sθ  

Sμ  
Accuracy 

0 0 0 84.3% 

0 0 1 84.6% 

0 1 0  

0 1 1  
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SΣ  
Sθ  

Sμ  
Accuracy 

1 0 0 84.5% 

1 0 1 86.6% 

1 1 0 83.8% 

1 1 1 86.2% 

Table 4. Classification Accuracy of Hybrid Separable Anisotropic MGMRF models. 

8.3 Thematic maps 

Some of the thematic map labels are presented in Figs. 2 to 4, based on the May 22, 2001 
satellite image. For clarity of visual presentation, thematic map labels were based on the 
gray-scaled average RGB reflectance of the training data. 
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Fig. 2. Thematic Map – Hazel’s MGMRF  

 

Fig. 3. Thematic Map – GSC with separable mean and covariance matrix  
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Fig. 4. Thematic Map – Anisotropic MGMRF separable mean, interaction matrices, and 
covaraince matrices 

9. Summary, conclusions, and recommendations 

This study presents a parameter estimation procedure based on the MPL for an anisotropic 
MGMRF with hybrid-separable parameters. Although the MGMRF is a natural extension of 
its univariate counterpart, the interaction matrix relationship is, in general, dependent on 
the covariance matrix. In an effort to make the estimation and classification procedure more 
tractable to compute, some sub-optimal approximations were incorporated. This resulted in 
a slight degradation in the classification performance. The classification performance based 
on our model performed well when compared to the GSC model and Hazel’s MGMRF. 
Nonetheless, its performance is comparable to the Rellier’s MGMRF. Moreover, for spectro-
temporal observations, the separability of the interaction matrix as well as the covariance 
matrix improved the classification performance. Computational capabilities are foreseen to 
further advance in the near future following the improvement of numerical estimation and 
classification procedures. 

This study presents a parameter estimation procedure based on the MPL for anisotropic 
MGMRF with hybrid-separable parameters. Although the MGMRF is a natural extension of 
its univariate counterpart, the interaction matrix relationship is, in general, dependent on 
the covariance matrix. In an effort to make the estimation and classification procedure more 
tractable to compute, some sub-optimal approximations were incorporated in the process. 
This resulted in a slight degradation in the classification performance. The classification 
performance, based on our model, has performed well, as compared to the GSC model and 
Hazel’s MGMRF. Furthermore, its performance is comparable to Rellier's MGMRF. In terms 
of spectro-temporal observations, the separability of the covariance matrix has improved the 
classification performance. This study can be improved even more with numerical 
estimation and classification procedure as computational capabilities. This is foreseen to 
further advance in the near future. 
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