
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1. Introduction

Several classes of general hybrid and switched dynamic systems have been extensively

studied, both in theory and practice [3,4,7,11,14,17,19,26,27,30]. In particular, driven by

engineering requirements, there has been increasing interest in optimal design for hybrid

control systems [3,4,7,8,13,17,23,26,27]. In this paper, we investigate some specific types of

hybrid systems, namely hybrid systems of mechanical nature, and study the corresponding

hybrid OCPs. The class of dynamic models to be discussed in this work concerns hybrid

systems where discrete transitions are being triggered by the continuous dynamics. The

control objective (control design) is to minimize a cost functional, where the control

parameters are the conventional control inputs.

Recently, there has been considerable effort to develop theoretical and computational

frameworks for complex control problems. Of particular importance is the ability to operate

such systems in an optimal manner. In many real-world applications a controlled mechanical

system presents the main modeling framework and can be specified as a strongly nonlinear

dynamic system of high order [9,10,22]. Moreover, the majority of applied OCPs governed

by sophisticated real-world mechanical systems are optimization problems of the hybrid

nature. The most real-world mechanical control problems are becoming too complex to allow

analytical solution. Thus, computational algorithms are inevitable in solving these problems.

There is a number of results scattered in the literature on numerical methods for optimal

control problems. One can find a fairly complete review in [3,4,8,24,25,29]. The main idea

of our investigations is to use the variational structure of the solution to the specific two point

boundary-value problem for the controllable hybrid-type mechanical systems in the form of

Euler-Lagrange or Hamilton equation and to propose a new computational algorithm for the

associated OCP. We consider an OCP in mechanics in a general setting and reduce the initial

problem to a constrained multiobjective programming. This auxiliary optimization approach

provides a basis for a possible numerical treatment of the original problem.

The outline of our paper is as follows. Section 2 contains some necessary basic facts

related to the conventional and hybrid mechanical models. In Section 3 we formulate

and study our main optimization problem for hybrid mechanical systems. Section 4 deals

with the variational analysis of the OCP under consideration. We also briefly discuss the
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2 Will-be-set-by-IN-TECH

computational aspect of the proposed approach. In Section 5 we study a numerical example

that constitutes an implementable hybrid mechanical system. Section 6 summarizes our

contribution.

2. Preliminaries and some basic facts

Let us consider the following variational problem for a hybrid mechanical system that is

characterized by a family of Lagrange functions {L̃pi}, pi ∈ P

minimize
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t)L̃pi (t, q(t), q̇(t))dt

subject to q(0) = c0, q(1) = c1,

(1)

where P is a finite set of indices (locations) and q(·) (q(t) ∈ Rn) is a continuously differentiable

function. Here β[ti−1,ti)(·) are characteristic functions of the time intervals [ti−1, ti), i = 1, ..., r

associated with locations. Note that a full time interval [0, 1] is assumed to be separated into

disjunct sub-intervals of the above type for a sequence of switching times:

τ := {t0 = 0, t1, ..., tr = 1}.

We refer to [3,4,7,8,13,17,23,26,27] for some concrete examples of hybrid systems with the

above dynamic structure. Consider a class of hybrid mechanical systems that can be

represented by n generalized configuration coordinates q1, ..., qn. The components q̇λ(t), λ =
1, ..., n of q̇(t) are the so-called generalized velocities. Moreover, we assume that L̃pi (t, ·, ·)
are twice continuously differentiable convex functions. It is well known that the formal

necessary optimality conditions for the given variational problem (1) describe the dynamics of

the mechanical system under consideration. This description can be given for every particular

location and finally, for the complete hybrid system. In this contribution, we study the hybrid

dynamic models that free from the possible external influences (uncertainties) or forces. The

optimality conditions for mentioned above can be rewritten in the form of the second-order

Euler-Lagrange equations (see [1])

d

dt

∂L̃pi (t, q, q̇)

∂q̇λ
− ∂L̃pi (t, q, q̇)

∂qλ
= 0, λ = 1, ..., n ,

q(0) = c0, q(1) = c1,

(2)

for all pi ∈ P . The celebrated Hamilton Principle (see e.g., [1]) gives an equivalent variational

characterization of the solution to the two-point boundary-value problem (2).

For the controllable hybrid mechanical systems with the parametrized (control inputs)

Lagrangians Lpi (t, q, q̇, u), pi ∈ P we also can introduce the corresponding equations of

motion

d

dt

∂Lpi (t, q, q̇, u)

∂q̇λ
− ∂Lpi (t, q, q̇, u)

∂qλ
= 0,

q(0) = c0, q(1) = c1,

(3)
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On Optimization Techniques for a Class of Hybrid Mechanical Systems 3

where u(·) ∈ U is a control function from the set of admissible controls U . Let

U := {u ∈ R
m : b1,ν ≤ uν ≤ b2,ν, ν = 1, ..., m},

U := {v(·) ∈ L
2
m([0, 1]) : v(t) ∈ U a.e. on [0, 1]},

where b1,ν, b2,ν, ν = 1, ..., m are constants. The introduced set U provides a standard example

of an admissible control set. In this specific case we deal with the following set of admissible

controls U ⋂

C1
m(0, 1). Note that Lpi depends directly on the control function u(·). Let us

assume that functions Lpi (t, ·, ·, u) are twice continuously differentiable functions and every

Lpi (t, q, q̇, ·) is a continuously differentiable function. For a fixed admissible control u(·) we

obtain for all pi ∈ P the above hybrid mechanical system with L̃pi (t, q, q̇) ≡ Lpi (t, q, q̇, u(t)).
It is also assumed that Lpi (t, q, ·, u) are strongly convex functions, i.e., for any

(t, q, q̇, u) ∈ R × R
n × R

n × R
m, ξ ∈ R

n

the following inequality

n

∑
λ,θ=1

∂2Lpi (t, q, q̇, u)

∂q̇λ∂q̇θ
ξλξθ ≥ α

n

∑
λ=1

ξ2
λ, α > 0

holds for all pi ∈ P . This natural convexity condition is a direct consequence of the

classical representation for the kinetic energy of a conventional mechanical system. Under

the above-mentioned assumptions, the two-point boundary-value problem (3) has a solution

for every admissible control u(·) ∈ U [18]. We assume that (3) has a unique solution for every

u(·) ∈ U . For an admissible control u(·) ∈ U the solution to the boundary-value problem (3)

is denoted by qu(·). We call (3) the hybrid Euler-Lagrange control system. Let us now give a

simple example of the above mechanical model.

Example 1. We consider a variable linear mass-spring system attached to a moving frame that is a

generalization of the corresponding system from [22]. The considered control u(·) ∈ U ⋂

C1
1(0, 1) is

the velocity of the frame. By ωpi we denote the variable masses of the system. The kinetic energy

K = 0.5ωpi (q̇ + u)2

depends on the control input u(·). Therefore, we have

Lpi (q, q̇, u) = 0.5(ωpi (q̇ + u)2 − κq2), κ ∈ R+

and
d

dt

∂Lpi (t, q, q̇, u)

∂q̇
− ∂Lpi (t, q, q̇, u)

∂q
= ωpi (q̈ + u̇) + κq = 0.

By κ we denote here the elasticity coefficient of the spring system.

Note that some important controlled mechanical systems have a Lagrangian function of the

following form (see e.g., [22])

Lpi (t, q, q̇, u) = L0
pi
(t, q, q̇) +

m

∑
ν=1

qνuν.
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In this special case we easily obtain

d

dt

∂L0
pi
(t, q, q̇)

∂q̇λ
−

∂L0
pi
(t, q, q̇)

∂qλ
=

{

uλ λ = 1, ..., m,

0 λ = m + 1, ..., n.

Note that the control function u(·) is interpreted here as an external force.

Let us now consider the Hamiltonian reformulation for the controllable Euler-Lagrange

system (3). For every location pi from P we introduce the generalized momenta

sλ := Lpi (t, q, q̇, u)/∂q̇λ

and define the Hamiltonian function Hpi (t, q, s, u) as a Legendre transform applied to every

Lpi (t, q, q̇, u), i.e.

Hpi (t, q, s, u) :=
n

∑
λ=1

sλ q̇λ − Lpi (t, q, q̇, u).

In the case of hyperregular Lagrangians Lpi (t, q, q̇, u) (see e.g., [1]) the Legendre transform,

namely, the mapping

Lpi : (t, q, q̇, u) → (t, q, s, u),

is a diffeomorphism for every pi ∈ P ,. Using the introduced Hamiltonian H(t, q, s, u), we can

rewrite system (3) in the following Hamilton-type form

q̇λ(t) =
∂Hpi (t, q, s, u)

∂sλ
, q(0) = c0, q(1) = c1,

ṡλ(t) = − Hpi (t, q, s, u)

∂qλ
, λ = 1, ..., n .

(4)

Under the above-mentioned assumptions, the boundary-value problem (4) has a solution for

every u(·) ∈ U . We will call (4) a Hamilton control system. The main advantage of (4) in

comparison with (3) is that (4) immediately constitutes a control system in standard state

space form with state variables (q, s) (in physics usually called the phase variables). Consider

the system of Example 1 with

Hpi (q, s, u) =
1

2
ωpi (q̇

2 − u2) +
1

2
κq2 − su.

The Hamilton equations in this case are given as follows

q̇ =
∂Hpi (q, s, u)

∂s
=

1

ωpi

s − u,

ṡ = − ∂Hpi (q, s, u)

∂q
= −κq.

Clearly, for

Lpi (t, q, q̇, u) = L0
pi
(t, q, q̇) +

m

∑
ν=1

qν, uν

150 Applications of Nonlinear Control
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On Optimization Techniques for a Class of Hybrid Mechanical Systems 5

we obtain the associated Hamilton functions in the form

Hpi (t, q, s, u) = H0
pi
(t, q, s)−

m

∑
ν=1

qνuν,

where H0
pi
(t, q, s) is the Legendre transform of L0

pi
(t, q, q̇).

3. Optimization of control processes in hybrid mechanical systems

Let us formally introduce the class of OCPs investigated in this paper:

minimize J :=
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t) f 0
pi
(qu(t), u(t))dt

subject to u(t) ∈ U t ∈ [0, 1], ti ∈ τ, i = 1, ..., r,

(5)

where f 0
pi

: [0, 1]× Rn × Rm → R be continuous and convex on Rn × Rm objective functions.

We have assumed that the boundary-value problems (3) have a unique solution qu(·) and that

the optimization problem (5) also has a solution. Let (qopt(·), uopt(·)) be an optimal solution

of (5). Note that we can also use the associated Hamiltonian-type representation of the initial

OCP (5). We mainly focus our attention on the application of direct numerical algorithms to

the hybrid optimization problem (5). A great amount of works is devoted to the direct or

indirect numerical methods for conventional and hybrid OC problems (see e.g., [8,24,25,29]

and references therein). Evidently, an OC problem involving ordinary differential equations

can be formulated in various ways as an optimization problem in a suitable function space

and solved by some standard numerical algorithms (e.g., by applying a first-order methods

[3,24]).

Example 2. Using the Euler-Lagrange control system from Example 1, we now examine the

following OCP

minimize J := −
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t)kpi (u(t) + q(t))dt

subject to q̈(t) +
κ

ωpi

q(t) = −u̇(t), i = 1, ..., r,

q(0) = 0, q(1) = 1,

u(·) ∈ C
1
1(0, 1), 0 ≤ u(t) ≤ 1 ∀t ∈ [0, 1],

where kpi are given (variable) coefficients. Let ωpi ≥ 4κ/π2 for every pi ∈ P . The solution qu(·) of

the associated boundary-value problem can be written as follows

qu(t) = Cu
i sin (t

√

κ/ωpi )−
∫ t

0

√

κ/ωpi sin (
√

κ/ωpi (t − l))u̇(l)dl,

where t ∈ [ti−1, ti), i = 1, ..., r and

Cu
i =

1

sin
√

κ/ωpi

[1 +
∫ 1

0

√

κ/ωpi sin (
√

κ/ω(t − l))u̇(l)dl]

151On Optimization Techniques for a Class of Hybrid Mechanical Systems
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is a constant in every location. Consequently, we have

J =−
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t)kpi [u(t) + qu(t)]dt =

−
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t)kpi [u(t) + Cu
i sin (t

√

κ/ωpi )

−
∫ t

0

√

κ/ωpi sin (
√

κ/ωpi (t − l))u̇(l)dl]dt.

Let now kpi = 1 for all pi ∈ P . Using the Hybrid Maximum Principle (see [4]), we conclude that

the admissible control uopt(t) ≡ 0.5 is an optimal solution of the given OCP. Note that this result is

also consistent with the Bauer Maximum Principle (see e.g., [2] ). For uopt(·) we can compute the

corresponding optimal trajectory given as follows

qopt(t) =
sin (t

√

κ/ωpi )

sin
√

κ/ωpi

, t ∈ [ti−1, ti), i = 1, ..., r.

Evidently, we have
√

κ/ωpi ≤ π/2 for every location pi. Moreover, qopt(t) ≤ 3 under the condition

qopt(·) ∈ C1
1(0, 1).

Finally, note that a wide family of classical impulsive control systems (see e.g., [12]) can be

described by the conventional controllable Euler-Lagrange or Hamilton equations (see [5]).

Moreover, we refer to [6] for impulsive hybrid control systems and associated OCPs. Thus the

impulsive hybrid systems of mechanical nature can also be incorporated into the modeling

framework presented in this section.

4. The variational approach to hybrid OCPs of mechanical nature

An effective numerical procedure, as a rule, uses the specific structure of the problem under

consideration. Our aim is to study the variational structure of the main OCP (5). Let

Γi := {γ(·) ∈ C
1
n([ti−1, ti]) : γ(ti−1) = ci−1, γ(ti) = ci},

where i = 1, ..., r.. The vectors ci, where i = 1, ..., r are defined by the corresponding switching

mechanism of a concrete hybrid system. We refer to [3,4,26] for some possible switching rules

determined for various classes of hybrid control systems. We now present an immediate

consequence of the classical Hamilton Principle from analytical mechanics.

Theorem 1. Let all Lagrangians Lpi (t, q, q̇, u) be a strongly convex function with respect to the

generalized variables q̇i, i = 1, ..., n. Assume that every boundary-value problem from (3) has a unique

solution for every u(·) ∈ U ⋂

C1
m(0, 1). A function qu(·), where u(·) ∈ U ⋂

C1
m(0, 1), is a solution

of the sequence of boundary-value problems (3) if and only if a restriction of this function on every time

interval [ti−1ti), i = 1, ..., r can be found as follows

qu
i (·) = argminq(·)∈Γi

∫ ti

ti−1

Lpi (t, q(t), q̇(t), u(t))dt.

152 Applications of Nonlinear Control
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For an admissible control function u(·) from U we now introduce the following two

functionals

Tpi (q(·), z(·)) :=
∫ ti

ti−1

[Lpi (t, q(t), q̇(t), u(t))− Lpi (t, z(t), ż(t), u(t))]dt,

Vpi (q(·)) := max
z(·)∈Γi

∫ ti

ti−1

[Lpi (t, q(t), q̇(t), u(t))− Lpi (t, z(t), ż(t), u(t))]dt,

for all indexes pi ∈ P . Generally, we define qu(·) as an element of the Sobolev space

W
1,∞
n (0, 1), i.e., the space of absolutely continuous functions with essentially bounded

derivatives. Let us give a variational interpretation of the admissible solutions qu(·) to a

sequence of problems (3).

Theorem 2. Let all Lagrangians Lpi (t, q, q̇, u) be strongly convex functions with respect to the

variables q̇i, i = 1, ..., n. Assume that every boundary-value problem from (3) has a unique solution for

every u(·) ∈ U ⋂

C1
m(0, 1). An absolutely continuous function qu(·), where u(·) ∈ U ⋂

C1
m(0, 1),

is a solution of the sequence of problems (3) if and only if a restriction of this function on

[ti−1ti), i = 1, ..., r can be found as follows

qu
i (·) = argmin

q(·)∈W
1,∞
n (ti−1,ti)

Vpi (q(·)) (6)

Proof. Let qu(·) ∈ W
1,∞
n (ti−1, ti) be a unique solution of a partial problem (3) on the

corresponding time interval, where u(·) ∈ U ⋂

C1
m(0, 1). Using the Hamilton Principle in

every location pi inP , we obtain the following relations

min
q(·)∈W

1,∞
n (ti−1,ti)

Vpi (q(·)) = min
q(·)∈W

1,∞
n (ti−1,ti)

max
z(·)∈Γi

∫ ti

ti−1

[Lpi (t, q(t), q̇(t), u(t))−

∫ ti

ti−1

Lpi (t, z(t), ż(t), u(t))]dt = min
q(·)∈W

1,∞
n (ti−1,ti)

∫ ti

ti−1

Lpi (t, q(t), q̇(t), u(t))dt−

min
z(·)∈Γi

∫ ti

ti−1

Lpi (t, z(t), ż(t), u(t))dt =
∫ ti

ti−1

Lpi (t, qu(t), q̇u(t), u(t))dt−

∫ ti

ti−1

Lpi (t, qu(t), q̇u(t), u(t))dt = Vpi (q
u(·)) = 0.

If the condition (6) is satisfied, then qu(·) is a solution of the sequence of the boundary-value

problem (3). This completes the proof.

Theorem 1 and Theorem 2 make it possible to express the initial OCP (5) as a multiobjective

optimization problem over the set of admissible controls and generalized coordinates

minimize J(q(·), u(·)) and P(q(·))

subject to

(q(·), u(·)) ∈ (
⋃

i=1,...,r

Γi)× (U
⋂

C
1
m(0, 1)),

(7)

153On Optimization Techniques for a Class of Hybrid Mechanical Systems
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or

minimize J(q(·), u(·)) and V(q(·))

subject to

(q(·), u(·)) ∈ (
⋃

i=1,...,r

Γi)× (U
⋂

C
1
m(0, 1)),

(8)

where

P(q(·)) :=
∫ 1

0

r

∑
i=1

β[ti−1,ti)(t)Lpi (t, q(t), q̇(t), uopt(t))dt

and

V(q(·)) := β[ti−1,ti)(t)Vpi (q(·)).
The auxiliary minimizing problems (7) and (8) are multiobjective optimization problems (see

e.g., [16,28]). Note that the set

Γ × (U
⋂

C
1
m(0, 1)

is a convex set. Since f0(t, ·, ·), t ∈ [0, 1] is a convex function, J(q(·), u(·)) is also convex. If

P(·) (or V(·)) is a convex functional, then we deal with a convex multiobjective minimization

problem (7) (or (8)).

The variational representation of the solution of the two-point boundary-value problem (3)

eliminates the differential equations from the consideration. The minimization problems

(7) and (8) provide a basis for numerical algorithms to the initial OCP (5). The auxiliary

optimization problem (7) has two objective functionals. For (7) we now introduce the

Lagrange function [28]

Λ(t, q(·), u(·), μ, μ3) := μ1 J(q(·), u(·)) + μ2P(q(·))+

μ3|μ|dist(
⋃

i=1,...,r Γi)×(U ⋂

C1
m(0,1)){(q(·), u(·))},

where dist(
⋃

i=1,...,r Γi)×(U ⋂

C1
m(0,1)){·} denotes the distance function

dist(Γi)×(U ⋂

C1
m(0,1)){(q(·), u(·))} := inf{||(q(·), u(·))−

− ̺||C1
n(0,1)×C1

m(0,1), ̺ ∈ (
⋃

i=1,...,r

Γi)× (U
⋂

C
1
m(0, 1))}.

We also used the following notation

μ := (μ1, μ2)
T ∈ R

2
+.

Note that the above distance function is associated with the Cartesian product

(
⋃

i=1,...,r

Γi)× (U
⋂

C
1
m(0, 1)).

154 Applications of Nonlinear Control
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Recall that a feasible point (q∗(·), u∗(·)) is called weak Pareto optimal for the multiobjective

problem (8) if there is no feasible point (q(·), u(·)) for which

J(q(·), u(·)) < J(q∗(·), u∗(·)) and P(q(·)) < P(q∗(·)).

A necessary condition for (q∗(·), u∗(·)) to be a weak Pareto optimal solution to (8) in the sense

of Karush-Kuhn-Tucker (KKT) condition is that for every μ3 ∈ R sufficiently large there exist

μ∗ ∈ R2
+ such that

0 ∈ ∂(q(·),u(·))Λ(t, q∗(·), u∗(·), μ∗, μ3). (9)

By ∂(q(·),u(·)) we denote here the generalized gradient of the Lagrange function Λ. We refer to

[28] for further theoretical details. If P(·) is a convex functional, then the necessary condition

(9) is also sufficient for (q∗(·), u∗(·)) to be a weak Pareto optimal solution to (8). Let ℵ be a set

of all weak Pareto optimal solutions (q∗(·), u∗(·)) for problem (7). Since (qopt(·)uopt(·)) ∈ ℵ,

the above conditions (9) are satisfied also for this optimal pair (qopt(·)uopt(·)).

It is a challenging issue to develop necessary optimality conditions for the proper Pareto

optimal (efficient) solutions. A number of theoretical papers concerning multiobjective

optimization are related to this type of Pareto solutions. One can find a fairly complete

review in [20]. Note that the formulation of the necessary optimality conditions (9) involves

the Clarke generalized gradient of the Lagrange function. On the other hand, there are

more effective necessary conditions for optimality based on the concept of the Mordukhovich

limiting subdifferentials [20]. The use of the above-mentioned Clarke approach is motivated

here by the availability of the corresponding powerful software packages.

When solving constrained optimization based on some necessary conditions for optimality

one is often faced with a technical difficulty, namely, with the irregularity of the Lagrange

multiplier associated with the objective functional [15,20]. Various supplementary conditions

(constraint qualifications) have been proposed under which it is possible to assert that the

Lagrange multiplier rule holds in "normal" form, i.e., that the first Lagrange multiplier is

nonequal to zero. In this case we call the corresponding minimization problem regular.

Examples of the constraint qualifications are the well known Slater (regularity) condition

for classic convex programming and the Mangasarian-Fromovitz regularity conditions for

general nonlinear optimization problems. We refer to [15,20] for details. In the case of a

conventional multiobjective optimization problem the corresponding regularity conditions

can be given in the form of so called KKT constraint qualification (see [28] for details). In

the following, we assume that problems (7) and (8) are regular.

Consider now the numerical aspects of the solution procedure associated with (7) and recall

that discrete approximation techniques have been recognized as a powerful tool for solving

optimal control problems [3,25,29]. Our aim is to use a discrete approximation of (7) and

to obtain a finite-dimensional auxiliary optimization problem. Let N be a sufficiently large

positive integer number and

GN
i := {t0

0 = ti−1, t1
i , ..., tN−1

i = ti}

155On Optimization Techniques for a Class of Hybrid Mechanical Systems
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be a (possible nonequidistant) partition of every time interval [ti−1, ti], where i = 1, ..., r such

that

max
0≤j≤N−1

|tj+1
i − t

j
i | ≤ ξN

i .

and limN→∞ ξN
i = 0 for every i = 1, ..., r. Define ∆it

j+1 := t
j+1
i − t

j
i , j = 0, ..., N − 1 and

consider the corresponding finite-dimensional optimization problem

minimize JN(qN(·), uN(·)) and PN(qN(·)),
(qN(·), uN(·)) ∈ (

⋃

i=1,...,r

ΓN
i )× (UN

⋂

C1
m,N(0, 1)), (10)

where JN and PN are discrete variants of the objective functionals J and P from (7). Moreover,

ΓN
i is a correspondingly discrete set Γi and C1

m,N(0, 1) is set of suitable discrete functions

that approximate the trajectories set C1
m(0, 1). Note that the initial continuous optimization

problem can also be presented in a similar discrete manner. For example, we can introduce

the (Euclidean) spaces of piecewise constant trajectories qN(·) and piecewise constant control

functions uN(·). As we can see the Banach space C1
n(0, 1) and the Hilbert space L2

m([0, 1]) will

be replaced in that case by some appropriate finite-dimensional spaces.

The discrete optimization problem (10) approximates the infinite-dimensional optimization

problem (7). We assume that the set of all weak Pareto optimal solution of the discrete

problem (10) is nonempty. Moreover, similarly to the initial optimization problem (7) we

also assume that the discrete problem (10) is regular. If P(·) is a convex functional, then the

discrete multiobjective optimization problem (10) is also a convex problem. Analogously to

the continuous case (7) or (8) we also can write the corresponding KKT optimality conditions

for a finite-dimensional optimization problem over the set of variables (qN(·), uN(·)). The

necessary optimality conditions for a discretized problem (10) reduce the finite-dimensional

multiobjective optimization problem to a system of nonlinear equations. This problem can be

solved by some gradient-based or Newton-type methods (see e.g., [24]).

Finally, note that the proposed numerical approach uses the necessary optimality conditions,

namely the KKT conditions, for the discrete variant (10) of the initial optimization problem (7).

It is common knowledge that some necessary conditions of optimality for discrete systems, for

example the discrete version of the classical Pontryagin Maximum Principle, are non-correct

in the absence of some restrictive assumptions. For a constructive numerical treatment of

the discrete optimization problem it is necessary to apply some suitable modifications of

the conventional optimality conditions. For instance, in the case of discrete optimal control

problems one can use so-called Approximate Maximum Principle which is specially designed

for discrete approximations of general OCPs [21].

5. Mechanical example

This section is devoted to a short numerical illustration of the proposed hybrid approach

to mechanical systems. We deal with a practically motivated model that has the following

structure (see Fig. 1).

Let us firstly describe the parameters of the mechanical model under consideration:
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Fig. 1. Mechanical example

• q1 it corresponds to the position of motor.

• q2 is the position of inertia J2.

• J1, J2 are the external inertias.

• Jm is an inertia of motor.

• Bm it corresponds to the friction of the motor.

• B1, B2 they correspond to the frictions of the inertias J1, J2.

• k is a constant called the rate or spring constant.

• u it corresponds to the torque of motor.

The relations for the kinetic potential energies give a rise to the corresponding Lagrange

dynamics:

K(t) =
1

2
Jm q̇2

1 +
1

2
J2q̇2

2

V(t) =
1

2
k (q1 − q2)

2

Finally, we have

L(q(t), q̇(t)) =
1

2
Jm q̇2

1 +
1

2
J2q̇2

2 −
1

2
k (q1 − q2)

2

and the Euler-Lagrange equation with respect to the generalized coordinate q1 has the

following form

Jm q̈1 + Bm q̇1 − k(q2(t)− q1(t)) = u(t) (11)

We now considered the Euler-Lagrange equation with respect to the second generalized

variable, namely, with respect to q2

d

dt

∂L(q(t), q̇(t))

∂q̇2
− ∂L(q(t), q̇(t))

∂q2
= −B2q̇2(t)

We get the next relation

J2q̈2(t) + B2q̇2(t) + k(q2(t)− q1(t)) = 0

157On Optimization Techniques for a Class of Hybrid Mechanical Systems

www.intechopen.com



12 Will-be-set-by-IN-TECH

The redefinition of the states x1 := q1, x2 := q̇1, x3 := q2, x4 := q̇2 with X := (x1, x2, x3, x4)
T

implies the compact state-space form of the resulting equation:

Ẋ :=

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0 0
−k
Jm

−Bm
Jm

k
Jm

0

0 0 0 1
k
J2

0 −k
J2

−B2
J2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
1
Jm

0

0

⎤

⎥

⎥

⎦

u, X0 :=

⎡

⎢

⎢

⎣

x0
1

x0
2

x0
3

x0
4

⎤

⎥

⎥

⎦

(12)

The switching structure of the system under consideration is characterized by an additional

inertia J1 and the associated friction B1. The modified energies are given by the expressions:

the kinetic energy:

K(t) =
1

2
Jm q̇2

1 +
1

2
J1q̇2

1 +
1

2
J2q̇2

2

the potential energy:

V(t) =
1

2
k (q1 − q2)

2

The function of Lagrange can be evaluated as follows

L(q, q̇) =
1

2
Jm q̇2

1 +
1

2
J1q̇2

1 +
1

2
J2q̇2

2 −
1

2
k (q1 − q2)

2 (13)

The resulting Euler-Lagrange equations (with respect to q1 and to q2 can be rewritten as

(Jm + J1)q̈1(t) + (Bm + B1)q̇1(t)− k(q2(t)− q1(t)) = u(t)

J2q̈2(t) + B2q̇2(t) + k(q2(t)− q1(t)) = 0
(14)

Using the notation introduced above, we obtain the final state-space representation of the

hybrid dynamics associated with the given mechanical model:

Ẋ :=

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1 0 0
−k

Jm+J1

−(Bm+B1)
Jm+J1

k
Jm+J1

0

0 0 0 1
k
J2

0 −k
J2

−B2
J2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1

x2

x3

x4

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0
1

Jm+J1

0

0

⎤

⎥

⎥

⎦

u (15)

The considered mechanical system has a switched nature with a state-dependent switching

signal. We put x4 = −10 for the switching-level related to the additional inertia in the system

(see above).

Our aim is to find an admissible control law that minimize the value of the quadratic costs

functional

I(u(·)) = 1

2

∫ t f

t0

[

XT(t)QX(t) + uT(t)Ru(t)
]

dt −→ min
u(·)

(16)

The resulting Linear Quadratic Regulator that has the follow form

uopt(t) = −R−1(t)BT(t)P(t)Xopt(t) (17)
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where P(t) is a solution of the Riccati equation (see [7] for details)

Ṗ(t) = −(AT(t)P(t) + P(t)A(t)) + P(t)B(t)R−1(t)BT(t)P(t)− Q(t) (18)

with the final condition

P(t f ) = 0 (19)

Let us now present a conceptual algorithm for a concrete computation of the optimal pair

(uopt, Xopt(·)) in this mechanical example. We refer to [7, 8] for the necessary facts and the

general mathematical tool related to the hybrid LQ-techniques.

Algorithm 1. The conceptual algorithm used:

(0) Select a tswi ∈
[

0, t f

]

, put an index j = 0

(1) Solve the Riccati euqation (18) for (15) on the time intervals [0, tswi] ∪
[

tswi, t f

]

(2) solve the initial problem (12) for (17)

(3) calculate x4(tswi) + 10, if | x4(tswi) + 10 |∼= ǫ for a prescribed accuracy ǫ > 0 then Stop. Else,

increase j = j + 1, inprove tswi = tswi + ∆t and back to (1)

(4) Finally, solve (15) with the obtained initial conditions(the final conditions for the vector X(tswi))
computed from (12)

Fig. 2. Components of the optimal trajectories
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Finally, let us present the simulation results (figure 2). As we can see, the state x4 satisfies the

switching condition x4 + 10 = 0. The computed switching time is equal to tswi = 0.0057s.

The dynamic behaviour on the second time-interval [0, 50] is presented on the figure (2).

The obtained trajectories of the hybrid states converges to zero. As we can see the dynamic

behaviour of the state vector Xopt(t) generated by the optimal hybrid control uopt(·) guarantee

a minimal value of the quadratic functional I(·). This minimal value characterize the specific

control design that guarantee an optimal operation (in the sense of the selected objective) of

the hybrid dynamic system under consideration.

6. Concluding remarks

In this paper we propose new theoretical and computational approaches to a specific class

of hybrid OCPs motivated by general mechanical systems. Using a variational structure

of the nonlinear mechanical systems described by hybrid-type Euler-lagrange or Hamilton

equations, one can formulate an auxiliary problem of multiobjective optimization. This

problem and the corresponding theoretical and numerical techniques from multiobjective

optimization can be effectively applied to numerical solution of the initial hybrid OCP.

The proofs of our results and the consideration of the main numerical concepts are

realized under some differentiability conditions and convexity assumptions. These restrictive

smoothness assumptions are motivated by the "classical" structure of the mechanical hybrid

systems under consideration. On the other hand, the modern variational analysis proceeds

without the above restrictive smoothness assumptions. We refer to [20,21] for theoretical

details. Evidently, the nonsmooth variational analysis and the corresponding optimization

techniques can be considered as a possible mathematical tool for the analysis of discontinuous

(for example, variable structure) and impulsive (nonsmooth) hybrid mechanical systems.

Finally, note that the theoretical approach and the conceptual numerical aspects presented in

this paper can be extended to some constrained OCPs with additional state and/or mixed

constraints. In this case one needs to choose a suitable discretization procedure for the

sophisticated initial OCP and to use the corresponding necessary optimality conditions. It

seems also be possible to apply our theoretical and computational schemes to some practically

motivated nonlinear hybrid and switched OCPs in mechanics, for example, to optimization

problems in robots dynamics.
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