
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1 

Application of Input-Output Linearization 

Erdal Şehirli and Meral Altinay 
Kastamonu University & Kocaeli University 

Turkey 

1. Introduction  

In nature, most of the systems are nonlinear. But, most of them are thought as linear and the 
control structures are realized with linear approach. Because, linear control methods are so 
strong to define the stability of the systems. However, linear control gives poor results in 
large operation range and the effects of hard nonlinearities cannot be derived from linear 
methods. Furthermore, designing linear controller, there must not be uncertainties on the 
parameters of system model because this causes performance degradation or instability. For 
that reasons, the nonlinear control are chosen. Nonlinear control methods also provide 
simplicity of the controller (Slotine & Li, 1991).    

There are lots of machine in industry. One of the basic one is dc machine. There are two 
kinds of dc machines which are brushless and brushed. Brushed type of dc machine needs 
more maintenance than the other type due to its brush and commutator. However, the 
control of brushless dc motor is more complicated. Whereas, the control of brushed dc 
machine is easier than all the other kind of machines. Furthermore, dc machines need to dc 
current. This dc current can be supplied by dc source or rectified ac source. Three – phase ac 
source can provide higher voltage than one phase ac source. When the rectified dc current is 
used, the dc machine can generate harmonic distortion and reactive power on grid side.  
Also for the speed control, the dc source must be variable. In this paper, dc machine is fed 
by three – phase voltage source pulse width modulation (PWM) rectifier. This kind of 
rectifiers compared to phase controlled rectifiers have lots of advantages such as lower line 
currents harmonics, sinusoidal line currents, controllable power factor and dc – link voltage. 
To make use of these advantages, the filters that are used for grid connection and the control 
algorithm must be chosen carefully.     

In the literature there are lots of control methods for both voltage source rectifier and dc 
machine. References (Ooi et al., 1987; Dixon&Ooi, 1988; Dixon, 1990; Wu et al., 1988, 1991) 
realize current control of L filtered PWM rectifier at three – phase system. Reference (Blasko 
& Kaura, 1997) derives mathematical model of Voltage Source Converter (VSC) in d-q and 
ǂ-ǃ frames and also controlled it in d-q frames, as in (Bose, 2002; Kazmierkowski et al., 
2002). Reference (Dai et al., 2001) realizes control of L filtered VSC with different decoupling 
structures. The design and control of LCL filtered VSC are carried out in d-q frames, as in 
(Lindgren, 1998; Liserre et al., 2005; Dannehl et al., 2007). Reference (Lee et al., 2000; Lee, 
2003) realize input-output nonlinear control of L filtered VSC, and also in reference 
(Kömürcügil & Kükrer, 1998) Lyapunov based controller is designed for VSC. The feedback 
linearization technique for LCL filtered VSC is also presented, as in (Kim & Lee, 2007; Sehirli 
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& Altınay, 2010).  Reference (Holtz, 1994) compares the performance of pulse width 
modulation (PWM) techniques which are used for VSC. In (Krishnan, 2001) the control 
algorithms, theories and the structure of machines are described. The fuzzy and neural 
network controls are applied to dc machine, as in (Bates et al., 1993; Sousa & Bose, 1994).    

In this chapter, simulation of dc machine speed control which is fed by three – phase voltage 
source rectifier under input – output linearization nonlinear control, is realized. The speed 
control loop is combined with input-output linearization nonlinear control. By means of the 
simulation, power factor, line currents harmonic distortions and dc machine speed are 
presented. 

2. Main configuration of VSC 

In many industrial applications, it is desired that the rectifiers have the following features; 
high-unity power factor, low input current harmonic distortion, variable dc output voltage 
and occasionally, reversibility. Rectifiers with diodes and thyristors cannot meet most of 
these requirements. However, PWM rectifiers can provide these specifications in 
comparison with phase-controlled rectifiers that include diodes and thyristors.  

The power circuit of VSC topology shown in Fig.1 is composed of six controlled switches 
and input L filters. Ac-side inputs are ideal three-phase symmetrical voltage source, which 
are filtered by inductor L and parasitic resistance R, then connected to three-phase rectifier 
consist of six insulated gate bipolar transistors  (IGBTs) and diodes in reversed parallel. The 
output is composed of capacitance and resistance.  

 

Fig. 1. L filtered VSC 

3. Mathematical model of the VSC 

3.1 Model of the VSC in the three-phase reference frame 

Considering state variables on the circuit of Fig.1 and applying Kirchhoff laws, model of 
VSC in the three-phase reference frame can be obtained, as in (Wu et al., 1988, 1991; Blasko 
& Kaura, 1997).  

The model of VSC is carried out under the following assumptions.  

 The power switches are ideal devices.  
 All circuit elements are LTI (Linear Time Invariant) 
 The input AC voltage is a balanced three-phase supply. 
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For the three-phase voltage source rectifier, the phase duty cycles are defined as the duty 
cycle of the top switch in that phase, i.e., da= d(S1), db= d(S3), dc= d(S5) with d representing 
duty cycle. 
 ݀݅௔݀ݐ ൌ െ ܮܴ ݅௔ െ ௗܸ௖ ൭݀௔ െ ͳ3 ෍ ݀௞௖

௞ୀ௔ ൱ ൅ ௔ܸ (1)

 ݀݅௕݀ݐ ൌ െ ܮܴ ݅௕ െ ௗܸ௖ ൭݀௕ െ ͳ3 ෍ ݀௞௖
௞ୀ௔ ൱ ൅ ௕ܸ (2)

 ݀݅௖݀ݐ ൌ െ ܮܴ ݅௖ െ ௗܸ௖ ൭݀௖ െ ͳ3 ෍ ݀௞௖
௞ୀ௔ ൱ ൅ ௖ܸ (3)

 ݀ ௗܸ௖݀ݐ ൌ ͳܥ ሺ݅௔݀௔ ൅ ݅௕݀௕ ൅ ݅௖݀௖ሻ െ ͳܥ ݅ௗ௖ (4)
 

This model in equations (1) – (4) is nonlinear and time variant. Using Park Transformation, 
the ac-side quantities can be transformed into rotating d-q frame. Therefore, it is possible to 
obtain a time-invariant system model with a lower order.  

3.2 Coordinate transformation 

On the control of VSC, to make a transformation, there are three coordinates whose relations 
are shown by Fig 2, that are a-b-c, -ǃ and d-q. a-b-c is three phase coordinate, -ǃ is 
stationary coordinate and d-q is rotating coordinate which rotates ω speed. 

 

Fig. 2. Coordinates diagram of a-b-c, -ǃ and d-q 
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The d-q transformation is a transformation of coordinates from the three-phase stationary 
coordinate system to the d-q rotating coordinate system. A representation of a vector in any 
n-dimensional space is accomplished through the product of a transpose n-dimensional 
vector (base) of coordinate units and a vector representation of the vector, whose elements 
are corresponding projections on each coordinate axis, normalized by their unit values. In 
three phase (three dimensional) space, it looks like as in (5). 

 ܺ௔௕௖ ൌ ሾܽ௨ ܾ௨ ܿ௨ሿ ൥ݔ௔ݔ௕ݔ௖ ൩	    (5)  

Assuming a balanced three-phase system, a three-phase vector representation transforms to 
d-q vector representation (zero-axis component is 0) through the transformation matrix T, 
defined as in (6). 

 ܶ ൌ ଶଷ 	቎ cosሺ߱ݐሻ cosሺ߱ݐ െ 	 ଶଷ ሻߨ cosሺ߱ݐ ൅ ଶଷ ሻെߨ sinሺ߱ݐሻ െ sinሺ߱ݐ െ ଶଷ ሻߨ െsinሺ߱ݐ ൅ ଶଷ       (6)	ሻ቏ߨ

In (6), ω is the fundamental frequency of three-phase variables. The transformation from ܺ௔௕௖ 
(three-phase coordinates) to ܺௗ௤(d-q rotating coordinates), called Park Transformation, is 
obtained through the multiplication of the vector ܺ௔௕௖ by the matrix T, as in (7). 

 ܺௗ௤ ൌ ܶ. ܺ௔௕௖ 	    (7)  

The inverse transformation matrix (from d-q to a-b-c) is defined in (8). 

 ܶ′ ൌ ଶଷ 	 ێێێۏ
ۍ cosሺ߱ݐሻcosሺ߱ݐ െ ଶଷ ݐሻcosሺ߱ߨ ൅ ଶଷ ሻߨ

െ sinሺ߱ݐ ൅ ଶଷ ݐሻെsinሺ߱ߨ െ ଶଷ ݐሻെsinሺ߱ߨ ൅ ଶଷ ۑۑۑےሻߨ
  (8)    	ې

The inverse transformation is calculated as in (9).  

 ܺ௔௕௖ ൌ ܶ′. ܺௗ௤	    (9) 

3.3 Model of the VSC in the rotating frame 

Let x and u be the phase state variable vector and phase input vector in one phase of a 
balanced three-phase system with the state equation in one phase as in (10).  

 ሶܺ ൌ ݔܣ ൅   (10)    	ݑܤ

Where A and B are identical for the three phases. Applying d-q transformation to the three-
phase system, d-q subsystem with d and q variables is obtained (xd-xq and ud-uq ). The 
system equation in (10) becomes as in (11) (Mao et al., 1998; Mihailovic, 1998). 

    ቈܺௗሶܺ௤ሶ ቉ ൌ ቂ ܫെ߱ܣ ܣܫ߱ ቃ ቂݔௗݔ௤ቃ ൅ ቂܤͲ Ͳܤቃ ቂݑௗݑ௤ቃ	    (11)  

Where I is the identity matrix and 0 is a zero matrix, both having the same dimension as x. 
(11) can transform any three-phase system into the d-q model directly. 
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When equations (1) – (4) are transformed into d-q coordinates, (12) – (14) are obtained, as in 

(Blasko & Kaura, 1997; Ye, 2000; Kazmierkowski et al., 2002). 

 ݀݅ௗ݀ݐ ൌ െ ܮܴ ݅ௗ ൅ ߱݅௤ െ ͳܮ ௗܸ௖݀ௗ െ ܷௗܮ  (12) 

 ݀݅௤݀ݐ ൌ െ ܮܴ ݅௤ െ ߱݅ௗ െ ͳܮ ௗܸ௖݀௤ െ ܷ௤ܮ  (13) 

 ݀ ௗܸ௖݀ݐ ൌ ͳܥ ሺ݅ௗ݀ௗ ൅ ݅௤݀௤ሻ െ ͳܥ ݅ௗ௖ (14) 
 

Where ݅ௗ and ݅௤ are the d-q transformation of ݅௔, ݅௕ and ݅௖. ݒௗ and ݒ௤ are the d-q  

transformation of ݒ௔ , ݒ௕ and ݒ௖. ݀ௗ and ݀௤ are the d-q transformation of ݀௔, ݀௕ and ݀௖ . 

4. Input-output feedback linearization technique 

Feedback linearization can be used as a nonlinear design methodology. The basic idea is 
first to transform a nonlinear system into a (fully or partially) linear system, and then to use 
the well-known and powerful linear design techniques to complete the control design. It is 
completely different from conventional linearization. In feedback linearization, instead of 
linear approximations of the dynamics, the process is carried out by exact state 
transformation and feedback. Besides, it is thought that the original system is transformed 
into an equivalent simpler form. Furthermore, there are two feedback linearization methods 
that are input-state and input-output feedback linearization (Slotine & Li, 1991; Isidori, 1995; 
Khalil, 2000; Lee et al., 2000; Lee, 2003).  

The input-output feedback linearization technique is summarized by three rules; 

 Deriving output until input appears 

 Choosing a new control variable which provides to reduce the tracking error and to 
eliminate the nonlinearity 

 Studying stability of the internal dynamics which are the part of system dynamics 
cannot be observed in input-output linearization (Slotine & Li, 1991) 

If it is considered an input-output system, as in (15)-(16);  

  ሶܺ ൌ ݂ሺݔሻ ൅ 	݃ሺݔሻݑ	(15)   

ݕ    ൌ ݄ሺݔሻ  (16) 

To obtain input-output linearization of this system, the outputs y must be differentiated 
until inputs u appears. By differentiating (16), equation (17) is obtained.  

ሶݕ  ൌ ݔ߲݄߲ ሾ݂ሺݔሻ ൅ ݃ሺݔሻݑሿ ൌ ሻݔ௙݄ሺܮ ൅ ݑሻݔ௚݄ሺܮ  (17) 
 

In (17), ܮ௙݄ and ܮ௚݄ are the Lie derivatives of f(x) and h(x), respectively and identified in (18). ܮ௙݄ሺݔሻ ൌ ݔ߲݄߲ ݂ሺݔሻ , ሻݔ௚݄ሺܮ ൌ ݔ߲݄߲ ݃ሺݔሻ  (18) 
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If the k is taken as a constant value; k. order derivatives of h(x) and 0. order derivative of 
h(x) are shown in (19) - (20), respectively. 
ሻݔ௙௞݄ሺܮ  ൌ ሻݔ௙௞ିଵ݄ሺܮ௙ܮ ൌ ߲ሺܮ௙௞ିଵ݄ሻ߲ݔ ݂ሺݔሻ (19) 

ሻݔ௙଴݄ሺܮ	  ൌ ݄ሺݔሻ (20) 

After first derivation, If ܮ௚݄ is equal to “0”, the output equation becomes ݕሶ ൌ 	  .ሻݔ௙݄ሺܮ
However, it is independent from u input. Therefore, it is required to take a derivative of 
output again. Second derivation of output can be written in (23), with the help of (21)-(22). 
ሻݔ௙݄ሺܮ௚ܮ  ൌ ߲ሺܮ௙݄ሻ߲ݔ ݃ሺݔሻ (21) 

ሻݔ௙ଶ݄ሺܮ  ൌ ሻݔ௙݄ሺܮ௙ܮ ൌ ߲ሺܮ௙݄ሻ߲ݔ ݂ሺݔሻ (22) 

ሷݕ  ൌ ݔ௙݄߲ܮ߲ ሾ݂ሺݔሻ ൅ ݃ሺݔሻݑሿ ൌ ሻݔ௙ଶ݄ሺܮ ൅  (23) ݑሻݔ௙݄ሺܮ௚ܮ
 

If ܮ௚ܮ௙݄ሺݔሻ is again equal to “0”, ݕሷ  is equal to ܮ௙ଶ݄ሺݔሻand it is also independent from u input 

and it is continued to take the derivation of output. After r times derivation, if the condition 
of (24) is provided, input appears in output and (25) is obtained.   

ሻݔ௙௥೔ିଵ݄௜ሺܮ௚೔ܮ  ് Ͳ  (24) 
௜௥೔ݕ  ൌ ௙௥೔݄௜ܮ ൅ ෍ቀܮ௚೔ܮ௙௥೔ିଵ݄௜ቁݑ௜௡

௜ୀଵ  (25) 

Applying (25) for all n outputs, (26) is derived. 

 ൦ݕଵ௥భݕڮڮଵ௥೙൪ ൌ ൦ܮ௙௥భ݄ଵሺݔሻܮڮڮ௙௥೙݄௡ሺݔሻ൪ ൅ ሻݔሺܧ ቎ݑଵݑڮڮ௡቏ ൌ 	ܽሺݔሻ ൅  (26) ݑሻݔሺܧ	

E(x) in (27) is a decoupling matrix, if it is invertible and new control variable is chosen, 
feedback transformation is obtained, as in (28).  

ሻݔሺܧ    ൌ ൦ܮ௚భܮ௙௥భିଵ݄ଵ ڮ ڭ௙௥೙ିଵ݄ଵܮ௚೙ܮ ⋱ ௙௥೙ିଵܮ௚భܮڭ ڮ  ௙௥೙ିଵ݄௡൪  (27)ܮ௚೙ܮ

   ቎ݑଵݑڮڮ௡቏ ൌ െିܧଵ ൦ܮ௙௥భ݄ଵሺݔሻܮڮڮ௙௥೙݄௡ሺݔሻ൪ ൅ ଵିܧ ቎ݒଵݒڮڮ௡቏  (28) 

Equation (29) shows the relation between the new inputs v and the outputs y. The input-
output relation is decoupled and linear (Lee et al., 2000).  
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   ൦ݕଵ௥భݕڮڮଵ௥೙൪ ൌ ቎ݒଵݒڮڮ௡቏	     (29) 

If the closed loop error dynamics is considered, as in (30) – (31), (32) defines new inputs for 
tracking control. 

  ൦ ݁ଵ௥ ൅ ݇ଵሺ௥ିଶሻ݁ଵ௥ିଵ ൅ ڮ ൅ ݇ଵଵ݁ଵଵ ൅ ݇ଵ଴݁ଵ݁ڮڮ௡௥ ൅ ݇௡ሺ௥ିଵሻ݁௡௥ିଵ ൅ ڮ ൅ ݇ଶଵ݁ଵଵ ൅ ݇ଶ଴݁௡൪ ൌ ቎ ͲڮڮͲ ቏  (30) 

    ቎݁ڮ݁ڮ௥቏ ൌ ቎ ݕ െ 	 ௥ݕڮڮ∗ݕ െ 	  ೝ቏  (31)∗ݕ

 ቎ݒଵݒڮڮ௡቏ ൌ ൦െ݇ଵሺ௥ିଵሻݕ௥ିଵ െ ڮ െ ݇ଵଵሺ௥ିଵሻݕଵ െ ݇ଵ଴ሺݕଵ െ ௥ିଵݕെ݇௡ሺ௥ିଵሻڮڮଵ∗ሻݕ െ ڮ െ ݇ଶଵሺ௥ିଵሻݕଵ െ ݇ଶ଴ሺݕ௡ െ  ௡∗ሻ൪    (32)ݕ

k values in equations show the constant values for stability of systems and tracking of y 
references, as in (Lee, 2003). 

5. The application of an input-output feedback linearization to the VSC 

The state feedback transformation allows the linear and independent control of the d and q 
components of the line currents in VSC by means of the new inputs ݑௗ and ݑ௤ . 

For unity power factor, in (12 – 14) ݑௗ ൌ ௠ܸ and ݑ௤ ൌ Ͳ are taken, so mathematical model of 
this system is derived with (33-35), as in (Kömürcügil & Kükrer, 1998; Lee, 2003).  
 ݀݅ௗ݀ݐ ൌ െ ܮܴ ݅ௗ ൅ ߱݅௤ െ ͳܮ ௗܸ௖݀ௗ െ ௠ܸܮ  (33) 

 ݀݅௤݀ݐ ൌ െ ܮܴ ݅௤ െ ߱݅ௗ െ ͳܮ ௗܸ௖݀௤ (34) 

 ݀ ௗܸ௖݀ݐ ൌ ͳܥ ሺ݅ௗ݀ௗ ൅ ݅௤݀௤ሻ െ ͳܥ ݅ௗ௖ (35) 
 

If (33-35) are written with the form of (15), (36) is derived.  

 ݂ሺݔሻ ൌ ێێێۏ
െۍ ோ௅ 	 ݅ௗ ൅ ߱݅௤ ൅ ௏೘௅െ߱݅ௗ െ ோ௅ ݅௤ଵ஼ ݅ௗ௖ ۑۑۑے

ې , ݃ሺݔሻ ൌ ێێێۏ
െۍ ଵ௅ ௗܸ௖ ͲͲ െ ଵ௅ ௗܸ௖ଵ஼ ݅ௗ ଵ஼ ݅௤ ۑۑۑے

ې
  (36) 

The main purpose of this control method is to regulate ௗܸ௖ voltage by setting  ݅ௗ current and 
to provide unity power factor by controlling ݅௤ current. Therefore, variables of y outputs 
and reference values are chosen as in (37).  
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ݕ    ൌ ቂݕଵݕଶቃ ൌ ൤݄ଵሺݔሻ݄ଶሺݔሻ൨ ൌ ൤݅ௗ݅௤൨		 , ∗ݕ ൌ ቂܫௗ∗Ͳ ቃ  (37) 

Differentiating outputs of (37), (38) is obtained. The order of derivation process, finding a 
relation between y outputs and u inputs, is called as relative degree. It is also seen that the 
relative degree of the system is ‘1’.   

ሶݕ    ൌ ൤ଓௗሶଓ௤ሶ ൨ ൌ ቎െ ଵ௅ ௗܸ௖ ͲͲ െ ଵ௅ ௗܸ௖቏ ݑ ൅ ቎െ ோ௅ ݅ௗ ൅ ߱݅௤ ൅ ௏೘௅െ߱݅ௗ െ ோ௅ ݅௤ ቏  (38) 

 

Fig. 3. Input-output feedback linearization control algorithm of VSC  

When (38) is ordered like (28), (39) is obtained. 

ݑ  ൌ ቂݑௗݑ௤ቃ ൌ ቎െ ଵ௅ ௗܸ௖ ͲͲ െ ଵ௅ ௗܸ௖቏ିଵ . ቌെ ቎െ ோ௅ ݅ௗ ൅ ߱݅௤ ൅ ௏೘௅െ߱݅ௗ െ ோ௅ ݅௤ ቏ ൅  ቍ  (39)ݒ

After taking inverse of matrix (39) and adding new control inputs from (40), (41) is obtained. 
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   ቂݒଵݒଶቃ ൌ ൤െ݇ଵሺݕଵ െ ଶݕௗ∗ሻെ݇ଶሺܫ െ  ௤∗ሻ൨  (40)ܫ

 ቂݑௗݑ௤ቃ ൌ ቎െ ௅௏೏೎ ͲͲ െ ௅௏೏೎
቏ . ቌ቎ோ௅ ݅ௗ െ ߱݅௤ െ ௏೘௅߱݅ௗ ൅ ோ௅ ݅௤ ቏ ൅ ൤െ݇ଵሺݕଵ െ ଶݕௗ∗ሻെ݇ଶܫ ൨ቍ  (41) 

Control algorithm is seen in Fig.3. For both L and LCL filtered VSC, the same control 
algorithm can be used. Providing the unity power factor, angle values are obtained from 
line voltages. This angle values are used in transformation of a-b-c to d-q frames. Line 
currents which are transformed into d-q frame, are compared with d-q reference currents. d 
axis reference current ݅ௗ௥௘௙ is obtained by comparison of dc reference voltage ௥ܸ௘௙ and actual 
dc voltage ௗܸ௖. On the other hand, q axis reference current ݅௤௥௘௙ is set to ‘0’ to provide unity 
power factor. And by using (41), switching functions of d-q components are found. Then, 
this d-q switching functions are transformed into a-b-c frames and they are sent to PWM 
block to produce pulses for power switches. 

Providing the control of internal dynamics, in dc controller square of ௥ܸ௘௙ and ௗܸ௖ are used 

(Lee, 2003). 

6. DC machine and armature circuit model 

Electrical machines are used for the conversion of electric power to mechanical power or 
vice versa. In industry, there are wide range of electrical machines that are dc machines, 
induction machines, synchronous machines, variable reluctance machines and stepping 
motors. The Dc machines can be classified as a brushless and brushed dc machines. 
Furthermore, the advantage of brushed dc machines is the simplicity with regard to speed 
control in the whole machines. However, the main disadvantage of this kind of machines is 
the need of maintenance because of its brushes and commutators.  

Fig. 4 shows the basic structure of brushed dc machines. Basic components of dc machines 
are field poles, armature, commutator and brushes (Fitzgerald et al., 2003).  

 

Fig. 4. Dc machine  

Field poles produce the main magnetic flux inside of the machines with the help of the field 
coils which are wound around the poles and carry the field current. Some of the dc 
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machines, the magnetic flux is provided by the permanent magnet instead of the field coils. 
In Fig. 5, the field coils and field poles of dc machines are shown (Bal, 2008).  

 

Fig. 5. Field coils and field poles of a dc machine   

The rotating part of the dc machine is called as an armature. The armature consists of iron 

core, conductors and commutator. Besides, there is a shaft inside of armature that rotates 

between the field poles. The other part of the machine is commutator which is made up of 

copper segments and it is mounted on the shaft. Furthermore, the armature conductors are 

connected on the commutator. Another component of dc machine is brushes. The brushes 

provide the electric current required by armature conductors. In dc machine to ensure the 

rotation of the shaft, the armature conductors must be energized. This task is achieved by 

brushes that contact copper segments of commutator. Also, the brushes generally consist of 

carbon due to its good characteristic of electrical permeability. Fig. 6 shows the armature, 

commutator and the brushes (Fitzgerald et al., 2003; Bal, 2008).    

 

Fig. 6. a) armature, b) commutator and c) brushes of a dc machine  
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To produce the main flux, the field must be excited. For this task, there are four methods 

which are separately, shunt, series and compound to excitation of dc machines and are 

shown in Fig. 7. However, separately excited dc machine is the most useful method because 

it provides independent control of field and armature currents. Therefore, this structure is 

used in this chapter (Krishnan, 2001; Fitzgerald et al., 2003).    

 

Fig. 7. Excitation methods of dc machine a) separately, b) shunt, c) series, d) compound 
excitation 

There are two basic speed control structure of dc machine which are armature and field, as 

in (Krishnan, 2001). The armature circuit model of dc machine is shown in Fig. 8. 

  

Fig. 8. Armature circuit model of dc machine  
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The mathematical model of armature circuit can be written by (42).  ݒ ൌ ݁ ൅ ܴ௔ܫ௔ ൅ ௔ܮ ݀݅௔݀ݐ  (42) 
 

In steady state, 
ௗ௜ೌௗ௧  part is zero because of the armature current is constant. The armature 

model is then obtained by (43), (Krishnan, 2001). 

ݒ   ൌ ݁ ൅ ܴ௔ܫ௔  (43) 

  ݁ ൌ  ௙߱௠  (44)ߔܭ

(43) is written in (44), (45) is derived. 

 ߱௠ ൎ ሺܸ െ ܴ௔ܫ௔ሻܫ௙  (45) 
 

The speed of dc machine depends on armature voltage and field current, as shown in (45). In 
field control, the armature voltage is kept constant and the field current is set. The relation 
between speed and field current is indirect proportion. However, in armature control, the 
relation between armature voltage and speed is directly proportional. Furthermore, in 
armature control, the field current is kept constant and the armature voltage is set. 

In this chapter, the armature control of dc machine is realized. 

The speed control loop is added to nonlinear control loop. Firstly, the actual speed is 
compared with reference speed then the speed error is regulated by PI controller and after 
that its subtraction from armature current, the reference current is obtained. The reference 
current obtained by speed loop, is added to nonlinear control loop instead of reference ݅ௗ 
current, which is obtained by the comparison of the square of reference voltage and actual 
voltage. 

In Fig. 9, speed control loop is shown. 

 

Fig. 9. Armature speed control loop of dc machine   

7. Simulations 

Simulations are realized with Matlab/Simulink. Line voltage is taken 220 V, 60 Hz. The 

switching frequency is also chosen 9 kHz. L filter and controllers parameters are shown in 

Table.1 and Table.2.  

Simulation diagram is shown in Fig.10. By simulation, steady-state error and settling time of 
dc motor speed, harmonic distortions and shapes of line currents and unity power factor are 
examined. 
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Passive Components 

L Filter Dc-Link 

L (H) R (Ω) ܥௗ௖ (μF) 

0.0045 5.5 2200 

Table 1. Values of L filter components 

 

Controllers 

Speed Controller Input-output current controller ܭ௣ ܭ௜ ݇ (ͳͲଷ) ܭ (ͳͲହ) 

10 0.01 30 50 

Table 2. Values of controllers 

 

Fig. 10. Simulation diagram of dc machine controller in Simulink   

Fig.11 shows the structure of input-output controller diagram. 

 

Fig. 11. Input-output controller diagram    
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Equation (41) is written in the block of input-output controller which is shown in Fig.12. 

 

Fig. 12. Input – output controller     

Fig. 13 shows the speed controller of dc machine.  

 

Fig. 13. Speed controller of dc machine     

Fig.14 shows the dc machine speed. Reference speed value is changed from 150 rad/s to 

200rad/s at 0.5 s. Settling time to the first reference is shorter than 0.15 s, but settling time of 

second reference is 0.1 s.   

Fig. 15 shows the steady-state error of dc machine speed. It is seen that the steady – state 

error changes between ±2 rad/s.  

The one phase voltage and current is shown in Fig. 16. It is also seen that unity power factor 

is obtained but not as desired. 

Fig. 17 shows the line currents. The shapes of line currents are sinusoidal.   
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Fig. 14. Dc machine speed      

 

 

Fig. 15. Steady-state error of dc machine speed       
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Fig. 16. One phase voltage and current        

 

 

Fig. 17. Three-phase phase current        
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Fig. 18 shows the harmonic distortions of line currents. Line currents include high order 
harmonic contents. However, total harmonic distortion value (THD) is under the value that 
is defined by standards. THD of line currents are %1.34, %1.71 and %2.84. 

 
 

 
 

 

Fig. 18. Harmonic distortions of line currents        
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8. Conclusion  

In this chapter, simulation of dc machine armature speed control is realized. Dc machine is 

fed by voltage source rectifier which is controlled input – output linearization nonlinear 

control method. Furthermore, for the speed control, dc link voltage is regulated by the dc 

machine speed control loop. The control algorithm of voltage source rectifier and dc motor 

speed are combined. The required reference ܫௗ current for voltage source rectifier is obtained 

by speed control loop. Simulations are carried through Matlab/Simulink. By means of the 

simulation results, the speed of dc machine, line currents harmonic distortions and power 

factor of grid are shown. It is shown that the voltage source rectifier with dc machine as a 

load provides lower harmonic distortion and higher power factor. Furthermore, dc machine 

speed can be regulated.  
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