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1. Introduction  

The progress of semiconductor physics in the decade 1970-1980 is connected with gradual 
deviation from the electronic band structure of ideal crystal of Bloch picture (Bloch, 1928) 
where, unlike atomic world with its discrete and precisely defined, in the limits of 
uncertainty relation, energy levels, energy of bound electron is a multivalued function of 
momentum in the energy band and density of states are continuous (For the earlier short but 
comprehensive survey see (Alferov, 1998)). 

In principle, Bloch theory deals with infinite extension of lattice, with the understandable 
(and important) surface effects. The decreasing of the size of the object to a few micrometers 
principally does not change the picture of the extended crystal qualitatively. It takes a place 
until one reaches the scale where the size quantization essentially enters the game and we 
can speak about microscopic limit of matter. What generally divides macroscopic limit of 
the solid state from the microscopic one? It is defined by some correlation length (or, more 
generally, all such relevant lengths)): for carriers it is mean free path length l  or Broglie 
length /Bl h p  ( p -momentum), which is smaller. One may say that the quantum 
mechanical properties of matter clearly reveal if / 1l a  , where a  is the size of the lattice 
constant. In the opposite limit / 1l a  , matter is considered macroscopically. 

In this light, it is worthy to remind that as long as 1962, L. V. Keldysh (Keldysh, 1962 as cited 
in Bimberg et al., 1999) considered electron motion in a crystal with periodic potential with 
the period that is much larger than the lattice constant. In this limit he discovered so called 
minizones and negative resistance. Just in this limit / 1l a   we expect the size quantization 
with its discrete levels and coherence in the sense that electron can propagate across the 
whole system without scattering, its wave function maintains a definite phase. In this limit, 
mesoscopic (term coined by van Kampen (1981) relates to the intermediate scale dividing 
the macro and micro limits of matter) and nanoscopic objects (Quantum Wells (QW), Wires 
and Dots (QD)) shown very interesting quantum mechanical effects. In this limit many 
usual rules of macroscopic physics may not hold. For only one example, rules of addition of 
resistance both in series and parallel are quite different and more complicated (Landauer, 
1970; Anderson et al., 1980; Gefen, et al., 1984). 

Closing this brief introduction concerning some aspects of genuine quantum objects (QW, Q 
Wires, QD) we would like to emphasize the conditional sense of the notion of dimensions in 
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this world: in the limit / 1l a   dimensions are defined as difference between real spatial 

dimension (in our world D =3) and numbers of the confined directions: Quantum Well: D

=2, Quantum Wire: D =1, Quantum Dot: D =0. However, for example, QD which will be 
one of our subject for study, has very rich structure with many discrete levels, their structure 
define the presence or absence of Chaos, as we will see below, inside QD. Minimal size of 
QD is defined by the condition to have at least one energy level of electron (hole) or both: 

min / 2 *a m E   4 nm, where E  is average distance between neighboring energy 

levels. Maximal size of QD is defined by the conditions that all three dimensions are still 
confined. It depends, of course, on temperature: at room temperature it is 12 nm (GaAs), 20 
nm (InAs) ( 3E kT  ). The lower temperature, the wider QD is left as quantum object with 
D =0 and the number of energy levels will be higher. 

2. Effective model for semiconductor quantum dots 

The effective potential method has been developed (Filikhin et al., 2006) to calculate the 
properties of realistic semiconductor quantum dot/ring (QD/QR) nanostructures with the 
explicit consideration of quantum dot size, shape, and material composition. The method is 
based on the single sub-band approach with the energy dependent electron effective mass. 
In this approach, the confined states of carriers are formed by the band gap offset potential. 
Additional effective potential is introduced to account for cumulative band gap 
deformations due to strain and piezoelectric effects inside the quantum dot nanostructure. 
The magnitude of the effective potential is selected in such a way as to reproduce 
experimental data for a given nanomaterial. Additionally, an analog of the Kane formula 
(Kane, 1957) is implemented in the model to take into account the non-parabolicity of the 
conduction/valence band. The resulting nonlinear eigenvalue problem for the Schrödinger 
equation is solved by means of the iterative procedure with the adjusted effective electron 
mass and non-parabolicity parameter, where in each iteration step the Schrödinger equation 
is numerically linearized and solved by the finite element method. 

At present, simulations based on this approach are performed for the InGaAs/GaAs quantum 
dots and quantum rings of different sizes and configurations under different external 
conditions. The obtained results show that the residual strain and conduction band non-
parabolicity effects greatly affect the device related properties of semiconductor quantum dots. 
The results are in good agreement with available experimental data, closely matching energy 
level and effective mass data extracted from capacitance–voltage experiments. The method 
also allows one to accurately simulate spin-orbital coupling effects for the electrons in excited 
states, as well as the presence of admixtures, such as Ga. Our calculations of the Coulomb 
shifts of the exciton complexes (positively and negatively charged trions, biexcitons) in the 
InGaAs/GaAs quantum dots with 22%-25% Ga fraction match very well both capacitance-
voltage and photoluminescence measurements. To best reproduce the experimental data, Ga 
fraction in the InGaAs/GaAs quantum dots should not exceed 25%. 

Commonly used numerical approaches, such as the 8-band kp-theory, density functional 
theory, or atomistic pseudo-potential technique, take into account inter-band interactions, 
strain and piezoelectric effects in quantum dots in an ab initio manner. Such methods are 
very computationally intensive and time-consuming. The important advantage of the 
effective model is that the high accuracy of calculations is obtained at a very low 
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computational cost – calculations can typically be completed using a 3 GHz PC with 1 GB of 
memory in less than 20 minutes. The effective potential method satisfactorily reproduces the 
results of the realistic simulations, thus offering an independent evaluation of the electronic 
confinement effects calculated within others models. 

2.1 Formalism  

2.1.1 Schrödinger equation and effective mass approximation  

In the present review a semiconductor 3D heterostructure (QD or QR) is modeled utilizing a 
kp-perturbation single sub-band approach with quasi-particle effective mass (Harrison, 
2005; Manasreh, 2005; Yu & Cardona, 2005). The energies and wave functions of a single 
carrier in a semiconductor structure are solutions the Schrödinger equation: 

 ( ( )) ( ) ( )kp cH V r r E r   
  

 (1) 

Here kpH  is the single band kp-Hamiltonian operator, 
2

2 * ( )kpH
m r

  

 , *m  is the  

electron/hole effective mass for the bulk, which may depend on coordinate, and ( )cV r


 is the 
confinement potential. The confinement of the single carrier is formed by the energy 
misalignment of the conduction (valence) band edges of the QD material (index 1) and the 
substrate material (index 2) in the bulk. ( )cV r


 is so called “band gap potential”. The 

magnitude of the potential is proportional to the energy misalignment. The band structure 
of the single band approximation can be found in many textbooks (see, for example, 
(Harrison, 2005; Manasreh, 2005; Yu & Cadona, 2005). * (see the input below) ( )r


 and its 

derivative 1 / * ( , ) ( )m n r 
 

 on interface of QD and the substrate are continues. 

2.1.2 The non-parabolicity of the conduction band. The Kane formula 

Traditionally applied in the macroscopic scale studies parabolic electron spectrum needs to 
be replaced by the non-parabolic approach, which is more appropriate to nano-sized 
quantum objects (Wetzel et al., 1996; Fu et al., 1998). The Kane formula (Kane, 1957) is 
implemented in the model to take into account the non-parabolicity of the conduction band. 
The energy dependence of the electron effective mass is defined by the following formula:  

 
2

0 0
* 2

2 2 1
.

3 g g

m m P

E E E Em

 
  
     

 (2) 

Here 0m  is free electron mass, P  is Kane’s momentum matrix element, gE  is the band gap, 
and   is the spin-orbit splitting of the valence band. 

Taking into account the relation (2) the Schrödinger equation (1) is expressed as follows 

 ( ( ) ( )) ( ) ( )kp cH E V r r E r   
  

. (3) 

Here ( )kpH E  is the single band kp-Hamiltonian operator 
2

( )
2 * ( , )kpH E

m E r
  


 ,  
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* ( , )m E r


 is the electron/hole effective mass and ( )cV r


 is the band gap potential. As a result, 
we obtain a non-linear eigenvalue problem. 

Solution of the problem (3)-(2) results that the electron/hole effective mass in QD (or QR) 
varies between the bulk values for effective mass of the QD and substrate materials. The 
same it is given for the effective mass of carriers in the substrate. The energy of confinement 
states of carries is rearranged by the magnitude of the band gap potential cV . 

The Schrödinger equation (1) with the energy dependence of effective mass can be solved by 
the iteration procedure (Li et al., 2002; Voss, 2005; Filikhin et al., 2004, 2005). 

 
1( * ) ( ) ( ),

* ( ),

k k k k
kp i

k k
i i

H m r E r

m f E

   



 
 (4) 

where k  is the iteration number, i  refers to the subdomain of the system; 1i   for the QD, 

2i   for the substrate. ( * )kH mkp i
 is the Hamiltonian in which the effective mass does not 

depend on energy and is equal to the value of *k
im , if  is the function defined by the relation 

(2). For each step of the iterations the equation (1) is reduced to Schrödinger equation with the 
effective mass of the current step which does not depend on energy. At the beginning of 
iterations the bulk value of the effective mass is employed. Obtained eigenvalue problem can 
be solved numerically (by the finite element method, for example). After that, a new value for 
effective mass is taken by using Eq. (2) and procedure is repeated. The convergence of the 
effective mass during the procedure has a place after 3-5 steps. As an example, the typical 
convergences for election effective mass and confinement energy of single electron are 
displayed in Fig. 1 for the InAs/GaAs QR (Filikhin et al., 2005). Description of other methods 
for the solution of the problem (3)-(2) can be found in (Betcke & Voss, 2011). 

Remarks: at the first, in the present review the consideration was restricted by the electron 
and heavy hole carriers, and, the second, the Coulomb interaction was excluded. Often the 
linear approximation for the function 0* / ( , )im m f E r  is used. We also will apply the linear 

fit in the present chapter.  

2.1.3 Effective approach for strained InAs/GaAs quantum structures: Effective 
potential 

Here we propose the effective potential method to calculate the properties of realistic 
semiconductor quantum dot/ring nanostructures with the explicit consideration of 
quantum dot size, shape, and material composition. The method is based on the single 
sub-band approach with the energy dependent electron effective mass (Eq. (3)). In this 
approach, the confined states of carriers are formed by the band gap offset potential. 
Additional effective potential is introduced to simulate the cumulative band gap 
deformations due to strain and piezoelectric effects inside the quantum dot nanostructure. 
The magnitude of the effective potential is selected in such a way that it reproduces 
experimental data for a given nanomaterial.  

We rewrite the Schrödinger equation (3) in the following form: 

 ( ( ) ( ) ( )) ( ) ( )kp c sH E V r V r r E r    
    . (5) 

www.intechopen.com



 
Quantum Mechanics of Semiconductor Quantum Dots and Rings 

 

337 

Here ( )kpH E , as before, is the single band kp-Hamiltonian operator 
 

2

*
( )

2 ,
kpH E

m E r
  


 .  

As previously,  * ,m E r


 is the electron (or hole) effective mass, and ( )cV r


 is the band gap 
potential,  sV r


 is the effective potential.  cV r


 is equal zero inside the QD and is equal to 

cV  outside the QD, where cV  is defined by the conduction band offset for the bulk (see 
Section 1.22). The effective potential ( )cV r


 has an attractive character and acts inside the 

volume of the QD. This definition for the effective potential is schematically illustrated by 
Fig. 2 for the conduction band structure of InAs/GaAs QD. In the figure, the confinement 
potential of the simulation model with effective potential sV  is denoted as “strained”. The 
band gap potential for the conduction band (valence band) can be determinate as cV =0.594 
eV ( cV =0.506 eV). The magnitude of the effective potential can be chosen to reproduce 
experimental data. For example, the magnitude of sV  for the conduction (valence) band 
chosen in (Filikhin et al., 2009) is 0.21 eV (0.28 eV). This value was obtained to reproduce 
results of the 8-th band kp-calculations of (Schliwa et al., 2007) for InAs/GaAs QD. To 
reproduce the experimental data from (Lorke et al., 2000), the sV  value of 0.31 eV was used 
in (Filikhin, et al. 2006) for the conduction band. 

 

Fig. 1. Convergence of the iterative procedure (4) for the confinement energy E  (solid line) 
and electron effective mass 0* /im m  calculated for InAs/GaAs QR (dashed line) and GaAs 

substrate (dotted line). Here the height of QR is H , radial width is R  and inner radius is 

1R ( 1R =17 nm), cV =0.77 eV. 
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Possibility for the substitution of the function describing the strain distribution in QD and 
the substrate was firstly proposed in (Califano & Harrison, 2000). Recent works (Zhao & 
Mei, 2011; Li, Bin & Peeters, 2011) in which the strain effect taken into account rigorously 
applying the analytical method of continuum mechanics allow us to say that the 
approximation of the effective potential is appropriate.  

In the next sub-section of the section 2 we will review the results obtained in both these 
approximations as the non-parabolic one as well as the effective potential method.  

 

Fig. 2. Effective potential sV and band gap structure of the conductive band of InAs/GaAs QD. 

2.2 Electron energy in quantum rings with varieties of geometry: Effect of non-
parabolicity  

In this section a model of the InAs/GaAs quantum ring with the energy dispersion defined 
by the Kane formula (2) (non-parabolic approximation) based on single sub-band approach 
is considered. This model leads to the confinement energy problem with three-dimensional 
Schrödinger equation in which electron effective mass depend on the electron energy. This 
problem can be solved using the iterative procedure (4). The ground state energy of 
confined electron was calculated in (Filikhin et al., 2004, 2005, 2007a) where the effect of 
geometry on the electron confinement states of QR was studied and the non-parabolic 
contribution to the electron energy was estimated. The size dependence of the electron 
energy of QR and QD was subject of several theoretical studies (Li & Xia, 2001; Li et al., 
2002). We present here, unlike the previous papers, a general relation for the size 
dependence of the QR energy. 

Consider is semiconductor quantum ring located on the substrate. Geometrical parameters 
of the semi-ellipsoidal shaped QR are the height H , radial width R  and inner radius 1R . 
It is assumed that /H R  << 1 which is appropriate technologically. QR cross section is 
schematically shown in Fig. 3. The discontinuity of conduction band edge of the QR and the 
substrate forms a band gap potential, which leads to the confinement of electron. 

The band gap potential ( )cV r


 is equal to zero inside the QR ( ( )cV r


=0) and it is equal to the 

confinement potential cE  outside of the QR: The spatial dependence of the electron effective 

mass is given as * *( , ) ( )im E r m E


, i =1,2,3, where *
1m  is the effective mass in the material of 

QR ( r


  E1), and *
2( )m E , *

3m  are the effective mass of the substrate material ( r

  E2 and 
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E3). Within each of the regions E1, E2 and E3 *
im  does not depend on the coordinates. The 

effective mass *
3m  is equal to a constant bulk value. The energy dependence of the electron 

effective mass from the E1 and E2 subdomains is defined by the formula (2) (Kane, 1957). 
The equation (1) satisfies the asymptotical boundary conditions: ||( )| 0rr   , r




substrate and ||( )| 0r Sr   , where S  is free surface of QR. On the surface of boundaries 

with different materials the wave function and the first order derivative *( , ) / in m


 are 

continuous (the surface normal n


).  

 

Fig. 3. Profile of cross section of quantum ring (E1) and substrate (E2 and E3). Cylindrical 
coordinates   and z shown on axis. 

The Schrödinger equation (3) was numerically solved by the finite element method and 
iterative procedure (4). The following typical QR/substrate structures with experimental 
parameters were chosen: InAs/GaAs and CdTe/CdS. The parameters of the model are 
given in Tabl. 1 for the each hetero-structure.  

QR/Substrate 1/ 2* *m m  1/ 2* *m m  

(eV) 

2 2
0 1 0 2
2 2

2 2
/

m P m P

 
 1 2/   

InAs/GaAs 0.024/0.067 0.77 22.4/24.6 0.34/0.49 
CdTe/CdS 0.11/0.20 0.66 15.8/12.0 0.80/0.07 

Table 1. Parameters of the QR and substrate materials 

It has to be noted that the effective mass substrate calculated for the InAs/GaAs and 
CdTe/CdS QRs is slightly differ from the bulk values within area E2. One can consider a 
simpler model when the properties of the area E2 and E3 are similar. It means that the wave 
function of electron does not penetrated by surface of QR (area E1) essentially. The simple 
model does not change qualitative results of these calculations. 
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Analysis of the results of numerical calculations shows that the ground state energy of QR 
can be best approximated as a power function of the inverse values of the height and the 
radial width: 

 ( )E a R bH     , (6) 

where the coefficients  =3/2 and  =1 were obtained numerically by the least square 
method. An example of this relation is illustrated in Fig. 4 for InAs/GaAs QR. Parameters a 
and b remain constant except for extremely low values of H  and R . Our analysis also 
reveals a significant numerical difference between the energy of QR electron ground states, 
calculated in non-parabolic and parabolic approximations. The results of the calculation 
with parabolic approximation are represented in the Fig. 4 by the dashed lines. 
Computation of the electron confinement energy of QRs for different materials shows that 
the non-parabolic contribution is quite significant when chosen QR geometrical parameters 
are close to those of the QRs produced experimentally: H < 7 nm, R  < 30 nm for 
InAs/GaAs, H  < 5 nm, R < 20 nm for CdTe/CdS. Magnitude of this effect for InAs/GaAs 
can be greater than 30%. According with this fact the coefficients a  and b  in Eq. (6) also 
depend on the approximation used: /a b =3.4/1.9 for the non-parabolic and /a b =6.2/3.0 
for parabolic approximation. 

 
 a)      b) 

Fig. 4. a) Normalized electron ground state energy of semi-ellipsoidal shape InAs/GaAs QR 
with parabolic (dashed line) and non-parabolic (solid lines) approximation as function of the 
QR size ( 1R =17 nm). b) Normalized electron confinement energy of QRs of various 

materials in the parabolic (dashed line) and non-parabolic (solid lines) approximation. 

As it can be seen from the Fig. 4b), coefficients   and   in the relation (6) do not depend on 
QR/substrate materials. Their values are defined by geometry and by the boundary 
conditions of the applied model. The model described above corresponds to the boundary 
condition as “hard wall at one side” (top side of the QR). For the model without the walls 
when the QR embedded into the substrate one can obtain  =1, and  =1/3. In contrast 
with it, the coefficients a and b  depend on the QR/substrate material set essentially.  

Concluding, we have shown that for wide QR sizes the non-parabolicity effect does 
considerably alter the energy of the electron states, especially when the height or width of 
QR is relatively small. 
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2.3 The C-V measurements and the effective model: Choosing the parameters  

The well-established process of QDs formation by epitaxial growth and consecutive 
transformation of QDs into InAs/GaAs quantum rings (QR) (Lorke et al., 2000) allows the 
production of 3D structures with a lateral size of about 40-60 nm and a height of 2-8 nm. In 
produced QDs and QRs it is possible directly to observe discrete energy spectra by applying 
capacitance-gate-voltage (CV) and far-infrared spectroscopy (FIR). In this section we will show 
how the effective model works using as an example the CV data. We use results of the CV 
experiment from (Lorke et al., 2000; Emperador et al., 2000; Lei et al., 2010) for QD and QR. 

The effective mass of an electron in QD and QR is changing from the initial bulk value to the 
value corresponding to the energy given by the Kane formula (2). Results of the effective 
model calculations for the InAs/GaAs QR are shown in Fig. 5. The effective mass of an 
electron in the InAs QR is close to that of the bulk value for the GaAs substrate. Since the 
effective mass in the QD is relatively smaller, as it is clear from Fig. 5, for QD the electron 
confinement is stronger; the s -shell peak of the CV trace is lower relative upper edge of 
conduction band of GaAs. The lower s -shell peak corresponds to the tunneling single 
electron into the QD. The pictures is a starting point for the choosing the parameters of the 
effective potential model. In this section we follow the paper (Filikhin et al., 2006a) where 
the semi-ellipsoidal InAs/GaAs QD has been considered. The average sizes of InAs/GaAs 
QD reported in (Lorke et al., 2000) were: H =7 nm (the height) and R =10 nm (the radius). A 
cross section of the quantum dot is shown in Fig. 6a). The quantum dot has rotation 
symmetry. Thus the cylindrical coordinate was chosen in Eq. (5) which defines the effective 
model. For each step of iterative procedure (4) the problem (3-2) is reduced to a solution of 
the linear eigenvalue problem for the Schrödinger equation. 

 

Fig. 5. Calculated (circle) and experimentally obtained by (Lorke et al., 2000; Emperador et 
al., 2000) (squares) values for the electron effective mass and the confinement energies of the 
electron s - and p -levels of QD and QR. The solid line is obtained by the Kane formula (2), 
and the dashed line connects the bulk values of the effective mass. The insert: the 
capacitance-gate voltage traces (Lorke et al., 2000).  

Taking into account the axial symmetry of the quantum dot (ring) considered, this equation 
may be written in the cylindrical coordinates ( , , )z   as follows: 
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2 2 2 2

* 2 2 2

1
( ( ) ( , ) ( , ) ) ( , ) = 0.

2
c s

l
V z V z E z

m z
  

  
  

       
 


 (7) 

The wave function is of the form: ( ) = ( , ) ( )r z exp il   , where l =0,  1,  2… is the 
electron orbital quantum number. For each value of the orbital quantum number l , the 
radial quantum numbers 0,1,2,...n  are defined corresponding to the numbers of the 
eigenvalues of (4) which are ordered in increasing. The effective mass *m  must be the mass 
of electron for QD or for the substrate depending on the domain of the Eq. (3) is considered.  

The wave function ( , )z , and its first derivative in the form 
2

*2m


( , )n  


, have to be 

continuous throughout the QD/substrate interface, where n


 is the normal vector to the 

interface curve. The Neumann boundary condition ( , ) 0z


 


 is established for 0  .  

The asymptotical boundary conditions is ( , ) 0z  , when   , | |z   (QD is located 
near the origin of z-axes).  

When quantum dots are in an external perpendicular magnetic field, as it will be considered 
below, the magnetic potential term must be added to the potentials of Eq. (7) 

(Voskoboinikov et al., 2000) in the form 
2

2
*

1
( ) = ( ),

42
mV l

m

    where = eB , B  is the 

magnetic field strength, and e  is the electron charge. We consider the case of a magnetic field 
normal to the plane of the QD and do not take into account the spin of electron because the 
observed Zeeman spin-splitting is small.The confinement potential in Eq. (7) was defined as 

follows: cV  = 0.7( S QD
g gE E ); cV  0.77 eV. The parameters of the QD and substrate materials 

were * *
,1 ,2/bulk bulkm m =0.024/0.067,  /QD S

g gE E =0.42/1.52,  
2 2

0 1 0 2
2 2

2 2
/

m P m P

 
=20.5/24.6,  

1 2/  =0.34/0.49. The magnitude of the effective potential sV  was chosen as 0.482 eV. 

There are three electron confinement states: the s , p , and d , as shown in the Fig. 6b). The 

energy of the s  single electron level measured from the top of the GaAs conduction band 
can be obtained from CV experimental data. To explain it, in Fig. 6c) the capacitance-gate-
voltage trace from (Miller et. al., 1997) is shown. The peaks correspond to the occupation 
of the s  and p  energy shells by tunneled electrons. The Coulomb interaction between 

electrons results to the s -shell splits into two levels and the p -shell splits into four levels 

taking into account the spin of electron and the Pauli blocking for fermions. The gate 
voltage-to-energy conversion coefficient f  7 ( /gE e V f   ) was applied to recalculate 

the gate voltage to the electron energy. The value of the effective potential sV  was chosen 

in order to accurately reproduce the observed s -wave level localization with respect to 
the bottom of GaAs conduction band. The approximate size of this energy region is 180 
meV. 

The non-parabolic effect causes a change in the electron effective mass of QD with respect to 
the bulk value. According to the relation Eq. (2), the effective electron mass for InAs is 
sufficiently increased from the initial value of 0.024 0m  to 0.054 0m , whereas for GaAs 
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substrate it is slightly decreased from 0.067 0m  to 0.065 0m  within the region where the 
wave function is out of the quantum dot. The obtained value of the electron effective mass 
of InAs in QD is close to the one (0.057 0m  0.007) extracted in (Miller et. al., 1997) from the 
CV measurements of orbital Zeeman splitting of the p  level. 

Appling the obtained effective model, one can take into account the effect the Coulomb 
interaction between electrons (the Coulomb blockade). The goal is to reproduce the C-V data 
presented in Fig. 6 for the InAs QD. The calculations (Filikhin et al., 2006a) have been carried 
out using the perturbation procedure, proposed in (Warburton et al., 1998). The Coulomb 
energy matrix elements were calculated by applying single electron wave functions 
obtained from the numerical solution of Eq. (7). Both the direct terms of c

ijE  and the 
exchange terms x

ijE  of the Coulomb energy between electron orbitals with angular 
momentum projection of i  and j  were calculated (notation is given in (Warburton et al., 
1998)). The results of calculations of the electron energies of the s , p  and d  levels are 
shown in Fig. 7 ( .Cal 2). The s  shell Coulomb energy was found to be close to the 
experimental value which is about 20 meV.  

 

Fig. 6. a) A cross section of the quantum dot. The dimensions are given in nm. b) 
Localization of the s , p  and d  single electron levels relatively to the bottom of the GaAs 
conduction band. cV  is the band-gap potential, sV  is the effective potential simulating the 
sum of the band-gap deformation potential, the strain-induced potential and the 
piezoelectric potential. c) The capacitance-gate-voltage trace (Miller et. al., 1997). The peaks 
correspond to the occupation of the s  and p  energy shells by tunneled electrons. The 
arrows denote the s  level ( 0E ) and the bottom of the GaAs conduction band.  

Returning to the Fig. 5 we have to note that the effective potential obtained for InAs/GaAs 
QD has to be corrected for the case of the InAs/GaAs quantum rings. The reason is the 
topological, geometrical dependence of the depth of the effective potential. This dependence 
is weak for the considered QD and QR. The corresponding sV  potentials have the 
magnitude of 0.482 eV and 0.55 eV for QD and QR, respectively. Accordingly to the 
experimental data the electron effective mass in quantum dots and rings is changing from 
0.024 0m  to (0.057  0.007) 0m  (Miller et. al., 1997) and 0.063 0m  (Lorke et al., 2000), 
respectively. The Kane's formula describes these variations well as it is shown in Fig. 5. The 
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calculated values for the effective masses for quantum dots and rings are 0.0543 0m  and 
0.0615 0m , respectively (Filikhin et al., 2006). 

Correct choice of the average QD profile is important for an analysis of the C-V data. It was 
shown in (Filikhin et al., 2008), where the calculation of the energy shifts due to the 
Coulomb interaction between electrons tunneling into the QD was performed for 
comparison with the C-V experiments. 

One can see in Fig. 7 that the agreement between our results and the experimental data is 
satisfactory well. Slight disagreement can be explained by uncertainty in the QD geometry 
which has not been excluded by available experimental data. In (Filikhin et al., 2008) it 
was shown that small variations of the QD cross section lead to significant changes in the 
levels presented in Fig. 7. The variations of the QD profile we considered are shown in 
Fig. 8a, and the results of calculations for the electron energies are presented in Fig. 8b) for 
s , p  and d  –shell levels. The results of the calculations shown in Fig. 8 reveal rather high 
sensitivity to these variations of the QD profile. In particular, the spectral levels shift is 
noticeable due to a small deformation of the QD profile. Thus, we have seen that the 
average QD profile is important when we are comparing the result of the calculations and 
the experimental data.  

 
 
 
 
 

 
 
 
 
 
 

Fig. 7. Energies of the electrons occupying a few first levels of the quantum dot at zero 
magnetic field. The calculations .Cal 1 are that of parabolic model (Warburton et al., 1998). 
Our calculations are denoted by .Cal 2. The splitting of the single electron levels of a 
corresponding energy shell is presented. CV experimental data are taken from (Warburton 
et al., 1998). 
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Fig. 8. a) Cross sections of the QD. The dimensions are given in nm. b) Excitation energies of 
the electrons occupying s  and p  -energy shells of the InAs/GaAs quantum dot for various 
QD profiles are shown in Figure 7a). CV experimental data are taken from (Warburton et al., 
1998). Here   is the excitation energy (0,0) (0,1)E E   , where ( , )n lE  is a single electron 
energy of the ( , )n l  state.  

Finally, we may conclude that the effective model of QD/substrate semiconductor structure 
with the energy dependent effective mass and realistic 3D geometry taken into account, can 
quantitatively well interpret the CV spectroscopy measurements.  

2.4 Electron effective mass in the InAs/GaAs QD  

In this section we present the effective model based on another version of the band structure 
model for InAs/GaAs QDs proposed in (Filikhin et al., 2008). The cross section of the semi-
ellipsoidal shaped InAs QD embedded in a GaAs substrate is shown in Fig. 6a). Band gap 
structure model was defined by choosing for the conduction band CB =0.54, and for the 
valence band VB =0.46 (Duque et al., 2005). Using experimental values ,1gE =0.42 eV, ,2gE

=1.52 eV we obtain cV =0.594 eV for the conduction band and. cV .=0.506 eV for the valence 
band. The band structure model for InAs/GaAs QDs is shown in Fig. 9. 

 
Fig. 9. Band structure model for InAs/GaAs QDs. CB (VB) is conduction (valence) band. 
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Bulk effective masses of InAs and GaAs are *
0,1m =0.024 0m  and *

0,2m =0.067 0m , respectively. 
For the effective mass of the heavy hole, a value of *m =0.4 0m  for both the QD and the 
substrate was used. The band gap model just described is for “unstrained” InAs/GaAs 
structures. Realistic models for QDs must take into account the band-gap deformation 
potential, the strain-induced potential, and the piezoelectric potential, in addition to the band-
gap potential. These effects can be included by introducing an effective potential sV . The 
magnitude of the potential has been chosen (Filikhin et al., 2006) to reproduce experimental 
data and the value of 0.31 eV was used for sV . The effect of non-parabolicity, taken into 
account in the effective model, leads to a change of the effective electron mass in the QD 
relative to its bulk value. For the QD under study, the effective mass for InAs increases from 
the initial bulk value of 0.024 0m  to 0.057 0m  which coincides with the experimental value 

0 00.057 0.007m m , obtained in CV measurements through the Zeeman splitting of p -shell 
levels. This result is shown in Fig. 10. In accordance with Eqs. (2)-(3), the effective electron 
masses in the s , p and d states are different. The value of the effective mass, mentioned 
 

 

Fig. 10. Effective mass of electron and single electron energy of s , p , d -levels in InAs/GaAs 
QD. Dashed line corresponds to the experimental value. The grey color stripe shows the 
experimental uncertainty. 

above, corresponds to the one for the p -state. The effective mass for s -shell is slightly less and 
is equal to 0.054 0m . The differences of the effective masses are small and cannot be extracted 
from this experiment due to the large experimental uncertainties (Miller et al., 1998).  

2.5 Experimental data for InAs/GaAs QR and the effective model  

In this section we continue the description of the effective model use on the example of 
InAs/GaAs quantum ring. The geometry of the self-assembled QRs, reported in (Lorke et 
al., 2000), is shown in Fig. 11 (Geometry 1). The InGaAs QRs have a height of about 2 nm, an 
outer diameter of about 49 nm, and an inner diameter of about 20 nm. Also, three-
dimensional QR geometry (Geometry 2), which follows from the oscillator model (Lei et al., 
2010) is used. The confinement of this model is given by the parabolic potential:  

2
0

1
( ) * ( )

2
U r m r r  , where  , 0r  are parameters (Chakraborty & Pietiläinen, 1994). The 

QR geometry is dictated by the relation between the adopted oscillator energy and a length 
l  as follows (Szafran & Peeters, 2005): 
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 2 / *l m   . (8) 

Here the width d  for the considered rings is defined by 2d l . The obtained geometry with 
the parameters m * and   from (Lei et al., 2010) is shown in Fig. 11 (Geometry 2); m *=0.067

0m  and  =15 meV. The center radius of QR is 20 nm.  

Results of the effective model calculations for the ground state energy of electron in a 
magnetic field are shown in Fig. 12. (Filikhin et al. 2011a) The picture of the change of the 
orbital quantum number of the ground state is similar to that obtained in (Lei et al., 2010) 
with the oscillator model. The change occurred at 2.2 T and 6.7 T. The obtained energy fits 
the experimental data rather well.  

It has to be noted here that one cannot reproduce this result using the geometry proposed 
in (Lei et al., 2010) (Geometry 1) for this QR. The correspondence between the 
confinement potential parameters of the oscillator model and the real sizes of quantum 
objects has to be established by Eq. (8). Only using the geometry followed from Eq. (8) we 
reproduce result of (Lei et al., 2010), as is shown in Fig. 12. The strength parameter of the 
effective potential, in the case of the Geometry 2, was chosen to be 0.382 eV, which is close 
to that for QD from (Filikhin et al., 2008), where sV =0.31 eV. The difference is explained 

by the topology dependence of the effective potentials (see section above and also 
(Filikhin et al., 2006)).  

Note that the considered QRs are the plane quantum rings with the condition H <<D (for 
height and diameter of QR), which enhances the role of the lateral size confinement effect. 
To qualitatively represent the situation shown in Fig. 12, one can used an approximation for 
the 3D QR based on the formalism of one dimensional ideal quantum ring. Additional 
electron energy, due to the magnetic field, can be calculated by the relation: 

2 2 2
0/(2 * )( / )E m R l    (see for instance (Emperador et al., 2000)), where fluxes are 

2R B  , 0 /h e  .. ( 0 4135.7   T nm2); R  is radius of the ideal ring. The Aharonov-

Bohm (AB) (Aharonov & Bohm, 1959) period B (Aronov & Sharvin, 1987) is given by the 

relation: 2
0 / /B R   . Using the root mean square (rms) radius for R  ( R =20.5 nm), one 

can obtain / 2B =1.56 T and / 2B B   =4.68 T for the ideal ring. This result is far from 

the result of 3D calculations shown in Fig. 12 where / 2 2.2B  T and / 2B B    6.7 T are 

determined. Note here that the electron root mean square radius ,n lR  is defined by the 

relation  2 2 3
, ,| , |N

n l n lR z d dz    , where  , ,N
n l z is the normalized wave function 

of electron state described by the quantum numbers ( ,n l ).  

One can obtain better agreement by using the radius for the most probable localization of 
the electron .locR , defined at the maximum of the square of the wave function. The electron 
is mostly localized near 17.1 nm, for B =0. With this value, the ideal ring estimation leads to 
the values for / 2B and / 2B B    as 2.25 T and 6.75 T, respectively. That agrees with the 
result of the 3D calculations (see Fig. 12). Obviously, the reason for this agreement is the 
condition H D , for the considered QR geometry as it was mentioned above. The mostly 
localized position of the electron in QR depends weakly on the magnetic field. We present .. 
as a function of the magnetic field B  in Fig. 13. .( )locR B  is changed in an interval of 1  nm 
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around the mean value .(0)locR  of 17 nm. It is interesting to note that the magnetization of a 
single electron QR demonstrates the same behavior as it does for .( )locR B  if the one 
dimensional ring is used (see (Voskoboynikov et al., 2002) for details).  

 
Fig. 11. QR cross section profile corresponding to Geometry 1 and Geometry 2; sizes are in nm. 

 

Fig. 12. Additional energy of an electron in QR in a magnetic field B . The C-V experimental 
energies (circles) were obtained in (Lei, et al. 2010) by using a linear approximation 

/gE e V f   , with the lever arm 7.84f  . The curves 0, 1, 2l     are the results of our 

calculations multiplied by a factor of 1.18 (Lei, et al. 2010). 

Additionally we compare the results of calculations for the QR geometry parameters 
corresponding to Geometry 1 and Geometry 2 in Fig. 11 with the far-infrared (FIR) data, 
reported in (Emperador, et al. 2000). The results are presented in Fig. 14. One can see that 
the QR geometry proposed in (Lei et al., 2010) leads to a significant difference between 
the FIR data and the effective model calculations (see Fig. 14a), whereas the results 
obtained with Geometry 2 are in satisfactory agreement with the data (Fig. 14b). Again 
we conclude that the QR geometry of (Lei et al., 2010) does not provide an adequate 
description of electron properties of the InAs/GaAs QRs measured in (Lorke et al., 2000; 
Lei et al., 2010).  

To summarize, we wish to point out that the problem of reliable theoretical interpretation of 
the C-V (and FIR) data for InAs/GaAs quantum rings is far from resolved. Obtained geometry 
can be considered as a possible version of geometry for experimentally fabricated QR. 
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Fig. 13. The radius ( .locR ) of the most localized position of an electron as a function of a 
magnetic field B . The electron of the ground state is considered. The circles indicate the 
calculated values and the solid line indicates the result of the least squares fitting of the 
calculated values. The orbital quantum number of the ground state is shown. 

 

Fig. 14. Solid squares represent the observed resonance positions (Emperador, et al. 2000) of 
the FIR transmissions at various magnetic field B . Calculated energies of the excited states 
with | l |=1 are marked by the circles. a) QR with shape given by Geometry 1, b) QR with 
shape given by Geometry 2. The orbital quantum number of the ground state is 0l  . The 
quantum number n  is changed as shown. 

2.6 Material mixing in InGaAs/GaAs quantum dots 

The fabrication process of nano-sized self-assembled InAs/GaAs quantum dots and 
quantum rings may be accompanied by the material mixing in the initially pure InAs QDs 
due to interdiffusion of the QD/substrate materials. This mixing cannot be precisely 
controlled, resulting in QDs with spatially inhomogeneous Ga fractions that are not well 
specified. In this section we show an application of the effective model to study InxGa1-xAs 
QDs with significant Ga fractions.  

InAs QDs having a semi-ellipsoidal shape embedded into the GaAs substrate are considered 
(see Fig. 6a)). The effective potential sV =0.31 eV, which was found in (Filikhin et al., 2008) 
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for pure InAs QDs, reproduces the capacitance-gate-voltage experiments satisfactory well 
(in Table 2 these results described in the column “0% Ga ( sV =0.31eV)”). It was assumed that 

a realistic approach must therefore take into account material mixing. The results of the 
effective model calculations for Ga fractions of 10%, 20% and 25% are listed in Table 2 
(Filikhin et al., 2009). The calculations was performed varying the Ga fraction in QDs for 

strength parameters e
sV =0.21 eV and h

sV =0.28 eV of the potential. The effective electron 

mass, the band gap and the effective potential for In x Ga 1 x As changed linearly with 

respect to the value of the Ga fraction, assuming a homogeneous distribution of Ga in the 
QD volume. The experimental value of the transition energy for recombination of an exciton 
pair ( exE ) in the ground state is matched by calculations corresponding to a Ga fraction of 

approximately 22% in the QDs. Thus we conclude that the data obtained in CV and 
PLexperiments to this QD may be related with mixing in QD of 22%. It has to note that 
calculations with the 22% in the QDs ( sV =0.21eV) and pure InAs QDs (used sV =0.31eV) 

demonstrate some uncertainties in the QD geometry and the Ga fraction and may lead to 
non-unique descriptions of the same experimental data.  

 

Ga fraction 10% 20% 25% 
0%

( sV =0.31eV) Exp. 

0* /m m  0.050 0.056 0.057 0.057 0.057  0.007 

( )E e ( )E h  238
245 

205
217 

188
151 

185
206 

 
204 

1 0e e 2 1e e  50
55 

48
53 

46
52 

46
52 

44 
49 

0 1h h  

1 2h h  
10 
12 

10 
11 

9 
11 

10 
11 

 

0 0
c

e eE  21.0 20.9 20.8 20.8 
21.5 (or 

18.9) 

0 1
c

e eE  18.1 18.0 17.9 18.0 24 (or 13.0) 

1 1
c

e eE  17.0 17.0 16.9 17.0 ~18.0 

0 0
c

h hE  25.1 24.9 24.7 25.1 24 

0 0
c

e hE  22.8 22.6 22.5 22.7 33.3 

exE  1014 1075 1160 1106 1098 

00d  0.08 0.08 0.08 0.08 0.4  0.1 

Table 2. Calculated single electron (hole) energy-level spacing ( )e h , electron (hole) binding 

energy ( )E e ( ( )E h ), electron-electron, electron-hole and hole-hole Coulomb energies 
cE   ( , ,e h   ), excitonic band gap exE  (in meV), exciton dipole moment 00d  (in nm) and 

effective mass of the QD material for semi-ellipsoidally shaped InGaAs QDs (Ga fraction in 
%) embedded in GaAs. Electron (hole) energy of the ground state is measured from the 
GaAs conduction (valence) band. The value of the effective mass is given for the p -wave 

electron level.  
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In (Filikhin et al. 2009) it was brought argument for existence of the essential mixing of the Ga-
fraction in QD. The effective model with the material mixing was tested by comparison with 
available experimental data for the Coulomb shifts of the transition energies for positive ( X ) 
and negative ( X ) charged trions and biexcitons ( XX ) as a function of the neutral exciton ( X ) 
recombination energy. Results of these calculations for various base size parameters of QDs are 
depicted in Fig. 15, along with experimental data. The root mean square fit of the experimental 
data from (Rodt et al., 2005) shown by the dashed lines in Fig. 15. The vertical line shows the 
transition energy that corresponds to the limit of the QD sizes for which there are only two 
electron and two heavy hole levels. In this case the Coulomb shifts are calculated by 
combinations of the Coulomb energies of electron-electron, electron-hole and hole-hole pairs:  

 ( ) ( ) c c c c
ee eh hh ehE XX X E E E E     , ( ) ( ) c c

ee ehE X X E E    , ( ) ( ) c c
hh ehE X X E E    .  

 

Fig. 15. Coulomb shifts of transition energies for positively ( X ) and negatively ( X ) 
charged trions and biexcitons ( XX ) as a function of neutral exciton ( X ) recombination 
energy. Results of the calculations for various base size parameters of QDs are marked by 
solid triangles ( X , X ) and dots ( XX ). The dashed lines correspond to root mean square 
fits to experimental data from (Rodt et al., 2005). The solid lines correspond to root mean 
square fits to the calculated results. The vertical line shows the transition energy, which 
corresponds to the limit of the QD sizes for which there are only two electrons and two 
heavy holes levels. The amount of the Ga fraction in our calculations is equal to 25%.  

When there are several interacting carrier pairs, the calculations must be performed with 
more intricate scheme using perturbation theory. The value of the Ga fraction in our 
calculations was 25%. Calculations were performed for three QD geometries. A lens-shaped 
geometry with a height of 3.5 nm and base sizes of 9 nm, 10 nm and 11 nm were used. The 
effective model results in Fig. 15 demonstrate qualitative agreement with the experimental 
data for the aforementioned confinement region. The calculated results are very sensitive to 
the value of the Ga fraction. In particular, increasing the fraction shifts the X and X

energies to the region of large exciton energies ( X ). At the same time, the Coulomb shifts 
decrease in absolute value within the region of the X -energies with hN =2. Decreasing the 
Ga fraction gives the opposite results. 
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We can conclude that in the framework of an effective model one can reproduce the CV and 
PL experimental data for InGaAs/GaAs QDs. In these calculations the amount of the Ga-
fraction was taken to be about 22%. Taking into account this value for Ga-fraction we also 
reproduce the measured transition energies and Coulomb shifts for excitonic complexes 
( X , X , XX ) in the limit of two interacting pairs of carriers in the QDs.  

3. Quantum chaos in single quantum dots 

3.1 Quantum chaos 

Quantum Chaos concerns with the behavior of quantum systems whose classical 
counterpart displays chaos. It is quantum manifestation of chaos of classical mechanics. 

The problem of quantum chaos in meso - and nano-structures has a relatively long history 
just since these structures entered science and technology. The importance of this problem is 
related to wide spectrum of the transport phenomena and it was actively studied in the last 
two decades (Beenakker & van Houten, 1991; Baranger & Stone, 1989; Baranger et al., 1991). 
One of the main results of these studies, based mainly on the classical and semi-classical 
approaches, is that these phenomena sensitively depend on the geometry of these quantum 
objects and, first of all, on their symmetry: Right - Left (RL) mirror symmetry, up-down 
symmetry and preserving the loop orientation inversion symmetry important in the 
presence of the magnetic field (Whitney et al., 2009; Whitney et al., 2009a). 

These results are well -known and discussed widely. There is another, actively studied in 
numerous fields of physics, aspect which ,in essence, is complimentary to the above 
mentioned semi classical investigations: Quantum Chaos with its inalienable quantum 
character , including, first of all, Nearest Neighbor level Statistics (NNS ) which is one of the 
standard quantum-chaos test.  

Mathematical basis of the Quantum Chaos is a Random Matrix Theory (RMT ) developed by 
Wigner, Dyson, Mehta and Goudin (for comprehensive review see book (Beenakker & van 
Houten, 1991)). RMT shows that the level repulsion of quantum systems (expressed by one 
of the Wigner-Dyson -like distributions of RMT) corresponds to the chaotic behavior and, 
contrary, level attraction described by Poisson distribution tells about the absence of chaos 
in the classical counterpart of the quantum system. This theorem-like statement checked by 
numerous studies in many fields of science. For the completeness, we add that there are 
other tests of Quantum Chaos based on the properties of the level statistics: 3  statistics 
(spectral rigidity 3( )L ), Number variance 2( )L ), spectral form-factor, two- and multipoint 
correlation functions, two level cluster function 2( )Y E  etc. They play an important 
subsidiary role to enhance and refine the conclusions emerging from the NNS. 

The present review surveys the study of the NNS of nanosize quantum objects - quantum 
dots (QD) which demonstrate atom-like electronic structure under the regime of the size 
confinement. To use effectively NNS, we have to consider so called weak confinement 
regime where the number of levels can be of the order of several hundred. QD of various 
shape embedded into substrate are considered here under the effective model (Filikhin et 
al., 2010). We use the sets of QD/substrate materials ( Si/SiO2, GaAs/Al0.7Ga0.25As, 
GaAs/InAs). 
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3.2 The nearest neighbor spacing statistics 

For the weak confinement regime (for the Si/SiO 2  QD, the diameter D  10 nm), when the 
number of confinement levels is of the order of several hundred (Filikhin et al. 2010), we 
studied NNS statistics of the electron spectrum. The low-lying single electron levels are 
marked by iE , 0,1,2,...i N . One can obtain the set 1i i iE E E    , 1,2,3,...i N  of energy 
differences between neighboring levels. An example of the energy spectrum and set of the 
neighbor spacings for Si/SiO2 QD are in Fig. 16. We need to evaluate the distribution 
function ( )R E , distribution of the differences of the neighboring levels. The function is 
normalized by ( ) 1R E d E   . For numerical calculation, a finite-difference analog of the 
distribution function is defined by following relation:  

 / /j j ER N H N , 1,...j M ,  

where jN N  represents total number of levels considered, 1(( ) ( ) ) /E NH E E M      is 
the energy interval which we obtained by dividing the total region of energy differences by M  
bins. jN  ( 1,2,...j M ) is the number of energy differences which are located in the j -th bin. 

 
 a)      b)  

Fig. 16. a) The energy levels and b) the neighbor spacings 1i i iE E E    , 1,2,..i N ,of the 

spherical Si/SiO2 QD with diameter D=17 nm. 

The distribution functions ( )R E is constracted using the smoothing spline method. If jR , 

1,2,..j M , are calculated values of the distribution functions corresponding to jE , the 

smoothing spline is constructed by giving the minimum of the form 
2 2

=1
( ( )) ( ) ( ) /

M
j jj

R R E R E d E       . The parameter > 0  is controlling the concurrence 

between fidelity to the data and roughness of the function sought for. For    one 
obtains an interpolating spline. For 0   one has a linear least squares approximation. 

We studied neighbouring level statistics of the electron/hole spectrum treated by way 
considered above. The Si quantum dots having strong difference of electron effective mass 
in two directions is considered as appropriate example for the study of role of the effective 
mass asymmetry. In this study we do not include the Coulomb potential between electrons 
and holes. The shape geometry role is studied for two and three dimensions. 
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3.3 Violation of symmetry of the QD shape and nearest neighbor spacing statistics 

Distribution functions for the nearest neighboring levels are calculated for various QD 
shapes (Filikhin et al., 2010). Our goal here to investigate the role of violation of the 
symmetries of QD shape on the chaos. The two and three dimensional models are 
considered. Existing of any above mentioned discrete symmetry of QD shape leads to the 
Poisson distribution of the electron levels. 

In Fig. 17 the numerical results for the distribution functions of Si/SiO2 QD are presented. 
The QD has three dimensional spherically shape. We considered the two versions of the 
shape. The first is fully symmetrical sphere, and the second shape is a sphere with the cavity 
damaged the QD shape. The cavity is represented by semispherical form; the axis of 
symmetry for this form does not coincide with the axis of symmetry of the QD. In the first 
case, the distribution function is the Poisson-like distribution. The violation symmetry in the 
second case leads to non-Poisson distribution. 

We fit the non-Poissonian distribution function ( )R E  using the Brody distribution (Brody 
et al., 1999): 

 1( ) (1 ) exp( ),R s bs bs      (9) 

with the parameter  =1.0 and 1( [(2 ) /(1 )] / )b D       , D  is the average level 

spacing. Note that for the Poisson distribution the Brody parameter is equal zero.  

If the QD shape represents a figure of rotation (cylindrical, ellipsoidal and others) then the 
3D Schrödinger equation is separable. In cylindrical coordinates the wave function is written 
by the following form ( ) ( , )exp( )r z il   


, where 0, 1, 3,...l    is the electron orbital 

quantum number. The function ( , )z  is a solution of the two dimensional equation for 
cylindrical coordinates  and z . 

 

Fig. 17. Distribution functions for electron neighboring levels in Si/SiO2 QD for spherical-
like shape with cut. The Brody parameter  =1.0. The geometry of this QD is shown in 3D. 
The QD diameter is 17 nm (inset).  
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Our results for the distribution function for the ellipsoidal shaped Si/SiO2 QD are presented 
in Fig. 18a) (left). In the inset we show the cross section of the QD. The fitting of the 
calculated values for ( )R E  gives the Poisson-like distribution. For the case of QD shape 

with the break of the ellipsoidal symmetry (Fig. 18b) (left)) by the cut below the major axis 
we obtained a non-Poisson distribution.  

Fig. 18 (right) shows the that slightly deformed rhombus-like shape leads to the NNS with 
Brody parameter  =1 (10). It is obvious why systems with different discrete symmetries 
reveal Poisson statistics: the different levels of the mixed symmetry classes of the spectrum 
of the quantum system are uncorrelated. 

 

Fig. 18. (Left) Distribution functions for electron neighboring levels in Si/SiO2 QD for 
different shapes: a) ellipsoidal shape, b) ellipsoidal like shape with cut. Brody parameter   
is defined to be equal 1.02 for the fitting of this distribution. The 3D QD shape has rotation 
symmetry. Cross section of the shapes is shown in the inset.  
(Right). Violation of the shape Up-Down symmetry for Si/SiO2 QD. Distribution functions 
for electron neighboring levels in Si/SiO2 QD for different shapes: a) with rhombus cross 
section, b) with slightly deformed rhombus cross section. The 3D QD shape has rotation 
symmetry. The Brody parameter   for the curve fitting this distribution is shown. Cross 
section of the shapes is shown in the inset.  

In Schrödinger equation (7) in the asymptotical region of   one can neglect the two terms 

1

 



 and 
2

2

l


 of this equation. The solution of Eq. (7) can demonstrate the same 
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properties of the solution of the Schrödinger equation for 2D planar problem in Cartesian 
coordinates with the same geometry of QD shape in the asymptotical region. We illustrate 
this fact by Fig. 19. In this figure the violation of the shape Up-Down symmetry for 2D 
Si/SiO2 QD is clarified. We compare the distribution functions for QD with "regular" semi-
ellipsoidal shape (dashed curve in Fig. 19 a) and for QD with the semi-ellipsoidal shape 
having the cut (solid curve) as it are shown in Fig. 19 b). In the first case there is Up-Down 
symmetry of the QD shape. Corresponding distribution functions is Poissonian type. In 
second case the symmetry is broken by cut. The level statistics become non Poissonian. We 
have qualitative the same situation as for QD having rotation symmetry in 3D, presented in 
Fig. 18 (left) for the QD shape with rotation symmetry in cylindrical coordinates. The 
relation between the symmetry of QD shape and NNS is presented by Fig. 20 where we 
show the results of calculation of NNS for the 2D InAs/GaAs quantum well (QW). The two 
types of the statistics are presented in Fig. 20(left). The Poisonian distribution corresponds to 
shapes shown in Fig. 20 (b)-(d)(left) with different type of symmetry. The non-Poissonian 
distribution has been obtained for the QW shape with cut (a) which violated symmetry of 
initial shape (b), which is square having left-right symmetry, up-down symmetry, and 
diagonal reflection symmetry. The shape of the Fig. 20c) has only diagonal reflection 
symmetry. In Fig. 20d) the left-right symmetry of the shape exists only. The electron wave 
function of the high excited state, which contour plot is shown with the shape contour in 
Fig. 20(left), reflects the symmetry properties of the shapes. 

Concluding, we can note that, obviously, the topological equivalent transformations of QD 
shape (keeping at least one discrete symmetry) do not lead to the non Poissonian 
distribution of the levels. 

 
 
 

 
 
 
 

Fig. 19. Violation of the shape Up-Down symmetry for two dimensional Si/SiO2 QD. a) 
Distribution functions for electron neighboring levels for the "regular" semi-ellipsoidal 
shape (dashed curve), for the semi-ellipsoidal shape with the cut (solid curve). b) The shape 
of the QD with cut (in Cartesian coordinates). 
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Fig. 20. Shape of the 2D InAs/GaAs quantum dots (Left). The black curves mean the 
perimeters. The electron wave function contour plots of the excited state (with energy about 
0.5 eV are shown). The corresponding types of the level statistics are shown (Right). The 
shape a) leads to non-Poissonian statistics (solid curve). The shapes b)-d) result to the 
Poissonian statistics (dashed curve). 

4. Double quantum dots and rings: New features 

4.1 Disappearance of quantum chaos in coupled chaotic quantum dots  

In the previous section, we investigated the NNS for various shape of the single quantum 
dots (SQD) in the regime of the weak confinement when the number of the levels allows to 
use quite sufficient statistics. Referring for details to (Filikhin et al., 2010), we briefly sum up 
the main conclusions of previous section: SQDs with at least one mirror (or rotation) 
symmetry have a Poisson type NNS whereas a violation of this symmetry leads to the 
Quantum Chaos type NNS.  

In this section we study quantum chaotic properties of the double QD (DQD). By QD here 
we mean the three dimensional (3D) confined quantum object, as well its 2D analogue - 
quantum well (QW). In three dimensional case we use an assumption of the rotational 
symmetry of QD shape. The presented effective approach is in good agreement with the 
experimental data and previous calculations in the strong confinement regime (Filikhin et 
al., 2010). Here, in the regime of weak confinement, as in (Filikhin et al., 2010), we also do 
not consider Coulomb interaction between electron and hole: Coulomb effects are weak 
when the barrier between dots is thin leading to the strong interdot tunneling and dot sizes 
are large enough. In these circumstances, studied in detail in (Bryant, 1993) (see also for 
short review a monograph (Bimberg et al., 1999), one may justify disregard of the Coulomb 
effects. The physical effect, we are looking for, has place just for thin barriers; to have 
sufficient level statistics, we need large enough QDs (100 nm for InAs/GaAs QW). 
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Thus, we consider tunnel coupled two QDs with substrate between, which serves as barrier 
with electronic properties distinct from QD. Boundary conditions for the single electron 
Schrödinger equation are standard. We take into account the mass asymmetry inside as well 
outside of QDs (Filikhin et al., 2010). To avoid the complications connected with spin-orbit 
coupling, s-levels of electron are only considered in the following. We would like to remind 
that the selection of levels with the same quantum numbers is requisite for study of NNS 
and other types of level statistics. 

Whereas at the large distances between dots each dot is independent and electron levels are 
twofold degenerate, expressing the fact that electron can be found either in one or in the 
other isolated dot, at the smaller inter-dot distances the single electron wave function begins 
to delocalize and extends to the whole DQD system. Each twofold degenerated level of the 
SQD splits by two, difference of energies is determined by the overlap, shift and transfer 
integrals (Bastard, 1990). Actually, due to the electron spin, there is fourfold degeneracy, 
however that does not change our results and below we consider electron as spinless. Note 
that the distance of removing degeneracy is different for different electron levels. This 
distance is larger for levels with higher energy measured relative to the bottom quantum 
well (see Fig. 23 below). By the proper choice of materials of dots and substrate one can 
amplify the "penetration" effects of the wave function.  

Below we display some of our results for semiconductor DQDs. The band gap models are 
given in (Filikhin et al., 2010). Fig. 21 shows distribution function for two Si/SiO2 QDs of the 
shape of the 3D ellipsoids with a cut below the major axis. Isolated QD of this shape, as we 
saw in the previous section, is strongly chaotic. It means that distribution function of this 
QD can be well fitted by Brody formula with the parameter which is close to unity (Filikhin 
et al, 2010). We see that the corresponding up-down mirror symmetric DQD shows Poisson-
like NNS. Note that these statistics data involved 300 confined electron levels, which filled 
the quantum well from bottom to upper edges. We considered the electron levels with the 
orbital momentum l=0, as was mentioned above. The orbital momentum of electron can be 
defined due to rotational symmetry of the QD shape.  

 
Fig. 21. The electron wave function of the ground state is shown by the contour plot. (The 
lower figure) Distribution functions for energy differences of the electron neighbori between 
QDs in InAs/GaAs DQD.  
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In Fig. 22, SQD (2D quantum well) without both type of symmetry reveals level repulsion, 
two tunnel coupled dots show the level attraction. From the mirror symmetry point of view, 
the chaotic character of such single object is due to the lack of the R-L and up-down mirror 
symmetries. The symmetry requirements in this case, for the coupled dots are less 
restrictive: presence of one of the mirror symmetry types is sufficient for the absence of 
quantum chaos.  

Dependence NNS on the interdot distance shows a gradual transition to the regular 
behaviour with intermediate situation when Poisson-like behavior coexists with chaotic one: 
they combine but the level attraction is not precisely Poisson-like. Further decreasing 
distance restores usual Poisson character (see Fig. 22). Fig. 23 shows how the degeneracy 
gradually disappears with the distance b  between QDs in InAs/GaAs DQD.  

Finally, we would like to show the disappearance of the Quantum Chaos when chaotic 
QW is involved in the "butterfly double dot" (Whitney, 2009) giving huge conductance 
peak in the semi-classical approach. Fig. 24 shows the NNS for chaotic single QW of 
(Whitney, 2009) by dashed line. Mirror (up-down and L-R) symmetry is violated. The 
NNS for an L-R mirror symmetric DQW is displayed by solid line in Fig. 24. It is clear that 
Quantum Chaos disappears.  

We conjecture that the above mentioned peak in conductance of (Whitney, 2009) and 
observed here a disappearance of Quantum Chaos in the same array are the expression of 
the two faces of the Quantum Mechanics with its semi-classics and genuine quantum 
problem of the energy levels of the confined objects, despite the different scales (what seems 
quite natural) in these two phenomena (several micrometers and 10–100 nm, wide barrier in 
the first case and narrow one in the second). We have to emphasize here that the transport 
properties are mainly the problem of the wave function whereas the NNS is mainly the 
problem of eigenvalues. Similar phenomena are expected for the several properly arranged 
coupled multiple QDs and QD superlattices. In the last case, having in mind, for simplicity, 
a linear array, arranging the tunnel coupling between QDs strong enough, we will have 
wide mini-bands containing sufficient amount of energy levels and the gap between 
successive mini-bands will be narrow. Since the levels in the different mini-bands are 
uncorrelated, the overall NNS will be Poissonian independently of the chaotic properties of 
single QD. We would like to remark also that our results have place for 3D as well as for 2D 
quantum objects. It is important to notice that the effect of reduction of the chaos in a system 
of DQD could appear for interdot distances larger than considered, for instance in figure 22, 
if an external electrical field is applied. By properly designed bias the electric field will 
amplify wave function "penetration" effectively reducing a barrier between QDs.  

Thus, we have shown that the tunnel coupled chaotic QDs in the mirror symmetric 
arrangement have no quantum chaotic properties, NNS shows energy level attraction as 
should to be for regular, non-chaotic systems. These results are confronted with the huge 
conductance peak found by the semi-classical method in (Whitney, 2009). We think that our 
results have more general applicability for other confined quantum objects, not only for the 
quantum nanostructures, and may be technologically interesting. Concerning the last issue, 
problem is what easer: try to achieve regular, symmetric shape of SQDs, or, not paying 
attention to their irregular, chaotic shape arrange more or less symmetric mutual location 
(Ponomarenko et al., 2008).  
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Fig. 22. Distribution functions for energy differences of the electron neighboring levels in the 
2D InAs/GaAs DQW calculated for various distances b  between QWs. Dashed (solid) line 
corresponds to b =4 nm ( b =2 nm). Distribution functions of single QW is also shown by the 
dot-dashed line. The DQW shape is shown in inset (sizes are in nm). 

 

Fig. 23. (The upper figure) Doublet splitting E  of single electron levels dependence on the 
distance b  between QDs in InAs/GaAs DQD. The ground state ( E =0.23 eV) level splitting is 

E expressed by dashed line. The solid line corresponds to doublet splitting of a level which is 
close to upper edge of the quantum well ( E =0.56 eV). The shape of DQD is the same as in  
Fig. 21 (The lower figure). The electron wave functions of the doublet state: the ground state 
(left) and first excited state (right), are shown.  
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Fig. 24. Distribution functions for electron neighboring levels in InAs/GaAs single QW 
(dashed line) and DQW (solid line). Shape of DQW is shown in the inset. The electron wave 
function of the ground state is shown by the contour plot in the inset. Data of the statistics 
include 200 first electron levels.  

4.2 Electron transfer between pair of concentric quantum rings in magnetic field 

Quantum rings are remarkable meso- and nanostructures due to their non-simply connected 
topology and attracted much attention last decade. This interest supported essentially by the 
progress in the fabrication of the structures with wide range of geometries including single 
and double rings. This interest rose tremendously in the connection to the problem of the 
persistent current in mesoscopic rings (Buttiker et al., 1983) Transition from meso - to nano -
scale makes more favorable the coherence conditions and permits to reduce the problem to 
the few or even to single electron. 

Application of the transverse magnetic field B  leads to the novel effects: Whereas the 
quantum dots (QDs) of the corresponding shape (circular for two dimensional (2D), 
cylindrical or spherical for 3D ) has degeneracy in the radial n  and orbital l  quantum 
numbers, QR due to the double connectedness in the absence of the magnetic field B  has 
degeneracy only in l , and the nonzero B  lifts the degeneracy in l , thus making possible the 
energy level crossing at some value of B , potentially providing the single electron transition 
from one state to the another.  

Use the configurations with double concentric QR (DCQR) reveals a new pattern: one can 
observe the transition between different rings in the analogy with atomic phenomena. For 
the DCQR, the 3D treatment is especially important when one includes the inter-ring 
coupling due to the tunneling. The dependence on the geometries of the rings (size, shape 
and etc.) becomes essential. 

We investigate the electron wave function localization in double concentric quantum rings 
(DCQRs) when a perpendicular magnetic field is applied. In weakly coupled DCQRs can be 
arisen the situation, when the single electron energy levels associated with different rings 
may be crossed. To avoid degeneracy, the anti-crossing of these levels has a place. In this 
DCQR the electron spatial transition between the rings occurs due to the electron level anti-
crossing. The anti-crossing of the levels with different radial quantum numbers (and equal 
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orbital quantum numbers) provides the conditions when the electron tunneling between 
rings becomes possible. To study electronic structure of the semiconductor DCQR, the single 
sub-band effective mass approach with energy dependence was used (see section 2 of this 
Chapter). Realistic 3D geometry relevant to the experimental DCQR fabrication was 
employed taken from (Kuroda et al., 2005; Mano et al., 2005). The GaAs QRs and DQRs 
rings, embedded into the Al0.3Ga0.7As substrate, are considered (Filikhin, et al., 2011). The 
strain effect between the QR and the substrate materials was ignored here because the lattice 
mismatch between the rings and the substrate is small. Due to the non-parabolic effect taken 
into account by energy dependence effective mass of electron in QR, the effective mass of 
the electron ground state is calculated to be the value of 0.074 0m  that is larger than the bulk 
value of 0.067 0m . For the excited states, the effective mass will increase to the bulk value of 
the Al0.3Ga0.7As substrate. Details of this calculation one can find in (Filikhin, et al. 2011).  

Electron transfer in the DCQR considered is induced by external factor like a magnetic or 
electric fields. Probability of this transfer strongly depends on the geometry of DCQR. The 
geometry has to allow the existing the weakly coupled electron states. To explain it, we note 
that DCQR can be described as a system of double quantum well. It means that there is 
duplication of two sub-bands of energy spectrum (see (Manasreh, 2005) for instance) relative 
the one for single quantum object. In the case of non-interacting wells (no electron tunneling 
between wells) the each sub-band is related with left or right quantum well. The wave 
function of the electron is localized in the left or right quantum well. When the tunneling is 
possible (strong coupling state of the system), the wave function is spread out over whole 
volume of the system. In a magnetic field, it is allowed an intermediate situation (weak 
coupled states) when the tunneling is possible due to anti-crossing of the levels. Anti-
crossing, of course, is consequence of the impossibility to cross of levels with the same space 
symmetry (von Neumann & Wigner, 1929; Landau & Lifshitz, 1977). 

There is a problem of notation for states for DCQR. If we consider single QR (SQR) then for 
each value of the orbital quantum number | | 0,1,2...l   in Eq. (7) we can definite radial 
quantum number n =1,2,3,… corresponding to the numbers of the eigenvalues of the 
problem (7) in order of increasing. One can organize the spectrum by sub-bands defined by 
different n . When we consider the weakly coupled DCQR, in contrast of SQR, the number 
of these sub-bands is doubled due to the splitting the spectrum of double quantum object 
(Bastard, 1990). Electron in the weakly coupled DCQR can be localized in the inner or outer 
ring. In principle, in this two ring problem one should introduce a pair of separate sets of 
quantum numbers ( , )in l  where index i =1,2 denoted the rings where electron is localized. 
However, it is more convenient, due to the symmetry of the problem, to have one pair ( , )n l  
numbers ascribed to both rings (inner or outer), in other words, we use a set of quantum 
numbers ( , ),n l p  where p  is dichotomic parameter attributed to the electron localization 
(“inner“ or “outer“ ). 

Since we are interested here in the electron transition between rings and, as we will see 
below, this transition can occur due to the electron levels anti-crossing followed a tunneling, 
we concentrate on the changing of the quantum numbers n . The orbital quantum numbers 
must be equal providing the anti-crossing of the levels with the same symmetry (see Landau 
& Lifshitz, 1977). Thus, the anti-crossing is accompanied by changing the quantum numbers 
n  and p  of the ( , ),n l p  set. 
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Strongly localized states exist in the DCQR with the geometry motivated by the fabricated 
DCQR in (Kuroda et al., 2005; Mano et al., 2005). The wave functions of the two s -states of 
the single electron with n =1,2 are shown in Fig. 25, where the electron state n =1 is 
localized in outer ring, and the electron state n =2 is localized in inner ring. Moreover all 
states of the sub-bands with n =1,2, and | |l =1,2,3… are well localized in the DCQR. The 
electron localization is outer ring for n =1, | |l =0,1,2,…, and inner ring for n =2, | |l =0,1,2….  

 

Fig. 25. The squares of wave functions for the a) (1,0) ,outer ( 0.072E   eV) and b) (2,0)
,inner ( 0.080E   eV) states are shown by contour plots. The contour of the DCQR cross-
section is given. The sizes are in nm. 

The difference of properties of the two sub-bands can be explained by competition of two 
terms of the Hamiltonian of Eq. (7) and geometry factor. The first term includes first 
derivative of wave function over   in kinetic energy; the second is the centrifugal term. For 
| |l  0 the centrifugal force pushes the electron into outer ring. One can see that the density 
of the levels is higher in the outer ring. Obviously, the geometry plays a role also. In 
particular, one can regulate density of levels of the rings by changing a ratio of the lateral 
sizes of the rings. 

Summarizing, one can say that for B =0 the well separated states are only the states (1, ),l p  
and (2, ),l p . Thus, used notation is proper only for these states. The wave functions of the 
rest states ( 2, )n l  are distributed between inner and outer rings. These states are strongly 
coupled states.  

Crossing of electron levels in the magnetic field B are presented in Fig. 26 There are 
crossings of the levels without electron transfer between the rings. This situation is like 
when we have crossing levels of two independent rings. There are two crossings when the 
orbital quantum number of the lower state is changed due to the Aharonov-Bohm effect. It 
occurs at about 0.42 T and 2.5 T. There are two anti-crossings: the first is at 4.8 T, another is 
at 5.2 T. These anti-crossings are for the states with different n ; the first are states (1,0) and 
(2,0) and the second are states (1,-1) and (2,-1). In these anti-crossings the possibility for 
electron tunneling between rings are realized. In Fig. 27 we show how the root mean square 
(rms) of the electron radius is changed due to the tunneling at anti-crossing. One can see 
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from Fig. 26 that the electron transition between rings is only possible when the anti-crossed 
levels have different radial quantum numbers and equal orbital quantum numbers, in 
accordance of (von Neuman & Vigner, 1929). 

 

Fig. 26. Single electron energies of DCQR as a function of magnetic field magnitude B . 
Notation for the curves: the double dashed (solid) lines mean states with l =0 ( l =-1) with n

=1,2. The quantum numbers of the states and positions of the electron in DCQR are shown. 
The cross section of the DCQR is given in the inset. 

Transformation of the profile of the electron wave function during the process of anti-
crossing with increasing B  is given in Fig. 28. The electron state (1,-1), outer is considered as 
“initial” state of an electron ( B =0). The electron is localized in outer ring. Rms radius is 
calculated to be R =39.6 nm. For B =5.2 T the second state is the tunneling state 
corresponding to the anti-crossing with the state (0,-1). The wave function is spreaded out in 
both rings with R =32.7 nm. The parameter p  has no definite value for this state. The 
“final” state is considered at B =7 T. In this state the electron was localized in inner ring 
with R =17.6 nm. Consequently connecting these three states of the electron, we come to an 
electron trapping, when the electron of outer ring ("initial" state) is transferred to the inner 
ring ("final" state). The transfer process is governed by the magnetic field.  

Note that the energy gap between anti-crossed levels which one can see in Fig. 26 can be 
explained by the general theory for double interacting quantum well (Bastard, 1990). The 
value of the gap depends on separation distance between the rings, governed by the 
overlapping wave functions corresponding to the each ring, and their spatial spread which 
mainly depends on radial quantum number of the states (Filikhin et al., 2011). 

Other interesting quantum system is one representing QR with QD located in center of QR. 
The cross section of such heterostructure (GaAs/Al0.3Ga0.7As) is shown in Fig. 29a. In Fig. 
29b we present the results of calculations for electron energies of the (1,0) and (3,0) states in 
the magnetic field B  (Filikhin et al., 2011). Once more we can the level anti-crossing (for 
about of 12.5 T). This anti-crossing is accompanied by exchange of electron localization 
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between the QD and the QR. In other words if initial state (for B <12.5 T) of electron was the 
state (1,0),outer, then the "final" state (for B  >12.5 T) will be (1,0),inner. It can be considered 
as one of possibilities for trapping of electron in QD. 

 

Fig. 27. Rms radius of an electron in DCQR as a function of magnetic field for the states a) 
(( 1,2), 0)n l   and b) (( 1,2), 1)n l    near point of the anti-crossing. The calculated 
values are shown by solid and open circles. The dashed (solid) line, associated with states of 

0l   ( 1l   ), fits the calculated points.  

 

Fig. 28. Profiles of the normalized square wave function of electron in the states a) (1, 1)
,outer; b) (1, 1) ,n/a and c) (1, 1) ,inner for different magnetic field B . The a) is the 
“initial” state ( B =0) with R =39.6 nm, the b) is the state of electron transfer ( B =5.2 T) with 
R =32.7 nm, the c) is the “final” state ( B =7 T) with R =17.6 nm. The radial coordinate   is 
given in nm (see Fig. 26 for the DCQR cross section).  

One can see from Fig. 29b that the energy of the dot-localized state grows more slowly than the 
envelope ring-localized state. At the enough large B  the dot-localized state becomes the 
ground state (Szafran et al., 2004). In other words, when the Landau orbit of electron becomes 
smaller then dot size, electron can enter the dot without an extra increase of kinetic energy.  

Concluding, we made visible main properties of this weakly coupled DCQD established by 
several level anti-crossings that occurred for the states with different radial quantum 
number n  ( n =1,2) and equal orbital quantum number l . One may conclude that the fate of 
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the single electron in DCQRs is governed by the structure of the energy levels with their 
crossing and anti-crossing and is changing with magnetic field. The above described 
behavior is the result of the nontrivial excitation characteristic of the DCQRs. Effect of the 
trapping of electron in inner QR (or QD) of DCQR may be interesting from the point of view 
of quantum computing.  

 
Fig. 29. a) Cross section of the QR with QD system. Sizes are given in nm. b) Energies of the 
(1,0) and (3,0) states in the magnetic field B  for the QR with QD system. The open symbols 
show that the electron is localized in the ring. The solid squares show that the electron 
localized in QD. 
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