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1. Introduction

Control allocation is the process of mapping virtual control inputs (such as torque and force)

into actual actuator deflections in the design of control systems (Benosman et al., 2009;

Bodson, 2002; Buffington et al., 1998; Liao et al., 2007; 2010). Essentially, it is considered as

a constrained optimization problem as one usually wants to fully utilize all actuators in order

to minimize power consumption, drag and other costs related to the use of control, subject to

constraints such as actuator position and rate limits. In the design of control allocation, full

state information is required. However, in practice, states may not be measurable. Hence,

estimation of these unmeasurable states becomes inevitable.

The unmeasurable states are generally estimated based on available measurements and

the knowledge of the physical system. For linear systems, the property of observability

guarantees the existence of an observer. Luenberger or Kalman observers are known to give

a systematic solution (Luenberger, 1964). In the case of nonlinear systems, observability in

general depends on the input of the system. In other words, observability of a nonlinear

system does not exclude the existence of inputs for which two distinct initial states generate

identical measured outputs. Hence, in general, observer gains can be expected to depend on

the applied input (Nijmeijer & Fossen, 1999). This makes the design of a nonlinear observer

for a general nonlinear system a challenging problem. Although various results have been

proposed over the past decades (Ahmed-Ali & Lamnabhi-Lagarrigue, 1999; Alamir, 1999;

Besancon, 2007; Besancon & Ticlea, 2007; Bestle & Zeitz, 1983; Bornard & Hammouri, 1991;

Gauthier & Kupka, 1994; Krener & Isidori, 1983; Krener & Respondek, 1985; Michalska &

Mayne, 1995; Nijmeijer & Fossen, 1999; Teel & Praly, 1994; Tsinias, 1989; 1990; Zimmer, 1994),

none of them can claim to provide a general solution with the same convergence properties as

in the linear case.

Over the past decades, a variety of methods have been developed for constructing nonlinear

observers for nonlinear systems (Ahmed-Ali & Lamnabhi-Lagarrigue, 1999; Alamir, 1999;

Besancon, 2007; Besancon & Ticlea, 2007; Bestle & Zeitz, 1983; Bornard & Hammouri, 1991;

Gauthier & Kupka, 1994; Krener & Isidori, 1983; Krener & Respondek, 1985; Michalska &

Mayne, 1995; Nijmeijer & Fossen, 1999; Teel & Praly, 1994; Tsinias, 1989; 1990; Zimmer,

1994). They may be classified into optimization-based methods (Alamir, 1999; Michalska
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& Mayne, 1995; Zimmer, 1994) and feedback-based methods (Bestle & Zeitz, 1983; Bornard

& Hammouri, 1991; Gauthier & Kupka, 1994; Krener & Isidori, 1983; Krener & Respondek,

1985; Teel & Praly, 1994; Tsinias, 1989; 1990). Optimization-based methods obtain an estimate

x̂(t) of the state x(t) by searching for the best estimate x̂(0) of x(0) (which can explain

the evolution y(τ) over [0, t]) and integrating the deterministic nonlinear system from x̂(0)
and under u(τ). These methods take advantage of their systematic formulation, but suffer

from usual drawbacks of nonlinear optimization (like computation burden, local minima,

and so on). Feedback-based methods can correct on-line the estimation x̂(t) from the

error between the measurement output and the estimated output. These methods include

linearization methods (Bestle & Zeitz, 1983; Krener & Isidori, 1983; Krener & Respondek,

1985), Lyapunov-based approaches (Tsinias, 1989; 1990), sliding mode observer approaches

(Ahmed-Ali & Lamnabhi-Lagarrigue, 1999) and high gain observer approaches (Bornard &

Hammouri, 1991; Gauthier & Kupka, 1994; Teel & Praly, 1994), and so on. Among them,

linearization methods (Krener & Isidori, 1983) transform nonlinear systems into linear systems

by change of state variables and output injection. It is applicable to a special class of nonlinear

systems. Sliding mode observer approaches (Ahmed-Ali & Lamnabhi-Lagarrigue, 1999) is

to force the estimation error to join a stabilizing variety. The difficulty is to find a variety

attainable and having this property. High gain observer approaches (Besancon, 2007) use the

uniform observability and weight a gain based on the linear part so as to make the linear

dynamics of the observer error to dominate the nonlinear one. Due to the requirement of the

uniform observability, these approaches can only be applied to a class of nonlinear systems

with special structure. Interestingly, Lyapunov-based approaches (Tsinias, 1989; 1990) provide

a general sufficient Lyapunov condition for the observer design of a general class of nonlinear

systems and the proposed observer is a direct extension of Luenberger observer in linear case.

In this chapter, we extend the control allocation approach developed in (Benosman et al., 2009;

Liao et al., 2007; 2010) from state feedback to output feedback and adopt the Lyapunov-type

observer for a general class of nonlinear systems in (Tsinias, 1989; 1990) to estimate the

unmeasured states. Sufficient Lyapunov-like conditions in the form of the dynamic update

law are proposed for the control allocation design via output feedback. The proposed

approach ensures that the estimation error and its rate converge exponentially to zero as

t → +∞ and the closed-loop system exponentially converges to the stable reference model

as t → +∞. The advantage of the proposed approach is that it is applicable to a wide class

of nonlinear systems with unmeasurable states, and it is computational efficiency as it is not

necessary to optimize the control allocation problem exactly at each time instant.

This chapter is organized as follows. In Section 2, the observer-based control allocation

problem is formulated where the control allocation design is based on the estimated states

which exponentially converge to the true states as t → +∞. In Section 3, the main result of

the observer-based control allocation design is presented in the form of dynamic update law.

An illustrative example is given in Section 4, followed by some conclusions in Section 5.

Throughout this chapter, given a real map f (v, w), (v, w) ∈ R
n × R

m, Dv f (v0, w0) denotes

its derivative with respect to v at the point (v0, w0). For given real map h(v) with v ∈ R
n,

Dh(v0) denotes its derivative with respect to v at the point v0. In addition, ‖ · ‖ represent the

induced 2-norm.
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2. Problem formulation

Consider the following nonlinear system:

{

ẋ = f (x, u)
y = h(x)

(1)

where x ∈ X ⊂ R
n is the state vector with X a open subset of R

n, y ∈ R
l is the measurement

output vector, and u ∈ R
m is the control input vector satisfying the constraints

u ∈ Ω
△
=

{

u = [u1 u2 · · · um]
T
∣

∣

∣
ui ≤ ui ≤ ūi, i = 1, 2, · · · , m

}

(2)

with u = [u1 u2 · · · um]
T and ū = [ū1 ū2 · · · ūm]T being vectors of lower and upper

control limits, respectively.

We assume that the system (1) satisfies the following assumption:

Assumption 1. The function f (x, u) is smooth and the output function h(x) is continuously
differentiable.

Since control allocation need full state information, the state estimation for the system (1) is
required.

Consider a dynamic observer of the following form

˙̂x = f (x̂, u)− Φ(x̂, u)[y − h(x̂)] (3)

Define the error e as

e = x − x̂ (4)

To estimate the state x, we wish to design the mapping Φ(x̂, u) such that the trajectory of e
with the dynamics

ė = f (x, u)− f (x̂, u) + Φ(x̂, u)[y − h(x̂)] (5)

exponentially converges to zero as t → +∞, uniformly on u ∈ Ω, for every x(0) subject to
e(0) = x(0)− x̂(0) near zero.

The aim is to design a nonlinear control allocation law based on the state observer (3) such that
a reference model that represents a predefined dynamics of the closed-loop system is tracked
subject to the control constraint u ∈ Ω.

Given that the predefined dynamics of the closed-loop system is described by the following
asymptotically stable reference model

ẋ = Adx + Bdr (6)

where Ad ∈ R
n×n, Bd ∈ R

n×nr and the reference r ∈ R
nr satisfy the following assumption.

Assumption 2. Ad is Hurwitz, and r ∈ Σ ⊂ R
nr is continuously differentiable where Σ is an open

subset defined by: for each r ∈ Σ, there exist x ∈ X and u ∈ Ω such that the system (1) matches the
reference system (6).
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Since the state x is unmeasurable, the control allocation design is then based on its estimate
x̂. In other words, we have to first choose the mapping Φ(x̂, u) in (3) such that the estimation
error e exponentially converges to zero as t → +∞, uniformly on u ∈ Ω, for every x(0) ∈ X
subject to e(0) near zero; then minimize the cost function

J(x̂, r, u) =
1

2
uTH1u +

1

2
τT(x̂, r, u)H2τ(x̂, r, u) (7)

where H1 ∈ R
m×m and H2 ∈ R

n×n are positive definite weighting matrices, and

τ(x̂, r, u)
△
= f (x̂, u)− Ad x̂ − Bdr (8)

is the matching error between the actual dynamics and desired dynamics. Since power

consumption minimization introduced by the term
1

2
uTH1u is a secondary objective, we

choose ‖H1‖ ≪ ‖H2‖.

Now the control allocation problem is formulated in terms of solving the following nonlinear
static minimization problem:

min
u

J(x̂, r, u) subject to

u ∈ Ω and x̂ converges to x exponentially
(9)

Define

∆(u) = [S(u1) S(u2) · · · S(um)] (10)

with

S(ui)=min((ui−ui)
3, (ūi−ui)

3, 0), i = 1, 2, · · · , m (11)

Then the constraint condition u ∈ Ω is equivalent to

∆(u) = 0 (12)

Introduce the Lagrangian

L(x̂, r, u, λ)=J(x̂, r, u)+∆(u)λ (13)

where λ ∈ R
m is a Lagrange multiplier. And assume that

Assumption 3. There exists a constant γ1 > 0 such that
∂2L

∂u2
≥ γ1Im.

The following lemma is immediate ((Wismer & Chattergy, 1978), p. 42).

Lemma 1. If Assumptions 1 and 3 hold, the Lagrangian (13) achieves a local minimum if and only if
∂L

∂λ
= 0 and

∂L

∂u
= 0.
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Proof. Necessity: The necessary condition is obvious. Sufficiency: Since
∂L

∂λ
= 0, we have

∆(u) = 0. In this case, the Lagrangian (13) is independent of the Lagrange multiplier λ, which

achieves a local minimum if
∂L

∂u
= 0 and

∂2L

∂u2
> 0. As

∂2L

∂u2
> 0 is guaranteed by Assumption

3, thus,
∂L

∂λ
= 0 and

∂L

∂u
= 0 implies the local minimum. The proof is completed.

Remark 1. It should be noted that Assumption 3 is satisfied if all control inputs are within their

limits (i.e.,
∂L

∂λ
= ∆

T(u) = 0) and the nonlinear system (1) is affine in control (i.e., f (x, u) =

f1(x) + g(x)u). It is because, in this case,
∂2L

∂u2
= H1 + gT(x)H2g(x) is positive definite matrix for

H1 > 0 and H2 > 0. Furthermore, since the Lagrangian (13) is convex in this case, Lemma 1 holds
for a global minimum.

To solve the control allocation problem (9) with the state estimate x̂ from the observer (3), we
consider the following control Lyapunov-like function

V(x̂, e, r, u, λ) = Vm(x̂, r, u, λ) +
1

2
eTPe (14)

where P > 0 is a known positive-definite matrix and

Vm(x̂, r, u, λ)=
1

2

[

(

∂L

∂u

)T∂L

∂u
+

(

∂L

∂λ

)T∂L

∂λ

]

(15)

Here the function Vm is designed to attract (u, λ) so as to minimize the Lagrangian (13). The

term
1

2
eTPe forms a standard Lyapunov-like function for observer estimation error e which

is required to exponentially converge to zero as t → +∞.

Following the observer design in (Tsinias, 1989), we define a neighborhood Q of zero with
Q ⊂ X , a neighborhood W of X with {x − e : x ∈ X , e ∈ Q} ⊂ W, and a closed ball S of
radius r > 0, centered at zero, such that S ⊂ Q. Then define the boundary of S as ∂S. Figure 1
illustrates the geometrical relationship of these defined sets.

Let H denote the set of the continuously differentiable output mappings h(x) : X → R
l such

that for every m0 ∈ Q and x̂ ∈ W,

R(x̂, m0) ≥ 0 (16)

and

kerR(x̂, m0) ⊂ kerDh(x̂) (17)

where

R(x̂, m0)
△
= [Dh(x̂)]TDh(x̂ + m0) + [Dh(x̂ + m0)]

TDh(x̂) (18)

Remark 2. Obviously, every linear map y = Hx belongs to H. Furthermore, H contains a wide
family of nonlinear mappings.
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Fig. 1. Geometrical representation of sets

We assume that

Assumption 4. h(x) in the system (1) belongs to the set H, namely, h(x) ∈ H.

Further, we define

N
△
=

{

e ∈ R
nx

∣

∣

∣
eTPDx f (x̂ + m1, u)e ≤ −k0‖e‖2

}

(19)

and assume that

Assumption 5. There exist a positive definite matrix P ∈ R
nx×nx and a positive constant k0 such

that kerDh(x̂) ⊂ N holds for any (x̂, m1, u) ∈ W × Q × Ω.

Remark 3. Assumption 5 ensures that the estimation error system (5) is stable in the case of h(x) =
h(x̂) and x 
= x̂. In particular, for linear systems, the condition in Assumption 5 is equivalent to
detectability.

3. Main results

Denote

[

α

β

]

=

⎡

⎢

⎢

⎣

∂2L

∂u2

∂2L

∂λ∂u

∂2L

∂u∂λ
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∂L

∂u

∂L

∂λ

⎤

⎥

⎥

⎦

(20)

and define

M
△
=

{

ν ∈ R
nx

∣

∣

∣
ν = r‖e‖−1e, e ∈ N ∩ S

}

(21)

Let

γ1(x̂, u) = max
{

r2(‖P‖‖Dx f (x̂ + m1, u)‖+ k0), m1 ∈ S, (x̂, u) ∈ W × Ω

}

(22)

γ2(x̂) = min

{

1

2
νT R(x̂, m0)ν, m0 ∈ S, ν ∈ ∂S − M, x̂ ∈ W

}

(23)
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Theorem 1. Consider the system (1) with x ∈ X and u ∈ Ω. Suppose that Assumptions
1-5 are satisfied. For a given asymptotically stable matrix Ad and a matrix Bd, given symmetric

positive-definite matrices Γ1 and Γ2, and a given positive constants ω, for e(0) near zero,

(

∂L

∂λ
,

∂L

∂u
, e

)

exponentially converges to zero as t → +∞, and the dynamics of the nonlinear system (1) exponentially
converges to that of the stable system (6) if the following dynamic update law

{

u̇ = −Γ1α + ξ1

λ̇ = −Γ2β + ξ2
(24)

and the observer system

˙̂x = f (x̂, u)− Φ(x̂, u) [y − h(x̂)] (25)

are adopted. Here α, β ∈ R
m are as in (20), and ξ1, ξ2 ∈ R

m satisfy

αTξ1 + βTξ2 + δ + ωVm = 0 (26)

with Vm as in (15) and

δ =

(

∂L

∂u

)T ∂2L

∂r∂u
ṙ +

(

∂L

∂u

)T ∂2L

∂x̂∂u
˙̂x (27)

and the mapping

Φ(x̂, u) = −θ(x̂, u)P−1[Dh(x̂)]T (28)

where

θ(x̂, u) ≥
γ1(x̂, u)

γ2(x̂)
> 0 (29)

with γ1(x̂, u) > 0 and γ2(x̂) > 0 defined as in (22) and (23).

Proof. From the Lyapunov-like function (14), we obtain its time derivative as

V̇ =

[

(

∂L

∂u

)T ∂2L

∂u2
+

(

∂L

∂λ

)T ∂2L

∂u∂λ

]

u̇ +

(

∂L

∂u

)T ∂2L

∂λ∂u
λ̇

+

(

∂L

∂u

)T ∂2L

∂r∂u
ṙ +

(

∂L

∂u

)T ∂2L

∂x̂∂u
˙̂x + eTPė (30)

Substituting ė in (5), α and β as in (20) and δ as in (27) into (30), we have

V̇ = αTu̇ + βT λ̇ + δ + eTP { f (x, u)− f (x̂, u) + Φ(x̂, u)[y − h(x̂)]} (31)

Consider e ∈ S. Since S is convex, according to Mean Value Theorem, there exists m0, m1 ∈ S
satisfying

f (x, u)− f (x̂, u) = Dx f (x̂ + m1, u)e (32)

y − h(x̂) = Dh(x̂ + m0)e (33)

121Nonlinear Observer-Based Control Allocation
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Then substituting (24), (26), (32) and (33) into (31), we obtain

V̇ = −αT
Γ1α − βT

Γ2β − ωVm + eTP [Dx f (x̂ + m1, u) + Φ(x̂, u)Dh(x̂ + m0)] e (34)

After substituting Φ(x̂, u) as in (28) and R(x̂, m0) as in (18), (34) can be rewritten as

V̇ = −αT
Γ1α − βT

Γ2β − ωVm + eTPDx f (x̂ + m1, u)e −
θ(x̂, u)

2
eTR(x̂, m0)e (35)

Since the matrices Γ1 > 0 and Γ2 > 0, we have

V̇ ≤ −ωVm + eTPDx f (x̂ + m1, u)e −
θ(x̂, u)

2
eT R(x̂, m0)e (36)

For e = 0 where x is determined by the observer accurately, we have

V̇ ≤ −ωVm = −ωV (37)

Since ω > 0, V exponentially converges to zero as t → +∞. Hence,

(

∂L

∂λ
,

∂L

∂u

)

exponentially

converges to zero.

For any nonzero e ∈ S, let ν = r‖e‖−1e. Obviously, ν ∈ ∂S. Then we have

V̇ ≤ −ωVm +
1

r2
‖e‖2νTPDx f (x̂ + m1, u)ν −

θ(x̂, u)

2r2
‖e‖2νT R(x̂, m0)ν (38)

In the following, we shall show that V converges exponentially to zero for all m0, m1 ∈ S,
x̂ ∈ W, u ∈ Ω, e ∈ S, e 
= 0 and ν ∈ ∂S.

First let us consider nonzero e ∈ N ∩ S. From ν = r‖e‖−1e, we have ν ∈ M. Since m0,
m1 ∈ S ⊂ Q, x̂ ∈ W and u ∈ Ω, according to Assumptions 1-5, it follows that

νTR(x̂, m0)ν = 0 (39)

and

νTPDx f (x̂ + m1, u)ν ≤ −k0‖ν‖2 (40)

with the constant k0 > 0. From (38), we have

V̇ ≤ −ωVm − k0‖e‖2 ≤ −σV (41)

with the constant σ > 0. Hence,

(

∂L

∂λ
,

∂L

∂u
, e

)

exponentially converges to zero as t → +∞.

Then we consider nonzero e ∈ S − N ∩ S, namely, ν ∈ ∂S − M. From (38), taking into account
(22)-(23), we obtain

V̇ ≤ −ωVm +
1

r2
‖e‖2

[

γ1(x̂, u)− k0r2 − θ(x̂, u)γ2(x̂)
]

(42)

Since θ(x̂, u) satisfy the condition (29), we obtain (41) again. Hence, in this case,

(

∂L

∂λ
,

∂L

∂u
, e

)

also exponentially converges to zero as t → +∞.
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Since

(

∂L

∂λ
,

∂L

∂u
, e

)

exponentially converges to zero as t → +∞, the closed-loop system

exponentially converges to

{

˙̂x = Ad x̂ + Bdr

ė =
{

Dx f (x̂ + m1, u)− θ(x̂, u)P−1[Dh(x̂)]TDh(x̂ + m0)
}

e
(43)

Since Ad is a asymptotically stable matrix, we know that x̂ ∈ W is bounded. According to
Assumptions 1 and 4, Dx f (x̂ + m1, u), Dh(x̂) and Dh(x̂ + m0) are all bounded for m0, m1 ∈ S
and u ∈ Ω. From k0 > 0, we have 0 < γ1(x̂, u) < +∞. According to Assumption 4, we have
kerR(x̂, m0) ⊂ kerDh(x̂) which ensures that 0 < νT R(x̂, m0)ν < +∞ for every ν ∈ ∂S − M,
m0 ∈ S and x̂ ∈ W. Thus, we have 0 < γ2(x̂) < +∞. As a result, 0 < θ(x̂, u) < +∞. From
(43), we know that ė exponentially converges to zero as e exponentially converges to zero.
Moreover, we have

ẋ − ė = Adx − Ade + Bdr (44)

Since ė and e exponentially converges to zero, we have the system (1) exponentially converges
to ẋ = Adx + Bdr. This completes the proof.

Consider now the issue of solving (26) with respect to ξ1 and ξ2. One method to achieve
a well-defined unique solution to the under-determined algebraic equation is to solve a
least-square problem subject to (26). This leads to the Lagrangian

l(ξ1, ξ2, ρ) =
1

2
(ξT

1 ξ1 + ξT
2 ξ2) + ρ(αTξ1 + βTξ2 + δ + ωVm) (45)

where ρ ∈ R is a Lagrange multiplier. The first order optimality conditions

∂l

∂ξ1
= 0,

∂l

∂ξ2
= 0,

∂l

∂ρ
= 0 (46)

leads to the following system of linear equations

⎡

⎢

⎢

⎣

Im 0 α

0 Im β

αT βT 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ξ1

ξ2

ρ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0

0

−δ − ωVm

⎤

⎥

⎥

⎦

(47)

Remark 4. It is noted that Equation (47) always has a unique solution for ξ1 and ξ2 if any one of α
and β is nonzero.

4. Example

Consider the pendulum system

[

ẋ1

ẋ2

]

=

[

x2

− sin x1 + u1 cos x1 + u2 sin x1

]

(48)

y = x1 + x2 (49)

123Nonlinear Observer-Based Control Allocation
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with x = [x1 x2]
T ∈ R

2, u = [u1 u2]
T ∈ Ω and

Ω
△
=

{

u = [u1 u2]
T
∣

∣

∣
− 1 ≤ u1 ≤ 1, −0.5 ≤ u2 ≤ 0.5

}

(50)

As the system is affine in control and its measurement output y is a linear map of its state x,
Assumptions 1, 3 and 4 are satisfied automatically.

Choose

P =

[

3 0
0 1

]

For e 
= 0 and e ∈ ker[1 1], we have e1 = −e2 and

eTPDx f (x, u)e|e1=−e2

= [e1 e2]

[

0 3
− cos x1 − u1 sin x1 + u2 cos x1 0

] [

e1

e2

]

|e1=−e2

= (− cos x1 − u1 sin x1 + u2 cos x1 + 3)e1e2|e1=−e2

≤ [−1.5 cos(arctan 2
3 )− sin(arctan 2

3 ) + 3]e1e2|e1=−e2

= (−1.8028 + 3)e1e2|e1=−e2

= −0.5986‖e‖2|e1=−e2

< −k0‖e‖2|e1=−e2

with 0 < k0 < 0.5986. Hence, Assumption 5 is satisfied. Let S be the ball of radius r = 1,
centered at zero and ∂S is the boundary of S. Define M ⊂ ∂S and

M =
{

ν = [ν1 ν2]
T ∈ R

2 : ‖ν‖ = 1, 3ν1ν2 + 1.8028|ν1ν2| < −k0

}

Obviously,

∂S − M =
{

ν = [ν1 ν2]
T ∈ R

2 : ‖ν‖ = 1, 3ν1ν2 + 1.8028|ν1ν2| ≥ −k0

}

As γ1(x̂, u) = 3 × 1.8028 + k0 and

γ2(x̂) = min
{

(ν1 + ν2)
2, ν ∈ ∂S − M

}

= 1 −
2k0

3 − 1.8028

choosing k0 = 0.5, we have
γ1(x̂, u)

γ2(x̂)
= 35.8699. Let θ(x̂, u) = 36 > 35.8699 and we have

Φ(x̂, u) = −[12 36]T.

Now the nonlinear observer becomes
[

˙̂x1
˙̂x2

]

=

[

x̂2

− sin x̂1 + u1 cos x̂1 + u2 sin x̂1

]

+

[

12
36

]

(y − x̂1 − x̂2)

Choose the reference model (6) where

Ad =

[

0 1
−25 −10

]

, Bd =

[

0
25

]
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and the reference is given by

r =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r f

[

6

(

t

t1

)5

− 15

(

t

t1

)4

+ 10

(

t

t1

)3
]

, 0 ≤ t < t1

r f , t1 ≤ t < t2

−r f

⎡

⎣6

(

t − t2

t f − t2

)5

− 15

(

t − t2

t f − t2

)4

+ 10

(

t − t2

t f − t2

)3
⎤

⎦+ r f , t2 ≤ t < t f

0, t ≥ t f

with t1 = 10s, t2 = 20s, t f = 30s and r f = 0.5. Obviously, Assumption 2 is satisfied.

Set H1 = 0, H2 = 10−4I2, ω = 1, Γ1 = Γ2 = 2I2, and x1(0) = 0.3 and x2(0) = 0.5. Using the
proposed approach, we have the simulation result of the pendulum system (48)-(50) shown in
Figures 2-5 where the control u2 is stuck at −0.5 from t = 12s onward.

From Figure 2, it is observed that the estimated states x̂1 and x̂2 converge to the actual
states x1 and x2 and match the desired states x1d and x2d well, respectively, even when
u2 is stuck at −0.5. This observation is further verified by Figure 3 where both the state
estimation errors e1(= x1 − x̂1) and e2(= x2 − x̂2) of the nonlinear observer as in (4) and
the matching errors τ1(= 0) and τ2(= − sin x̂1 + u1 cos x̂1 + u2 sin x̂1 + 25x̂1 + 10x̂2 − 25r) as
in (8) exponentially converge to zero. Moreover, Figure 4 shows that the control u1 roughly
satisfies the control constraint u1 ∈ [−1, 1] while the control u2 strictly satisfies the control
constraint u2 ∈ [−0.5, 0.5]. This is because, in this example, the Lagrange multiplier λ1 is first
activated by the control u1 < −1 at t = 0 (see Figure 5 where λ1 is no longer zero from t = 0),
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Fig. 2. Responses of the desired, estimated and actual states
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Fig. 3. Responses of estimation error and matching error
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Fig. 4. Responses of control u

and then the proposed dynamic update law forces the control u1 to satisfy the constraint
u1 ∈ [−1, 1]. It is also noted from Figure 5 that the Lagrange multiplier λ2 is not activated in
this example as the control u2 is never beyond the range [−0.5, 0.5]. In addition, the output y
and the Lyapunov-like function Vm are shown in Figure 6. From Figure 6, it is observed that
the Lyapunov-like function Vm exponentially converges to zero.
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Fig. 5. Responses of Lagrangian multiplier λ
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Fig. 6. Responses of output y and Lyapunov-like function Vm

5. Conclusions

Sufficient Lyapunov-like conditions have been proposed for the control allocation design via
output feedback. The proposed approach is applicable to a wide class of nonlinear systems.
As the initial estimation error e(0) need be near zero and the predefined dynamics of the
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closed-loop is described by a linear stable reference model, the proposed approach will
present a local nature.
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