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1. Introduction

With the progress in nanofabrication technique and nanometer scale materials, research
on electron transport properties of mesoscopic systems has become a very active field in
condensed matter physics. Considerable researches have been mainly focused on charge
transport in nanostructures and nanodevices. Besides the charge transport, a detailed
understanding of heat transport through mesoscopic systems is of equally importance
(Afonin, 1995; Small, 2003) because they can provide additional information on the kinetics
of carriers not available in the measurement of current voltage characteristics (Heremans,
2004). For instance, thermoelectric properties are very sensitive to dimensionality, the
electronic spectrum near the Fermi level, scattering processes (Koch, 2004), electron-phonon
coupling strength (Yang1, 2010) and electron-hole symmetry (Small, 2003). There have been
several theoretical studies on the thermopower S, which mainly focused on quantum dot
(QD) coupled to the normal Fermi liquid (FL) leads (Boese, 2001; Dong, 2002; Kim, 2003;
Krawiec, 2007; Yang1, 2010), denoted hereafter as FL-QD-FL. As for systems containing a
quantum dot coupled to one-dimensional (1D) interacting electron leads, although their
charge transport phenomena have been investigated (Yang2, 2001; Yang3, 2010), yet there
have been much less efforts devoted to the thermoelectric properties of them (Kane, 1996;
Krive, 2001; Romanovsky, 2002). It is well known that the 1D interacting electron systems
can be described by the Luttinger liquied (LL) theory (Luttinger, 1963), which holds some
unique features such as spin-charge separation, suppression of the electron tunneling density
of states, power-law dependence of the electrical conductance on temperature and bias
voltage, etc.. The LL behaviour has been experimentally reported in single- and multi-wall
carbon nanotubes (Bockrath, 1999; Kanda, 2004; Yao, 1999) and fractional quantum Hall edge
states (Chang, 1996). Recently, the use of carbon nanotubes as a thermoelectric material has
gained great interest due to their 1D structure. The thermopower of single-walled carbon
nanotubes have been measured in experiments (Bradley, 2000; Choi, 1999; Collins, 2000; Hone,
1998; Kong, 2005; Small, 2003). For example, Kong et al. have shown a linear temperature
dependence of the thermopower at low temperature (Kong, 2005). Small et al. have
observed strong modulations of thermopower as the function of gate voltage Vg in individual
Carbon nanotubes (Small, 2003). Dresselhaus et al. have found that the low-dimensional
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2 Quantum-dot

thermoelectric materials performed better than bulk ones (Dresselhaus, 1999). Several
theoretical works have been developed to predict the enhancement of thermopower in
nanoscaled materials by the intralead electron interaction (Kane, 1996; Krive, 2001; Krive2,
2001; Romanovsky, 2002). Krive et al. (Kane, 1996; Krive, 2001) used a phenomenological
approach to investigate the thermopower of a LL wire containing an impurity. In spite of
the above work, an explicit thermopower formula in the LL leads was not given out. In the
following, we use the notation S to denote the thermopower S of systems comprosing LL and
S0 to those comprising noninteracting FL. Theoretically, the thermopower S of a LL with an
impurity can be represented by the thermopower S0 multiplied by an interaction-dependent
renormalization factor. Alternatively, one may intentionally introduce a QD into the LL,
denoted as LL-QD-LL. Thus, he may attach a QD, instead of an impurity atom, to the end
of a carbon nanotube. A quantum dot is experimentally more controllable than an impurity.
For instance, the energy of a quantum dot can be tuned by the gate voltage Vg.

In this chapter, we will first give the stationary thermopower formula of a QD coupled
to LL leads through tunneling junctions, a system of LL-QD-LL (see Fig.1) by applying
the nonequilibrium Green function technique (Haug, 1996) instead of phenomenal theories.
And then we later turn our attention to the time-dependent phenomena. The generalized
thermopower formula is obtained under time-dependent gate voltage. Although there
are many studies on time-dependent nonequilibrium transport, the research on the
time-dependent thermopower and the formula under the ac field are still lack. Here we will
fill the blanks for the low dimension system.

Fig. 1. The two-terminal electron transport through a single-level quantum dot weakly
coupled to the Luttinger liquid leads with the chemical potentials µL and µR. Electrons
tunnel from one lead to another by hopping on and off the dot level with the energy ε. The
position of the dot levels with respect to the Fermi energy can be uniformly shifted by
applying a voltage Vg to the gate electrode.

2. The Model

In the considered LL-QD-LL system, the QD is weakly connected with semi-infinite LL
electrodes. The Hamiltonian of this system includes three parts:

H = Hleads + Hdot + HT , (1)

which represents the Hamiltonians of the left and right LL leads (Hleads = HL + HR), the
central dot and the tunneling interactions between them HT , respectively. Firstly, we present
a detailed discussion of bosonization for a continuum model of length L with open boundary
conditions (Eggert0, 1992; Fabrizio, 1995; Furusaki0, 1994) and electron-electron interaction.
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 3

The specify Hamiltonian of the LL leads can be easily written

HL/R = H0L/R + HintL/R, (2)

where the first term represents the kinetic energy,

H0 = ∑
σ=↑,↓

∫ L

0
dxψ†

s (x)ε(−i∂x)ψs(x), (3)

and the second one describes the electron-electron interaction,

Hint =
1

2 ∑
σσ′

∫
dxdyψ†

σ(x)ψ†
σ′ (y)Uσσ′ (x − y)ψσ′ (y)ψσ(x), (4)

εk is the dispersion law of the 1D band, and ψσ(x) is the spin σ electron annihilation operator
subject to the open boundary conditions:

ψσ(0) = ψσ(L) = 0. (5)

We apply the boundary conditions Eq.(5) to expand electron annihilation operator ψ which
takes the form

ψσ(x) =

√
2

L ∑
k

sin(kx)cσk, (6)

with k = πn/L, n being a positive integer. Usually a 1D system with periodic boundary
conditions has two Fermi points ±kF. Here we only have single Fermi point given by k = kF.
The 1D fermion field ψσ can be expanded about the Fermi point kF in terms of the left moving
and right moving fields as

ψσ(x) = eikF xψσR(x) + e−ikF xψσL(x). (7)

In the case of periodic boundary conditions (Haldane, 1981), these left moving and right
moving fields are not independent and satisfy

ψσL(x) = −ψσR(−x). (8)

Then the fermion fields automatically satisfy the boundary conditions

ψσ(0) = 0, (9)

whereas the condition
ψσ(L) = 0 (10)

implies that the operator ψσR(x) should obey

ψσR(−L) = ψσR(L). (11)

Therefore, we can actually work with the right moving field only, the left moving one is then
defined by the above relation. Thus the field ψσR(x) can be defined for all x, and obeying the
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4 Quantum-dot

periodicity condition with the period 2L:

ψσR(x + 2L) = ψσR(x). (12)

In terms of the right moving field, the kinetic energy terms in the Hamiltonian Eq.(1) takes the
form

H0 = vF ∑
σ

∫ L

−L
dxψ†

σR(x)(−i∂x)ψσR(x) (13)

where we have linearized the electron spectrum. The single fermion operators for
right-moving electrons with spin σ on lead α can be bosonized in the position representation
by applying the periodic boundary condition Eq.(12) as

ψσR(x) ≈ ησ√
2L

eikF xeiφσ(x). (14)

The operator ησ is real fermion and satisfies the anti-commutation relations

{ησ, η′
σ} = δσσ′ , (15)

with δ is Delta function. Eq.(15) assure the correct anti-commutation rules for electron
operators with different σ. In order to calculate the correlation function, a method of dealing
with this was suggested by Luther and Perchel (Luther, 1974). It used a limiting process,
where the wave function contained s parameter α′, and the limit α′ → 0 is taken at the end
of the calculation of the correlation function. Using the parameter α′, we can represent the
electron operator ψσR(x) as

ψσR(x) ≈ lim
α′→0

1√
2πα′

eikF xeiφσ(x). (16)

Where α′ is a short-distance cutoff of the order of the reciprocal of the Fermi wave number kF.
The phase field φσ(x) satisfies periodic boundary condition:

φσ(x + 2L) = φσ(x) (17)

and can be expressed as follows

φσ(x) = ∑
q>0

√
π

qL
eiqx−α′q/2aq + H.c, (18)

here, a†
q and aq are the creation and annihilation operators of bosons. These operators satisfy

the canonical bosonic commutation relations [aq, a†
q′ ] = δ(q − q′). q = πn/L , n is an integer.

The density of right moving electrons is given by

ρσR(x) ≈ ∂xφσ(x)

2π
(19)

Applying the boundary conditions Eq.(8), we have

ρσL(−x) = ρσR(x). (20)
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 5

The bosonized form of the kinetic energy is

H0 = πvF ∑
σ

∫ L

−L
dx : ρσR(x)ρσR(x) := vF ∑

σq>0

qb†
σqbσq, (21)

where colon represents the normal order form of the operators.

In order to deal with electron-electron interacting terms in Hamiltonian Eq.(1), we continue
to make use of the above bosonization procedure expressing the electron interaction
Hamiltonian in terms of the right moving Fermi field ψσR only.

Before we turn to the interaction effects, we introduce the bosonic variables corresponding to
charge and spin excitations:

bρ(σ)q =
1√
2
(b↑q ± b↓q) (22)

and

ρρ(σ) =
1√
2
(ρ↑q ± ρ↓q). (23)

The interaction part of the Hamiltonian contains several terms classified as: the diagonal
terms in the electron densities and the mixing left and right densities term. Consequently,
the Hamiltonian becomes

H = ∑
ν=ρ(σ)

{∑
q>0

v0
νq[b†

νqbνq −
g2ν

4π
(bνqbνq + b†

νqb†
νq)] (24)

where

vνq = vF +
g4ν + g2ν

2π
, (25)

where vF is the Fermi velocity, g4 and g2 represent forward scatterings; in our work, we will
not consider the backscattering interaction. In the absence of backscattering, the Luttinger
Hamiltonian, HLL, is exactly soluble using the technique of bosonization. In order to express
the Hamiltonian in diagonal form, we introduce the canonically conjugate Boson operators,
in a standard way by the Bogolubov rotation,

bνq = cosh(ϕν)b̃νq − sinh(ϕν)b̃
†
νq (26)

where

tanh(2ϕν) = − g̃ν

2πv0
ν

(27)

The Hamiltonian can be achieved by the canonical transformation in terms of b̃νq and b̃†
νq

H̃ = UHU† = ∑
νq>0

vνqb†
νqbνq, (28)

where

vν =
v0

ν

cosh(2ϕν)
. (29)
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6 Quantum-dot

The unitary operator U is defined by

U = exp{1

2 ∑
ν,q>0

ϕν(b
†
νqb†

νq − bνqbνq)} (30)

In the next step we find how the Fermi operators transform by applying U. Employing the
method of Mattis and Lieb (Mattis, 1964), after lengthy but straightforward calculations, we
arrive at the expression for the electron annihilation operator in terms of free bosons for the
case of the interacting Fermi system with open boundaries:

UψσR(x, t)U† ≈ ησ√
2πα′

exp{i ∑
ν

ενσ[
cν√

2
φν(x − vνt)

− sν√
2

φν(−x − vνt)]} (31)

where ενσ is +1 unless σ =↓ and ν = σ when its value is −1. We have defined

cν = cosh(ϕν), sν = sinh(ϕν). (32)

In the continuum limit, the Hamiltonian can be expressed

HL/R = h̄vc

∫ ∞

0
ka†

k akdk. (33)

This Hamiltonian describes the propagation of the charge density fluctuations in the leads
with renormalized velocity vc. From Krönig’s relation (Krönig, 1935), the kinetic term has
been written in a quadratic form of the density operators, because the bosons are defined as
excitations above an N particle ground state, Hamiltonian must include terms that include the
energy of the different bosonic ground states. These terms are not required for the calculations
in this chapter, and are hence omitted.

The Hamiltonian of the single-level QD takes the form of

Hdot = εd†d, (34)

where ε is the energy of the electron on the dot, and d† and d are fermionic creation and
annihilation operators satisfying canonical commutation relation {d, d†} = 1.

The tunneling Hamiltonian is given by the standard expression:

HT = ∑
α
(tαd†ψα + h.c.), (35)

where tα is the electron tunneling constant and ψ†
α, ψα (α = L/R) are the Fermi field operators

at the end points of the left/right lead. The operator ψα could be written in a "bosonized" form
(Furusaki, 1998)

ψα =

√
2

πα′
exp

[∫ ∞

0
dq

e(−α′q/2)
√

2Kραq
(aqα − a†

qα) + σ
∫ ∞

0
dq

e(−α′q/2)
√

2q
(bqα − b†

qα)

]
, (36)
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 7

where and Kρα = e2ϕν is the interaction parameter in the "fermionic" form of the LL
Hamiltonian (33), which restricts the LL parameter g to vary between 0 and 1. The
noninteracting case corresponds to vc = vF and Kρα = 1. For repulsive interactions,
Kρα < 1. Because of the SU(2) spin symmetry under no magnetic filed, Kσ = 1. Thus the
correlation functions the end point of the left LL lead without the coupling to the quantum
dot 〈ψ†

σ(0, t)ψσ(0, 0)〉 can be obtained after long calculation

〈ψ†
σ(0, t)ψσ(0, 0)〉L =

cA

α′
{ iΛ

πT
sinh[

πT(t − iδ)

h̄
]}−1/gL . (37)

Where cA is a dimensionless constant of order 1, Λ is a high-energy cutoff or a band width, δ is
positive infinitesimal, and g−1

L = 1
2 (1/KρL + 1). ψσ(0, t) = eiHLt/h̄ψσ(0, 0)e−iHLt/h̄. Similarly,

the correlation function at the end point of the the right lead is obtained as the above method.
The electron-electron interaction parameters of the left and right LL leads are assumed equal
gL = gR = g for convenience.

3. The thermopower formula under no ac field

The charge current JL flowing from the left lead L into the quantum dot can be evaluated as
follows:

JL(t) = − e

h̄

〈
d

dt
NL

〉
=

ie

h̄

〈
tLd†(t)ψL(t)− h.c.

〉
. (38)

We introduce the time-diagonal parts of the correlation functions: G<

dL(t, t′) = i〈ψ†
L(t

′)d(t)〉
and G<

Ld(t, t′) = i〈d†(t′)ψL(t)〉. With the help of the Langreth analytic continuation rules
(Haug, 1996). By means of them, it is easy to express the current as JL = 2eRe(t∗LG<

Ld(t, t′)).
After applying Langreth theorem of analytic continuation, the average current can then be
expressed as

JL =
e

2π
|tL|2

∫
dωRe[Gr

d(ω)g<L (ω) + G<

d (ω)ga
L(ω)]. (39)

In terms of a long derivation, we can easily establish an expression for the expectation value
of the electric current

JL =
e

2π
|tL|2|tR|2

∫
dωGr

dGa
d

[
g<L (ω)g>R (ω)− g>L (ω)g<R (ω)

]
, (40)

where G
r(a)
d is retarded (advanced) Green function of the quantum dot and ΓL/R, proportional

to |tL/R|2, describes the effective level broadening of the dot. g
<(>)
α (ω) is the Fourier

transform of the lesser (greater) Green function at the end point of the left (right) LL lead
without the coupling to the QD, which has been obtained by (Furusaki, 1998):

g<,>
α (ω) = ±i

Tα

|tα|2
exp[∓(ω − µα)/2Tα]γα(ω − µα), (41)

Now we define the Luttinger liquid distribution functions F<,>
L/R as

F<,>
α (ω) =

1

2π
e
∓(ω−µα )

2Tα

(
πTα

Λ

)1/g−1 |Γ[ 1
2g + i

ω−µα

2πTα
]|2

Γ(1/g)
(α = L/R). (42)

453The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System
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8 Quantum-dot

The function F<(ω) is the electron occupation number for interacting electrons which is
analogous to the Fermi distribution function f (ω) of noninteracting electrons and F>(ω) is
analogous to 1 − f (ω) of FL leads. TL/R is temperature and µL/R the chemical potential of
the left or right lead where µL = µ + ηV and µR = µ + (η − 1). Γ(z) is the Gamma function.
Following the derivation in Ref. (Yang3, 2010), the current can be obtained as

JL =
e

2π

∫
dωT(ω)

[
F<

L (ω)F>

R (ω)− F>

L (ω)F<

R (ω)
]

, (43)

with T(ω) = ΓLΓRGr
d(ω)Ga

d(ω) is the transmission probability. If g = 1, Eq. (43) will degrade
to the usual well-known current expression for a FL-QD-FL system.

Our goal is to find the general thermopower formula of the model described by the
Hamiltonian Eq. (62). The thermopower S is defined in terms of the voltage V generated
across the quantum dot when temperature gradient ∆T = TL − TR is much less than TL and
TR and when current J is zero (Cutler, 1969):

S ≡ − lim
∆T→0

V

∆T
|J=0 = − 1

eT

L12

L11
. (44)

where L12 and L11 are linear response coefficients when the current JL is presented by small
bias voltages and small temperature gradients ∆T:

JL = L11
δµ

T
+ L12

δT

T2
=

e

2π

∫
dωT(ω)

{[
∂F(ω)

∂µ

]

T

δV +

[
∂F(ω)

∂T

]

µ

δ(∆T)

}
, (45)

where F(ω) = F<

L (ω)F>

R (ω)− F>

L (ω)F<

R (ω). Comparing both sides of the Eqs.(78) (let e =
1, h̄ = 1), we obtain

L11 =
T

2π

∫
dωT(ω)

[
∂F(ω)

∂µ

]

T

, (46)

L12 =
T2

2π

∫
dωT(ω)

[
∂F(ω)

∂T

]

µ

. (47)

The formulas Eqs.(46) and Eqs.(47) are independent of the approximation adopted in deriving
the retarded (advanced) Green function. However, the partial derivatives ∂F

∂µ and ∂F
∂T are not

yet expressed evidently. In the following we will show the explicit expression for L11 and L12.
The linear expansion of the Luttinger liqiud distribution function becomes

Fα(ω) = F(ω) +
∂Fα(ω)

∂µα
|µα=µ,Tα=T(µα − µ) +

∂Fα(ω)

∂Tα
|µα=µ,Tα=T(Tα − T). (48)

In order to achieve a compact expression, we define F1 = F<

L F>

R and F2 = F<

R F>

L , and expand
them to the first order derivatives:

F1 = F1(µ, T) +
∂F1

∂V
|TδV +

∂F1

∂(∆T)
|µδ(∆T) (49)

and

F2 = F2(µ, T) +
∂F2

∂V
|TδV +

∂F2

∂(∆T)
|µδ(∆T), (50)
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 9

where F1(µ, T) and F2(µ, T) are the equilibrium LL distribution functions, and F1(µ, T) =
F2(µ, T). Then

F1 − F2 =
∂(F1 − F2)

∂V
|TδV +

∂(F1 − F2)

∂(∆T)
|µδ(∆T)

=
∂F

∂V
|TδV +

∂F

∂(∆T)
|µδ(∆T). (51)

Substituting of Eq.(51) into Eq.(43)enables one to obtain the expressions of ∂F
∂V and ∂F

∂(∆T)

required in Eqs. (46) and (47). We arrive at that

∂F<,>
L

∂V
= η

{
± 1

2T
F<,> − i

2πT
Ψ(

1

2g
+ i

ω − µ

2πT
)F<,> +

i

2πT
Ψ(

1

2g
− i

ω − µ

2πT
)F<,>

}
, (52)

and

∂F<,>
R

∂V
=(η−1)

{
± 1

2T
F<,>− i

2πT
Ψ(

1

2g
+i

ω − µ

2πT
)F<,>+

i

2πT
Ψ(

1

2g
−i

ω − µ

2πT
)F<,>

}
, (53)

In derivation we have used the relation |Γ(x+ iy)|2 = Γ(x+ iy)Γ(x− iy) and Γ′(z) = ψ(z)Γ(z)
with ψ(z) is the Digamma function. Then substituting the Eqs.(52) and Eqs.(53) into the Eq.
(51), we obtain

∂F

∂V
=

1

T
F>F<. (54)

With the same deriving process, we obtain the partial derivation with respect to temperature
as

∂F

∂(∆T)
=

ω − µ

T2
F>F<. (55)

It follows from Eqs. (54), (55), (46) and (47) that

L11 =
T

h

∫
dωT(ω)

1

T
F>F< (56)

and

L12 =
T2

h

∫
dωT(ω)

ω − µ

T2
F>F<, (57)

with T(ω)|δV=0,δ(∆T)=0. And they become functions related to the QD density of states and
LL distribution function. We stress that Eqs. (56) and (57) are the linear response coeffcients
in a LL-QD-LL system. These equations will naturally degrade to those of a FL-QD-FL system
if g = 1. The thermopower can be obtained by the equation Eq. (44) in which the current
equals to zero. Substituting Eqs. (56) and (57) into Eq. (44), we have

S =
1

T

∫
dω(ω − µ)T(ω)F>F<

∫
dωT(ω)F>F<

. (58)
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10 Quantum-dot

As shown in Eq. (78), when temperature difference between the leads is zero, conductance is
then given by G = e2L11/T. Comparison of the explicit expressions of the conductance G and
thermopower S exhibits that the latter contains information different from the former.

In calculation, the Green functions of the QD are required as shown in Eq. (40). The retarded
Green function is defined by Gr(t) = −iθ(t)〈{d(t), d†(0)}〉 and can be derived by means of
the equation of motion method. Its analytical expression is

Gr
d(ω) =

1

ω − ε − Σr(ω)
, (59)

where the retarded self-energy is originated from the tunneling into the leads and is given by:

Σr(ω) = − i

2 ∑
α=L,R

Γα[F
<

α (ω) + F>

α (ω)]. (60)

In the next section we will give our numerical results and discuss the thermoelectric
properties.

4. Numerical results

The expressions (56) and (57)enable us to calculate numerically the conductance and
thermopower as functions of the applied voltage and temperature. It is assumed that the
system is of structural symmetric: ΓL = ΓR = Γ. In calculation we take the coupling strength
Γ as the energy unit and set the Fermi level of the lead to be zero. Then the energy level ε of
the QD represents the gate voltage Vg. No other bias is applied, i.e., we always consider the
zero bias case.

Figures 1(a) and (b) show the gate voltage dependence of the conductance and thermopower,
respectively. The conductance varies smoothly, which is in agreement with the previous
scanning gate microscopy experiments (Small2, 2003; Woodside, 2002). The thermopower
S varies rapidly with the variation of the gate voltage and can reach a large absolute value at
low temperature. Obviously, the gate voltage violates electron-hole asymmetry and its value
tunes the thermopower. Experiments did show the features (Small, 2003; Small3, 2004).

From Fig. 1 it is seen that the conductance is an even function of ε , while the thermopower
is an odd function: S(ε) = −S(−ε) , which is coincide to experiments (Staring, 1993). It
is easily understood that the Hamiltonian in this paper possesses electron-hole symmetry:
as Vg is changed to −Vg, the form of the Hamiltonian remains unchanged if the electrons
are simultaneously converted to holes. This is the foundation of discussing the symmetry
relations for the dependence of the G and S on Vg. When both bias voltage V and the
current JL change their signs, the sign of the conductance G = dJL/dV remains unchanged.
Subsequently, G(−ε) = G(ε). On the other hand, the temperature difference is irrelevant to
the change of the current carriers, i.e., the kinetic coefficient L12 = dJL/d(δT) , changes sign:
L12(ε) = −L12(−ε) when Vg changes sign. Thus we conclude that G(−ε) = G(ε). Note that

G is proportional to L11. Therefore, the thermopower is also an odd function S = − 1
e2T

L12
L11

of
the gate voltage: S(ε) = −S(−ε). The result is qualitative agreement with the experiments
(Dzurak, 1997; Egger, 1997; Moller, 1998) where there was no evidence of other significant
contributions of transport mechanisms, such as phonon drag, to the observed thermopower.
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 11

Comparing the curves G in Fig. 1(a) and S in Fig. 1(b), we find that the sign of S coincides with
dG/dVg. The reason of the lowering of the conductance with the energy level increasing of the
quantum dot is ascribed to the change of the electron tunneling from the resonant tunneling
to sequential behavior.

Now we turn to the effect of temperature on the conductance and thermopower. Figure 2
plots their curves. Figure 2(a) shows that at low temperature the conductance scales as power
laws with respect to temperature, G(T) ∝ Tα where α = 2/g − 2 (g < 1). This functional form
and the power index are in good agreement with experimental results (Bockrath, 1999; Kong,
2005; Yao, 1999). Some theoretical works with respect to impurity-contained systems gained
the same conclusion (Dresselhaus, 1999; Krive, 2001; Krive2, 2001; Romanovsky, 2002). The
temperature-dependent power-law scalings of conductance is associated with the suppression
of tunneling to a LL in which the density of states vanishes as a power law in the energy of
the tunneling electron, and the suppression becomes stronger with the decrease of g, which
manifests a signature for electron-electron correlations (Harman, 2002; Kane, 1996). With
increasing temperature, the mechanism of electron transport gradually turns from a resonant
tunneling-like process to a sequential process. At higher temperature, the conductance is
inverse to the temperature. This reflects that the effect of the electron-electron interaction on
transport mechanism decays. In the temperature range between, there appears a conductance
peak.

Fig. 2. The schematic picture of the two-terminal electron transport through a single-level
quantum dot weakly coupled to the Luttinger liquid leads with the chemical potentials µL

and µR . The position of the dot levels with respect to the Fermi energy can be uniformly
shifted by applying a voltage Vg to the gate electrode.

In Fig. 2(b), the thermopower S shows linear behavior as temperature rises from zero. This is
because in the low temperature regime electron tunneling transport mechanism is dominant.
This behavior is the same as that of a LL containing an impurity (Krive2, 2001) and in
agreement with experiments (Hone, 1998; Kong, 2005). With the electron-electron interaction
enhancement, the thermopower is also increased, which has been proved in experiment
(Lerner, 2008). We fit numerically the thermopower relation between the thermopower
S of the LL and S0 of Fermi liquid at low temperature with S = ( 3

2g − 1
2 )S0(T) where

S0(T) ∝ T. The electron-electron interaction in LL systems enhances and renormalizes the
thermopower. In the limit of strong interaction g << 1, this thermopower S can be expressed
as S(T) ∝ S0(T)/g. In this case, the thermopower of the LL is enhanced by a factor of order
of magnitude of 3/(2g). Figure 2(b) reveals that at a fix temperature, a smaller g results in a
lager S value. Hence, a larger slope of the S − T curve at low temperature means a stronger
interaction in LL leads. It is worth to note that the thermopower S of LL is much greater
than the value S0 of FL (g = 1), which reflects that the intralead electron interactions in the
LL enhance the electron-hole asymmetry. With further increasing temperature a peak-like

457The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System

www.intechopen.com



12 Quantum-dot

structure emerges. This is due to the mechanism at low temperature of electron transport
switching from a tunnelling process to a diffusive process at high temperature. It is worth
mentioning that the result is qualitatively agreement with the works (Romanovsky, 2002) with
respect to an impurity in the LL lead connected to noninteracting electrons or a FL. At low
temperature, a small potential barrier can strongly influence the transport properties of a LL
system, so that the thermopower induced by electron backscattering dominates. This behavior
is similar the case of an impurity (Romanovsky, 2002), where the impurity backscattering
is considered to be a main origin of the thermopower. The impurity can also be modeled
as tunnelling junctions between two decoupled semi-infinite LLs (Collins, 2000), and the
tunneling junction between impurity and the LL is described by the tunneling Hamiltonian
(Barnabe, 2005; Goldstein, 2010)[45-47].

At high temperature, the thermomotion of electrons become predominant and the interaction
between them will be less important. Thus discrepancy between the LL and FL systems will
disappear. As a result, in the high temperature limit, S becomes identical to S, as shown
in Fig. 2(b). We recall that in a weak interaction system, the thermopower SM is related to
conductance G by Mott’s formula (Kane, 1996):

SM = −π2

3

k2
BT

e

∂lnG

∂µ
, (61)

which was originally derived for bulk systems. Note that this approximation is independent
of the specific form of the transmission probability T(ω) . The quantity SM is different from S0

of a noninteraction FL. Dependence of the zero bias conductance G on the chemical potential
can be in practice measured under the variation of the gate voltage Vg. Since the gate voltage

shifts the energy levels of the QD, one may assume that ∂lnG
∂µ , ∂lnG

∂Vg
. Then Eq. (26) becomes

SM = −π2

3
k2

BT
e

dlnG
dVg

|EF
. Figure 3 shows the variation of the thermopower S obtained from Eq.

(23) and SM from Mott relation Eq. (26) at T = 1.0 for four electron-electron interactions. It is
seen that the relation between and G holds qualitatively for weak electron-electron interaction
(Appleyard, 2000; Kane, 1996; Krive, 2001). However, even in the noninteraction case g = 1,
there is some quantitative difference between S and SM. The difference is obviously enhanced
by the strong electron-electron interaction. Experiments (Bockrath2, 2001) evidenced the
deviation from the Mott formula Eq. (26). We interpret it as a manifestation of many-body
effects in the 1D electron gas. The intralead electron interactions affect the thermopower
through the dependence of the transmission probability on electron-electron interaction.

From the above numerical results, we can observe that both the thermopower and
conductance manifest linear temperature-dependent power-law scaling, a behavior the
same as that of an impurity-contained LL system (Kane, 1996) at low temperature.
The electron-electron interaction in the leads brings a significant improvement of the
thermopower, a conclusion similar to that of a LL with an impurity (Krive, 2001; Krive2,
2001). As is well known, in a perfectly electron-hole symmetric system, the thermopower
S = 0. The strong suppression of thermopower arises from the exact counteraction of
the currents of electrons and holes induced by temperature gradient, which results in a
zero net electric current. Only when the electron-hole symmetry is broken, the nonzero
thermopower emerges. Our numerical fittings show that at low temperature the thermopower
S can be expressed by the thermopower S0 of noninteracting electrons multiplied by an
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The Thermopower of a Quantum Dot Coupled to Luttinger Liquid System 13

Fig. 3. The dependence of the conductance G and thermopower S on the gate voltage with
T = 1.0 for g=0.2, 0.5, 0.8 and 1.0. The thermopower is strongly modulated by the gate
voltage.

interaction factor as: S = (3/2g − 1/2)S0(T) . In the limit of the strong intralead electron
interaction, we have S(T) ≈ 3S0(T)/2g which has an additional 3/2 factor compared to
S(T) ≈ S0(T)/g of the impurity-induced thermopower in 1D systems (Romanovsky, 2002).
A slight deviation from the electron-hole symmetry will cause a considerable thermopower.
In low-dimensional materials, the electron-hole asymmetry is usually strong and can be
modulated experimentally by tuning external parameters, such as gate voltage and magnetic
field. Our results reveal that how the thermopower of a LL system containing a QD is
modulated by tuning the gate voltage.

5. The thermopower formula with a time-dependent gate voltage

The thermopower formula has been derived at the stationary system. Below we will derive an
expression for the time-dependent thermopower for the Luttinger liquid leads connected to
the central region. It is well known that more rich physics could be exploited if the QD device
is subject to a microwave irradiation field. The perturbations of ac fields can give rise to some
very interesting phenomena, such as photon-electron pumping effect, the turnstile effect, the
sideband effect, and photon-assisted tunneling (Blick, 1995; Kouwenhoven et al., 1997; Tien,
1963). It has been reported that the microwave spectroscopy is a possible tool to probe the
energy spectrum of small quantum systems (Wiel, 2002). So the photon-assisted tunneling
could provide a new way of understanding the electron-electron influence on the transport
properties of the dot. Indeed, the influence of the ac field on the current-voltage characteristics
in the strongly correlated interaction model was discussed by some authors. The essential
effect of photon-assisted tunneling on transport properties is that the electrons tunneling
through the system can exchange energy with microwave fields, opening new inelastic
tunneling channels and introducing many effects. The measurement of the thermopower at ac
field frequency in the order of GHz regime may offer more value information on the electron
interaction. However, the explicit thermopower formula under the time-dependent gate has
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been still lacking. Here we will fill the blanks. We start out by introducing a model for a QD
coupled to the LL leads under a time-dependent gate voltage. The Hamiltonian of the system
(see Fig.2) can be described as follows

H = Hleads + HD + HT. (62)

where Hleads = HL + HR represents the Hamiltonians of the left and right LL leads and its
standard form is given as above, HD = ε(t)d†d is the Hamiltonian of the QD, with {d†, d}
the creation/annihilation operators of the electron in the QD, ε(t) = ε + ∆cosΩt, ε is the
time-independent single electron energy of the QD without microwave fields, ∆ and Ω are the
amplitude and frequency of the ac gate voltage, respectively. It causes an alternating current
through the dot. HT is the tunneling Hamiltonian and can be written as

HT = ∑
α
(tαd†ψα + h.c.)). (63)

by applying a time-dependent canonical transformation (Bruder, 1994)(hereafter h̄ = 1) to
Hamiltonian HD

U1(t) = exp

[
i
∫ t

−∞
dt′∆ cos(Ωt′)d†d

]
. (64)

Under this transformation, we obtain H′
D(t) = U1(t)H(t)U−1

1 (t) − iU1(t)∂tU
−1
1 (t) = εd†d,

the time-dependence of the gate voltage ε is removed. Instead, the electron tunnel coupling

tα(t) = tα exp

[
−i

∫ t

−∞
dt′∆ cos(Ωt′)

]
. (65)

is now time-dependent. The current operator which describes tunneling from the L lead into
the QD at time t is found to be: (in units of h̄ = 1))

JL(t) = ie
[
tL(t)ψ

†
Ld − t∗L(t)d

†ψL

]
. (66)

Using nonequilibrium-Green-function technique and Langreth theorem of analytic
continuation, the current can then be expressed as:

JL(t) = −2eRe
∫

dt1tL(t)[G
r(t, t1)g<L (t1, t) + G<(t, t1)ga

L(t1, t)]t∗L(t1). (67)

where Gr(t, t1) and G<(t, t1) are the Green’s function of the QD. The retarded Green function
Gr(t, t1) and lesser Green function G<(t, t1) can be calculated from the following Dyson
equation:

Gr(t, t1) = gr(t, t1) +
∫ ∫

dτdτ′gr(t, τ)Σr(τ, τ′)Gr(τ′, t1). (68)

and the Keldysh equation

G<(t, t1) =
∫ ∫

dτdτ′Gr(t, τ)Σ<(τ, τ′)Ga(τ′, t1). (69)

where gr(t, t1) is the free retarded Green function of isolated dot which depends only on the

time difference t − t1. Σr/a,<(τ, τ′) = ∑α=L,R t∗α(τ)gr/a,<
α (τ, τ′)tα(τ′) is the self-energy.
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We now make Fourier transformation over the two times t and t′ which switches from the
time-domain into energy representation through a double-time Fourier-transform defined as
(Wang, 1999; Xing, 2004)

F(ω, ω1) =
∫

dtdt1F(t, t1)e
iωte−iω1t1 (70)

and

F(t, t1) =
∫

dω

2π

dω1

2π
F(ω, ω1)e

−iωteiω1t1 . (71)

And with the help of the above equation with respect to τ = (t + t1)/2 and let t′ = t − t1.

〈F(t, t1)〉 = lim
T→∞

1

2T

∫ T

−T
F(τ + t′/2, τ − t′/2)dτ, (72)

we finally obtain following expression for Dyson equation

Gr(ω) = gr(ω) + +gr(ω)Σr(ω, ω1)G
r(ω1, ω). (73)

and the following expression for the lesser Green function from Eq. (69)

G<(ω) = Gr(ω)Σ<(ω)Ga(ω). (74)

Where the time-average greater (lesser)self-energy Σ>(ω) (Σ<(ω)) is which can be obtained
by the time-average double-time self energy

Σ>,<(ω) = ∑
α=L/R,n

J2
n(

∆

Ω
)|tα|2g>,<

α (ω + nΩ). (75)

After using Langreth theorem of analytic continuation, and taking Fourier transformation
over the current equation Eq. (67) and the time-averaged tunneling current can be expressed
as,

IL =
e

2π ∑
m,n

J2
m J2

n|tL|2|tR|2
∫

dωGr
dGa

d

[
g<Ln(ω)g>Rm(ω)− g>Ln(ω)g<Rm(ω)

]
. (76)

with gLm/Rm(ω) = gL/R(ω + mΩ).

As the above step, we also introduce the electron occupation number for interacting electrons
F(ω), then we finally obtains the photon-assisted tunneling current

J = e ∑
m,n

J2
m J2

n

∫
dω

2π
ΓLΓRGrGa(F>

Rm(ω)F<

Ln(ω)− F<

Rm(ω)F>

Ln(ω)), (77)

where Jm(z) is the mth-order Bessel function and FLm/Rm(ω) = FL/R(ω + mΩ). The more
detail derivation process of the time-dependent current formula Eq. (77) can be found in the
work (Yang3, 2010).

In the next we only give the time-dependent thermopower formula using the above
procedure. Under the small bias voltages and small temperature gradients and with the help
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of the linear expansion, we have

JL = L11
δµ

T
+ L12

δT

T2
=

e

2π ∑
m,n

J2
m J2

n

∫
dωT(ω)

{[
∂F(ω)

∂µ

]

T

δV +

[
∂F(ω)

∂T

]

µ

δ(∆T)

}
, (78)

where Fmn(ω) = F<

Ln(ω)F>

Rm(ω) − F>

Ln(ω)F<

Rm(ω). omparing both sides of the Eqs.(78) (let
e = 1, h̄ = 1), we obtain

L11 =
T

2π ∑
m,n

J2
m J2

n

∫
dωT(ω)

[
∂Fmn(ω)

∂µ

]

T

, (79)

L12 =
T2

2π ∑
m,n

J2
m J2

n

∫
dωT(ω)

[
∂Fmn(ω)

∂T

]

µ

, (80)

where the partial derivatives ∂Fmn
∂µ and ∂Fmn

∂T are not yet expressed evidently. In the following

we will show the explicit expression for L11 and L12. In order to obtain L11 and L12, we

must arrive at
∂F<,>

Lm
∂V and

∂F<,>
Lm

∂T . With the help of the linear expansion of the Luttinger liqiud
distribution function and expand them to the first order derivatives, the Luttinger liqiud
distribution function becomes

∂F<,>
Lm

∂V
= η

{
± 1

2T
− i

2πT
Ψ+m + Ψ−m

}
F<,>

Lm , (81)

and
∂F<,>

Rm

∂V
= (η − 1)

{
± 1

2T
− i

2πT
Ψ+m + Ψ−m

}
F<,>

Rm , (82)

where Ψ±m ≡ Ψ( 1
2g ± i

ω+mΩ−µ
2πT ). Substituting of Eq.(81) and Eq.(82) into Eq.(77) enables

one to obtain the expressions of ∂Fmn
∂V and ∂Fmn

∂(∆T)
required in Eqs. (79) and (80). After a long

calculation using the same steps above we finally obtain

∂Fmn

∂V
=

∂[F<

LmF>

Rn − F>

LmF<

Rn]

∂V

= F<

m F>

n (
1

T
+

i

2πT
(Ψ−m − Ψ+m − Ψ−n + Ψ+n)), (83)

With the same deriving process, we obtain the partial derivation with respect to temperature
as

∂Fmn

∂V
=

∂[F<

LmF>

Rn − F>

LmF<

Rn]

∂T

= F<

m F>

n [
(ωm + ωn)

2T2
− iωm

2πT2
(Ψ+m − Ψ−m) +

iωn

2πT2
(Ψ+n − Ψ−n)], (84)
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with ωm = ω + mΩ and Fm = F(ω + mΩ). In terms of the linear expansion of the
time-dependent current formula, The coefficients L11/12 of the linear response theory can be
determined from the corresponding correlation functions.

L11 =
T

h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

∆

Ω
)J2

n(
∆

Ω
)F<

m F>

n

[
1

T

+
i

2πT
(Ψ−m − Ψ+m − Ψ−n + Ψ+n)

]
(85)

and

L12 =
T2

h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

∆

Ω
)J2

n(
∆

Ω
)F<

m F>

n

[
(ωm + ωn)

2T2

− iωm

2πT2
(Ψ+m − Ψ−m) +

iωn

2πT2
(Ψ+n − Ψ−n)

]
. (86)

From the expression of the coefficients L11/12, we can see the coefficients L11/12 containing a
additional term caused by the time-dependent gate voltage.

The time-dependent zero bias conductance is then given by G(0) = e2

T L11, and the
time-dependent thermopower can be obtained from the ratio between voltage gradient ∆V
and and temperature gradient ∆T between the two reservoirs, when both left and right
time-dependent electric currents cancel

S = −∆V

∆T
|
<I(t)=0>. (87)

Thus the conductance and thermopower take the form

G =
1

h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

∆

Ω
)J2

n(
∆

Ω
)F<

m F>

n

[
1

T

+
i

2πT
(Ψ−m − Ψ+m − Ψ−n + Ψ+n)

]
, (88)

and

S =

∫
dωT(ω)∑

∞
m,n=−∞ J2

m(
∆
Ω
)J2

n(
∆
Ω
)F<

m F>

n ( 1
T + i

2πT ψmn)

T2
∫

dωT(ω)∑
∞
m,n=−∞ J2

m(
∆
Ω
)J2

n(
∆
Ω
)F<

m F>
n [ (ωm+ωn)

2T2 − iωm

2πT2 ψ±m + iωn

2πT2 ψ±n]
, (89)

where ψmn = Ψ−m − Ψ+m − Ψ−n + Ψ+n, ψ±m = Ψ+m − Ψ−m and ψ±n = Ψ+n − Ψ−n.
When no ac filed, the above formula return to the equation (58). This formula describes
the time-averaged thermopower through the LL-QD-LL system in the presence of ac fields
which contains more information than the equation (58). The numerical results of the
time-dependent thermopower will be published in the future.
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Fig. 4. The conductance (a) and thermopower S (b) as a function of temperature with ε = 2.0
for g=0.2, 0.5, 0.8 and 1.0. At low temperature, the conductance exhibits a power-law
dependence of the temperature and the thermopower manifests the linear and positive
temperature dependence, respectively. The interaction factor g can be inferred from the
slopes of thermopower. With the enhancement of the electron-electron, the thermopower is
increased.

Fig. 5. Thermopowers S calculated by Eq. (23) (dash lines) and SM calculated by Mott
relation Eq. (26) (solid lines) at T=1.0 for (a) g=1.0, (b) g=0.8, (c) g=0.5 and (d) g=0.2.
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