
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



13 

Stem Cell Characterization 

Arash Zaminy 
Department of Anatomy & Cell Biology, 

Shahid Beheshti University of Medical Sciences, Tehran, 
Iran 

1. Introduction 

One of the main problems in stem cell studies is how researchers can identify and 

characterize a stem cell. 

Identification and characterization of stem cells is a difficult and often evolving procedure. 

Stem cells not only must exhibit the appropriate markers, but also a healthy and robust stem 

cell population must also lack specific markers. In addition to the difficulty of this area of 

stem cell biology markers, profiles change based on the species, site of origin and maturity 

(totipotent vs. multipotent) of a given population. Furthermore, stem cell populations may 

consist of several specific phenotypes which are often indicators of the population′s general 

health. Flow cytometry employs instrumentation that scans single cells flowing past 

excitation sources in a liquid medium. It is a widely used method for characterizing and 

separating individual cells. 

This chapter tries to explain what stem cells are, as well as to summarize current knowledge 

on stem cell characterization and usage of stem cells markers. 

2. Stem cells 

All life forms initiate with a stem cell, which is defined as a cell that has the dual capacity to 

self-renew and to produce progenitors and different types of specialized cells in the 

organism. Scientists mostly work with two kinds of stem cells from animals and humans: 

embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. 

At the beginning of human life, one fertilized egg cell – the zygote – divides into two and 

two becomes four (Carlson, 1996). Within 5 to 7 days, some 40 cells are produced which 

build up the inner cell mass encircled by an outer cell layer subsequently forming the 

placenta. At this phase, each of these cells in the inner cell mass has the potential to give rise 

to all tissue types and organs – that is, these cells are pluripotent. Finally, the cells forming 

the inner cell mass will give rise to the some 1013 cells that constitute a human body, 

organized in 200 differentiated cell types (Sadler, 2002). Many somatic, tissue-specific or 

adult stem cells are produced during the foetal period. These stem cells have a more limited 

ability than the pluripotent embryonic stem cells (ESCs) and they are multipotent – that is, 

they have the potential to give rise only to a limited number of cell lineages. These adult 
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stem cells keep on in the related organs to varying degrees over the whole of a person’s 

lifetime. 

Stem cells are well-known from other cell types because of two important characteristics. 

First, they are unspecialized cells and the have ability to renew themselves through cell 

division, sometimes after long periods of inactivity. Second, under certain physiologic or 

experimental conditions, they can be induced to become tissue- or organ-specific cells with 

special abilities (Thrasher, 1966; Merok & Sherley, 2001). In some organs, such as the gut and 

bone marrow, stem cells divide regularly to repair and restore exhausted or damaged 

tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide 

under special conditions. 

3. Stem cells markers 

In recent years researchers have revealed a broad range of stem cells that have unique 

capabilities to self-renew, grow indefinitely and differentiate or develop into multiple kinds 

of cells and tissues. Researchers now know that many different types of stem cells exist, but 

they are all found in very small populations in the human body, in some cases one stem cell 

in 100,000 cells in circulating blood. In addition, when scientists study these cells under a 

microscope, they are similar to other cells in the tissue where they are found. So, like the 

search for a needle in a haystack, how do scientists recognize these uncommon types of cells 

found in many different cells and tissues? The answer is rather simple, thanks to stem cell 

"markers."  

What are stem cell markers? The surface of every cell in the body has specialized proteins 

called receptors that have the capability of selectively binding or adhering to other 

"signalling" molecules. There are many different types of receptors that differ in their 

composition and affinity for the signalling molecules. Generally, cells use these receptors 

and the molecules that bind to them as a way of communicating with other cells, and to 

perform their correct functions in the body. These cell surface receptors are commonly used 

as cell markers. Each cell type, for example a liver cell, has a certain combination of 

receptors on their surface that makes them distinguishable from other types of cells. 

Scientists have taken advantage of the biological exclusivity of stem cell receptors and the 

chemical properties of certain compounds to label or mark cells. Researchers owe much of 

the past success in finding and characterizing stem cells to the use of markers. 

Stem cell markers are given shorthand names based on the molecules that attach to the stem 

cell surface receptors. For example, a cell that has the receptor stem cell antigen -1 on its 

surface is known as Sca-1. In many cases, a mixture of multiple markers is used to identify a 

particular stem cell type. So now, researchers often identify stem cells in shorthand by a 

combination of marker names reflecting the presence (+) or absence (-) of them. For 

example, a special type of haematopoietic stem cell from blood and bone marrow is 

described as (CD34-/low, c-Kit+, Sca-1+) (Jackson et al., 2001). 

Researchers employ antibody molecules that selectively bind with the receptors on the 

surface of the cell as a way to identify stem cells. In former years a method was developed to 

attach to the antibody molecule another molecule (or tag) that has the ability to fluoresce or 

emit light energy when triggered by an energy source such as an ultraviolet light or laser  
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beam. Now, multiple fluorescent labels are available with emitted light that differ in colour 
and intensity. 

Researchers exploit the combination of the chemical properties of fluorescence and unique 
receptor patterns on cell surfaces to identify specific numbers of stem cells. One approach 
for using markers is a technique known as fluorescence-activated cell sorting (FACS) 
(Bonner et al., 1972; Herzenberg, 2000; Julius, 1972). Researchers frequently use a FACS 
instrument to sort out the rare stem cells from the millions of other cells. By this method, a 
suspension of tagged cells (i.e. fluorescently-labelled antibodies are bound to the cell surface 
markers) is sent under pressure through a very fine nozzle. Upon exiting the nozzle cells 
pass through a light source, usually a laser, and then through an electric field. Operators 
apply a series of criteria. If the cell stream meets the criteria, they become negatively or 
positively charged. When cells are passing among an electric field, the charge difference 
permits the desired cells to be separated from other cells. The researchers now have a 
population of cells that have all of the same marker characteristics and with these cells they 
can conduct their research. 

A second method uses stem cell markers and fluorescent antibodies to visually assess cells 
as they exist in tissues. Often researchers want to assess how stem cells appear in tissues and 
in doing so they use a microscope to evaluate them rather than the FACS instrument. In this 
case, a thin slice of tissue is prepared and the stem cell markers are tagged by the antibodies 
that have the fluorescent tag attached. The fluorescent tags are then activated either by 
special light energy or a chemical reaction. The stem cells will emit a fluorescent light that 
can easily be seen under the microscope. 

4. Embryonic stem cells  

An embryonic stem cell (ESC) is described by its origin. It is obtained from the blastocyst 
stage of the embryo. Embryonic stem cells are unique cell populations with the capability of 
both self-renewal and differentiation, and thus ESCs can give rise to any adult cell type. 
Pluripotent embryonic stem (ES) cells, like embryonal carcinoma cells, were first used as a 
tool to examine thoroughly early differentiation. However, the properties of ESCs identify 
them as being highly appropriate for making specific cell lineages in vitro. The ability of 
embryonic stem cells to almost limitless self-renewal and differentiation capacity has 
opened up the panorama of widespread applications in biomedical research and 
regenerative medicine. 

ESCs are harvested from the inner cell mass of the pre-implantation blastocyst and have 
been derived from rodents (Martin, 1981; Evans & Kaufman, 1981; Doetschman et al., 1988; 
Graves & Moreadith, 1993), primates (Thomson et al., 1995) and humans (Thomson et al., 
1998; Reubinoff et al., 2000). 

4.1 Embryonic stem cell markers 

Some approaches have been applied to characterize ESCs, but the most widely used 
approach is analysis of cell surface antigens by flow cytometry and evaluation of gene 
expression profile by RT-PCR or microarrays. Many cell surface antigens used to identify 
hESCs were first detected with antibodies prepared against pre-implantation mouse 
embryos and/or against mouse or human embryonal carcinoma cells (Pera et al., 2000). 
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Although the functions of those antigens in the continuance of undifferentiated human 
embryonal carcinoma cells are not necessarily clear, they may represent helpful markers for 
the recognition of pluripotent stem cells. These antigens include the globo-series glycolipid 
antigens, stage-specific embryonic  antigen-3 (SSEA-3) and -4 (SSEA-4), keratan sulphate 
antigens TRA-1-60, TRA-1-81, GCTM2 and GCTM343, a set of various protein antigens 
comprising the two liver alkaline phosphatase antigens TRA-2-54 and TRA-2-49, Thy1, CD9,  
HLA class 1 antigens, Oct3/4, Nanog and the absence of hESC negative markers, such as 
SSEA-1 (Pera et al., 2000; Carpenter et al., 2003; Chambers et al., 2003; Draper et al., 2004; 
Heins et al., 2004; Nichols et al., 1998). 

Some cell surface biomarkers are also listed in Table 1. The International Stem Cell Initiative 
(ISCI) established by the International Stem Cell Forum (http://www.stemcellforum.org.uk) 
carried out a comparative study of a large and different set of hESC lines derived from and 
maintained in different laboratories worldwide (Adewumi et al., 2007). Fifty-nine 
independent hESC lines derived from 17 laboratories in 11 countries were investigated for 
the expression of 17 cell surface antigens and 93 genes, which have been chosen as potential 
markers of undifferentiated stem cells or their differentiated derivatives (Adewumi et al., 
2007). All of the independent hESC lines displayed a common expression profile for a 
specific set of marker antigens, despite the fact that they had different genetic backgrounds 
and were produced by different techniques in each laboratory. All examined cell lines 
expressed a comparable spectrum of cell surface marker antigens characteristic of hESCs, 
suggesting that there is a common set of markers that can be used to monitor, in general, the 
presence of pluripotent stem cells. SSEA-3 and SSEA-4 were expressed in all hESCs tests, 
indicating that these molecules are valuable operational markers of this cell type; however, a 
study revealed that they are not necessary for the pluripotency of hESCs (Brimble et al., 
2007). 

 Mouse ES cells Human ES cells 

SSEA-1 + - 

SSEA-3 - + 

SSEA-4 - + 

TRA-1-60 - + 

TRA-1-81 - + 

GCTM-2 - + 

Alkaline phosphatase + + 

Oct-4 + + 

GDF-3 + ? 

Table 1. Marker expression and growth properties of mouse and primate pluripotent cells 

5. Haematopoietic stem cells 

Blood cells are responsible for continuous preservation and immune protection of every cell 
type of the body. This persistent and brutal work requires blood cells, along with skin cells, 
to have the greatest power of self-renewal of any adult tissue. The stem cells that form blood 
and immune cells are known as haematopoietic stem cells (HSCs). HSCs are among the best 
characterized adult stem cells and the only stem cells being regularly used in clinics. 

www.intechopen.com



 
Stem Cell Characterization 

 

265 

A haematopoietic stem cell is a cell isolated from the blood or bone marrow that can renew 
itself, can differentiate a variety of specialized cells and can mobilize out of the bone marrow 
into circulating blood. Since HSCs look and behave in culture like ordinary white blood cells, it 
has been a challenge to identify them by morphology (size and shape). Even now, scientists 
must rely on cell surface proteins, which generally serve as markers of white blood cells. 

5.1 Haematopoietic stem cell markers 

HSCs have an identity problem. First, the ones with long-term replicating ability are rare. 
Second, there are multiple types of stem cells. Third, the stem cells look like many other 
blood or bone marrow cells. So how do researchers find the desired cell populations? The 
most common approach is through markers that emerge on the surface of cells. 

A variety of markers has been found to help distinguish and separate HSCs. Early marker 
efforts focused on cell size, density and recognition by lectins (carbohydrate-binding 
proteins derived largely from plants) (Bauman et al., 1988), but more recent attempts have 
focused mostly on cell surface protein markers, as defined by monoclonal antibodies. For 
mouse HSCs, these markers contain panels of 8 to 14 different monoclonal antibodies that 
recognize cell surface proteins present on differentiated haematopoietic lineages, such as the 
red blood cell and macrophage lineages (thus, these markers are collectively referred to as 
Lin) (Spangrude et al., 1988; Uchid & Weissman, 1992) as well as the proteins Sca-1 
(Spangrude et al., 1988; Uchid & Weissman, 1992), CD27 (Weissman et al., 2000), CD34 
(Osawa et al., 1996), CD38 (Randall et al., 1996), CD43 (Moore et al., 1994), CD90.1 (Thy-1.1) 
(Spangrude et al., 1988; Uchid & Weissman, 1992), CD117 (c-Kit) (Ikuta & Weissman, 1992), 
AA4.1 (Jordan et al., 1996) and MHC class I (Bauman et al., 1988), and CD150 (Kiel et al., 
2005). 

Human HSCs have been described with respect to staining for CD34 (Civin et al., 1984), 
CD38 (Kiel et al., 2005), CD43 (Moore et al., 1994), CD45RO (Lansdorp et al., 1990), CD45RA 
(Lansdorp et al., 1990), CD59 (Hill et al., 1996), CD90 (Bauman et al., 1988), CD109 
(Sutherland et al., 1996), CD117 (Gunji et al., 1993), CD133 (Miraglia et al., 1997; Yin et al., 
1997), CD166 (Uchida et al., 1997), HLA DR (human) (Srour et al., 1992; Tsukamoto et al., 
1995) and lacking expression  of lineage (Lin) markers (Baum et al., 1992). It is important to 
note that lineage markers are cell surface antigens that can be used for immunophenotyping 
cells of a particular developmental lineage. Cells that do not express these marker antigens, 
or express them at very low levels, are said to be lineage marker negative [lin(-)]. 

While none of these markers recognize functional stem cell activity, combinations (typically 
with 3 to 5 different markers, see examples below) led to the purification of near-
homogenous populations of HSCs. The ability to obtain pure preparations of HSCs, albeit in 
limited numbers, has greatly facilitated the functional and biochemical characterization of 
these important cells. However, now there has been limited impact of these discoveries on 
clinical practice, as highly purified HSCs have only rarely been used to treat patients. The 
irrefutable advantages of using purified cells (e.g., the absence of contaminating tumour 
cells in autologous transplantations) have been offset by practical difficulties and increased 
purification costs. 

HSC assays, when combined with the ability to purify HSCs, have provided increasingly 
detailed insight into the cells and the early steps involved in the differentiation process.  
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Several marker combinations have been developed that describe murine HSCs, including 
[CD117high, CD90.1low, Linneg/low, Sca-1pos] (Morrison & Weissman, 1994), [CD90.1low, Linneg, 
Sca-1posRhodamine123low] (Kim et al., 1998), [CD34neg/low, CD117pos, Sca-1pos, Linneg] (Osawa 
et al., 1996), [CD150 pos, CD48neg, CD244neg] (Kiel et al., 2005) and side-population; cells using 
Hoechst-dye (Goodell et al., 1996). Each of these combinations allows purification of HSCs 
to near-homogeneity. Similar strategies have been widened to purify human HSCs, 
employing markers such as CD34, CD38, Lin, CD90, CD133 and fluorescent substrates for 
the enzyme, aldehyde dehydrogenase. The use of highly purified human HSCs has been 
mostly experimental and clinical use normally employs enrichment for one marker, usually 
CD34. CD34 enrichment yields a population of cells enriched for HSC and blood progenitor 
cells, but still contains many other cell types. However, limited trials in which highly FACS-
purified CD34pos CD90pos HSCs  were used as a source of reconstituting cells have 
demonstrated that rapid reconstitution of the blood system can reliably be obtained using 
only HSCs (Negrin et al., 2000; Vose et al., 2001).  

None of the HSC markers currently used are directly linked to crucial HSC function, and 
consequently, even within species, markers can differ depending on genetic alleles 
(Spangrude & Brooks, 1992), mouse strains (Spangrude & Brooks, 1993), developmental 
stages (Morrison et al., 1995) and cell activation stages (Randall & Weissman, 1997; Sato et 
al., 1999). In spite of this, there is an obvious connection with HSC markers between 
divergent species such as humans and mice. However, unless the current efforts at defining 
the complete HSC gene expression patterns will yield usable markers that are linked to 
essential functions for maintaining the stemness of the cells (Ramalho et al., 2002; Ivanova et 
al., 2002), functional analysis will remain necessary to identify HSCs clearly (Domen et al., 
1999). 

Mouse Human 

CD34low/- CD 34+ 

SCA-1+ CD59+ 

Thy1+/low Thy1+ 

CD38+ CD38low/- 

C-kit+ C-kit -/low 

Table 2. Proposed cell surface markers of undifferentiated haematopoietic stem cells 

5.2 Side population 

When in adult mouse haematopoietic tissue, unpurified bone marrow cells are labelled with 
the membrane-permeate DNA binding dye Hoechst 33342, a very small fraction of cells 
extrudes this dye via a membrane pump (Goodell et al., 1996, 1997, 2001). Analysis of these 
cells on a flow cytometer equipped with an ultraviolet (UV) laser source allows finding of 
these cells; when Hoechst-labelled cells are analysed simultaneously through blue and red 
emission filters, the SP forms a dim tail extending from the normal G1 cell populations. 
These cells can reconstitute the bone marrow of lethally irradiated mice at an ED50 (Effective 
Dose 50) of fewer than 100 cells, indicating that they are highly enriched for totipotent stem 
cells. The SP cell subpopulation is also enriched for cells expressing the murine stem cell 
markers Sca-1 and c-kit, further suggesting that they contain very early haematopoietic 
progenitors (Goodell et al., 1996). 
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The SP fraction expresses an ABC transporter, Bcrp-1(ABCG2), on the cell surface and this 
transporter contributes to efflux of the Hoechst dye from the cells, leading to low levels of 
staining (Zhou et al., 2001). Interestingly, the bone marrow and peripheral immune system 
in ABCG2 transporter knockouts animals, is normal, suggesting that the capability to efflux 
Hoechst 33342 is characteristic of stem cells, but not essential for function (Uchida et al., 
2002). Similar SP subpopulations have been observed in primates and humans (Kim et al., 
2002; Allen et al., 2002). The SP phenotype, therefore, has become a significant marker for 
stem cell activity in the identification of these cells and in their physical isolation by 
fluorescence-activated cell sorting. 

6. Mesenchymal stem cells 

Stem cells from adult tissues are an interesting source for cell therapy, gene therapy and 
tissue engineering. These cells normally have limited lineage potential in comparison to 
embryonic stem cells and this can be advantageous from the viewpoint of controlling cell 
growth and differentiation in certain therapeutic applications (Barrilleaux et al., 2006; Barry 
& Murphy, 2004; Haynesworth et al., 1998). 

In 1961, bone marrow was shown to have haematopoietic progenitor cells (Till & 
McCulloch, 1961). In the early 1970s, many investigators confirmed that bone marrow also 
had cells with fibroblastic morphology that could differentiate into bone, cartilage, fat and 
muscle (Prockop, 1997). These cells have been variously designated as marrow stromal cells 
or mesenchymal stem cells, and abbreviated as ‘‘MSCs.’’ It has been demonstrated that 
individual cells from the bone marrow stromal population possessed multilineage potential 
(Pittenger et al., 1999). Since the recognition of MSCs in bone marrow, cells with the same 
multilineage potential have been isolated from other tissues, including trabecular bone 
(Noth et al., 2002; Sottile et al., 2002) , adipose tissue (Lee et al., 2004; Zuk et al., 2001) and 
umbilical cord (Secco, 2008). The presence of MSCs in adipose tissue has generated special 
interest because harvesting fat tissue is generally less invasive to the donor than harvesting 
bone marrow and larger quantities may be available. Adipose-derived MSCs are also called 
adipose-derived stem cells (ADSCs) and adipose-derived adult stromal or stem cells (ADAS 
cells). But in addition to ADSCs, umbilical cord is also another interesting source for MSCs 
and has recently gained some attention. 

6.1 Mesenchymal stem cell markers 

Cell surface proteins may characterize particular cell types or lineages. In some cases, the 
role of a specific surface protein and its role in the biology of the cell type is known. 
However, often the function of the protein has not been determined, but the protein has 
been shown to be related to a certain type of cell and can serve as a marker. Exclusive 
diagnostic surface markers for human MSCs have not been identified, however, several 
surface markers have been found to be commonly associated with hMSCs, including STRO-1, 
CD105 (endoglin), CD166 (activated leukocyte cell adhesion molecule, ALCAM) (Barry & 
Murphy, 2004; Gronthos et al., 2001) and more recently CD271 (low affinity nerve growth 
factor receptor, LNGFR) (Buhring et al., 2007; Quirici et al., 2002). Surface marker antigens 
can be used to distinguish the cells in a specific preparation and monitor their 
differentiation. Surface markers that are exclusively positive for a different cell type, for 
example, the haematopoietic surface markers CD45 and CD34, can be used to search for 

www.intechopen.com



 
Flow Cytometry – Recent Perspectives 

 

268 

contamination of MSC preparations with other cell types. Surface markers have also been 
used for positive and negative immunoselection of MSC cell populations (Buhring et al., 
2007; Simmons & Torok-Storb, 1991).  

The expressed genes that appear on the hMSC surface include receptors for growth factors, 
matrix molecules and other cells, and point out how the hMSC will interact with its 
environment. The flow cytometry analysis also indicates the homogeneity of the hMSC 
population or whether it is a mixture of different cell types. A wide-ranging, yet incomplete, 
list of the surface molecules on hMSCs is provided in Table 3. 

Surface antigens   

Positive CD13, CD29, CD44, CD49b(Integrin alpha 2,5), CD54(ICAM1), cd71(Transferrin Rec), 
CD73(SH-3), CD105(Endoglin.SH-2), CD106(VCAM), CD166(ALCAM) 

Negative CD3, CD4, CD6, CD9, CD10, CD11a, b, CD14, CD15, CD34, CD45, 
D18 (Integrin beta 2), CD31 (PECAM), CD49d (Intergrin alpha 4), CD50 (ICAM3), 
CD62E (E-Selectin), CD117(c-kit), CD133 

Table 3. Mesenchymal stem cells markers  

7. Neural stem cells 

Neurogenesis is defined as the procedure of generating new neurons from neural stem cells 
(NSCs),which consists of the proliferation and fate determination of NSCs, migration and 
survival of young neurons, and maturation and integration of recently matured neurons 
(Ming & Song, 2005). 

NSCs are defined as undifferentiated cells that developmentally originate from the 
neuroectodermal layer during early embryogenesis. After neural tube closing, these 
undifferentiated precursor cells and their immediate progeny compose the neuroepithelial 
layer that surrounds the lateral, third and fourth ventricles in the midbrain and forebrain, 
and the central canal in the spinal cord. They are the main source of cells that later form all 
major structures of the brain and spinal cord (Maric & Barker, 2004). 

NSCs have recently attracted a great deal of attention because of their inherent ability to 
generate all major classes of cells of the nervous system. NSCs have therefore been supposed 
as a useful resource for potentially repairing and restoring the physiological functions to 
damaged, diseased or aging neural tissues (Gang, 2000; Anderson, 2001; Temple, 2001; 
Vaccarino et al., 2001; Vescovi et al., 2001; Weissman et al., 2001). 

However, with the accelerated interest in and growth of the NSC field, there has been 
growing uncertainty around the understanding of what cell phenotype actually makes up a 
neural stem cell. NSCs in their undifferentiated shape are characterized by a unique bipolar 
morphology that can help identify them from the heterogeneity associated with early 
culture. Derivation from human foetal material gives rise to an apparently mixed population 
of NSCs, exhibiting both classic bipolar NSC morphology and other cell morphologies. 

7.1 Neural stem cell markers 

The major research limitation is that the cellular preparations used as a source of NSCs are 
themselves naturally heterogeneous and consisting of both NSCs and self-renewing, but 
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more lineage restricted, progenitors; accordingly making the retrospective studies of NSC 
biology skewed to an unknown degree. Adding to this is the increasing evidence that 
implies clear functional differences between neural stem and progenitor cells (Galli et al., 
2003; Cai & Rao, 2002). Consequently, there is a critical need to use strategies to identify and 
isolate pure populations of NSCs and other type cells with the aim of resolving their shared 
or unique biological properties with respect to cell-fate determination and lineage 
progression. 

NSCs are immunoreactive for a range of neural precursor/radial glia markers such as 
Nestin, Vimentin, RC2, 3CB2, Sox-2 and brain lipid-binding protein (BLBP). However, 
subtle differences exist between mouse and human NSCs. For example, hNS cells display 
moderate levels of glial fibrillary acidic protein (GFAP) expression unlike mouse NSCs 
(Conti et al., 2005), reflecting the differences between the species in vivo (Malatesta et al., 
2000; Rakic, 2003). 

So, as mentioned above, the cells which are gathered from neural tissue are heterogeneous  
and  identifying  cells is required. Therefore, some markers that are used in studies are listed 
below: 

Neural stem cells GFAP, Nestin, Prominin, SOX-2 

Proliferating cells Ki-67,BrdU, PCNA 

Immature neurons beta Tubulin,DCX,PSA-NCAM 

Radial glia GLAST, RC2 

Mature neurons NeuN, MAP-2, NF, BLBP 

Oligodendrocyte precursors NG2 

Oligdendrocytes O4, MBP, RIP 

Table 4. Neural stem cells markers  

8. Spermatogonial stem cells 

Germ cells are specific cells that transfer the genetic information of an individual to the next 
generation. Making functional germ cells is vital for continuation of the germ line of the 
species. Spermatogenesis, the process of male germ cell production, takes place in the 
seminiferous tubules of the postnatal testis and is an extremely productive system in the 
body. In the mammalian testis, more than 20 million sperms per gram of tissue are created 
daily (Amann, 1986). The high productivity relies on spermatogonial stem cells (SSCs). 
Similar to other kinds of stem cells in adult tissues, SSCs are self-renewing and produce 
daughter cells that assign to differentiate throughout the life of the male (Meistrich & van 
Beek, 1993). In addition, in mammals, SSCs are unique among stem cells in the adult body, 
because they are the only cells that undergo self-renewal and transmit genes to subsequent 
generations. Furthermore, SSCs provide an excellent model to study stem cell biology due to 
the availability of a functional assay that clearly identifies the stem cell (Weissman et al., 
2001). 

Spermatogonial stem cells derive from primordial germ cells (PGCs), which in turn 
originate from epiblast cells (embryonal ectoderm) (Lawson KA et al., 1992). Soon after the 
development of the PGCs, they migrate from the base of the allantois, along the hindgut, 
finally reaching the genital ridges. The PGCs increase in number during migration, when  
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these cells have reached the genital ridges; their number increases to about 10,000 per gonad 

(Tam  and Snow, 1981). PGCs are single cells that under certain culture conditions can make 

colonies of cells which morphologically are similar to undifferentiated embryonic stem cells 

(ESCs) (Resnick JL et al., 1992).When they have arrived in the genital ridges, the PGCs are 

surrounded by the differentiating Sertoli cells, so seminiferous cords are formed. 

The germ cells present within the seminiferous cords are different morphologically from 

PGCs and are called gonocytes (Clermont and Perey, 1957; Sapsford CS et al., 1962; Huckins 

& Clermont, 1968) or various subsequent types of pro-spermatogonia (Hilscher B et al;1974). 

Shortly after birth, the gonocytes restart proliferation to give rise to adult types of 

spermatogonia (Sapsford CS et al., 1962; Huckins & Clermont, 1968; Vergouwen RPFA et al., 

1991; Novi & Saba, 1968; Bellye AR et al., 1977). This happening indicates the start of 

spermatogenesis. 

8.1 Spermatogonial stem cell markers 

Since the establishment of the transplantation technique, several new markers and 

characteristics of spermatogonial stem cells have been identified that can be used to isolate a 

population from the testis that is enriched for spermatogonial stem cells - Tables 5 and 6. 

Markers for positive selection 
of spermatogonial stem cells 

CD9 (Kanatsu-Shinohara M et al., 2004), 
integrin alpha 6 (Shinohara T et al., 1999), 
integrin beta 1 (Shinohara T et al., 1999),  
THY-1, CD24 (Kubota H et al.,  2003) 
 

Markers for negative selection 
of spermatogonial stem cells 

c-kit, MHC1, Ly6A(Sca-1), CD34 (Kubota H et al.,  
2003) 

Table 5. Overview of markers that have been successfully used to isolate spermatogonial 
stem cell populations from the testis by either positive or negative selection 

8.2 Testicular side population 

So far, four groups have separated a side population of testicular cells; meanwhile, different 
results were drawn as to whether these were spermatogonial stem cells. The first group 
reported the existence of a testicular side population. Amazingly, they did not find this 
population to be capable of colonizing a recipient testis after transplantation and concluded 
that it did not contain spermatogonial stem cells (Kubota et al., 2003). 

Then, two other groups found the testicular side population to be enriched for 

spermatogonial stem cells (Falciatori et al., 2004; Lassalle et al., 2004). A fourth group then 

explained that testicular side population cells contain Leydig cell progenitors (Lo et al., 2004; 

de Rooij.,2004) and later failed to find spermatogonial stem cells in this population (Lo et al., 

2005). 

The controversial results can probably be explained by the strictness of the FACS gating and 

the different procedures used to separate the side population. It may be possible to isolate a 

very pure population of spermatogonial stem cells from the testis using the side population 

technique, alone or in combination with membrane markers (van Bragt et al., 2005), 
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however, for this to be possible more research needs to be performed to determine the 

optimal procedures and combinations of markers. 

A(s) and GFRalpha-1(Von Schonfeldt et al., 2004, Hofmann et al, 
2005) FC, MACS, IHC, ISH, WM 

A(s), A (pr) and A(al) PLZF (Buaas et al., 2004) (Costaya et al., 2004) FC, ISH, 
IHC, WM, Mu;  
OCT4 (Pesce et al., 1998) FC, ISH, IHC, WM TG;  
NGN3 (Yoshida et al., 2004) ISH, TG, WM, ISH;  
NOTCH1 (Von Schonfeldt  et al., 2004) RT–PCR, IHC,  
SOX3 (Raverot et al., 2005) KO, IHC;  
c-RET (Meng et al., 2000) IHC, MACS 

A spermatogonia RBM (Jarvis et al., 2005) RT–PCR, IHC 

Spermatogonia EP-CAM (Anderson et al., 1999) FC, IHC, MACS 

Premeiotic germ cells STRA8 (Oulad Abdelghani et al., 1996) RT–PCR, ISH, IHC, 
WM EE2 (Koshimizu et al., 1995) WB , IHC 

Cells on basal membrane and 
interstitium 

CD9 (Kanatsu-Shinohara et al., 2004) FC, IHC, MACS 

Spermatogonia, spermatocytes 
and round spermatids 

GCNA1 (Enders & May., 1994) FC, WB, IHC 

Premeiotic spermatogonia 
and postmeiotic spermatid 

TAF4B (Falender et al., 2005) FC, KO, IHC 

A(s), A-single; A (pr), pair of spermatogonia; A (al), A-aligned spermatogonia; FC, flow cytometry 
(including FACS); Mu, mutant mouse; TG, transgenic mouse; KO, Knockout mouse; IHC, 
immunohistochemistry; WM, whole mount immunostaining; WB, Western blot; ISH, in situ 
hybridization; RT–PCR, reverse transcriptase– PCR; MACS, magnetic-activated cell sorting 

Table 6. Overview of markers used to identify spermatogonial stem cells 

9. Epidermal stem cells 

The skin is the body’s strong outer cover that maintains the inside of the body being moist 
and protects the body from outside assaults by physical, environmental and biological 
factors. Skin and its associated hair follicles and glandular structures, sebaceous and sweat 
glands, are made by a stratified epithelium where the position of the cell within the tissue 
relates to its state of differentiation. The terminally differentiated stratum corneum, hairs 
and oil-filled sebocytes have a limited lifespan and are constantly shed from the body 
throughout the adult life. This continual shedding requires that the epithelium is 
replenished and restored by a stem cell population during normal maintenance of the skin 
and also in response to injury (Fuchs & Horsley, 2008; Watt et al., 2006). By definition, adult 
stem cells (ASCs) have the ability to both self-renew and make differentiated progeny 
(Lajitha, 1979). In healthy skin, epidermal stem cells divide uncommonly, but upon skin 
injury, stem cells quickly divide to repair the lesion. 

There has been important progress in the recognizing of epidermal stem cells (ESCs) since 
the 1970s, when the idea of interfollicular epidermis was firstly suggested; later, much work 
was focused on the specific region of the hair follicle outer root sheath, mainly the bulge 
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region. Hair follicle stem cells are multipotent, capable of giving rise to all cell types of the 
hair, the epidermis and the sebaceous gland (Morris et al., 2004). 

9.1 Epidermal stem cells markers 

Recognizing the ESCs is major progress in the field of skin biology which lets scientists 
examine their biochemical properties, lineage and their relation to other cells. There is 
evidence of ESCs in the bulge region of the hair follicles (Myung et al., 2009a, 2009b; Zhang 
et al, 2009), as well as in the interfollicular epidermis (Abbas & Mahalingam, 2009; Ambler & 
Maatta, 2009). When the epidermis undergoes severe damage, it may fully regenerate from 
the ESCs of the bulge (Watt, 2006). The ESCs present in the bulge and interfollicular 
epidermis are potentially interconvertible, but under normal conditions they only 
differentiate a more confined progeny. 

ESCs can be identified in vivo by label retention or in vitro by clonogenicity, but neither of 
these methods allows easy isolation of stem cells for analysis. Therefore, there is a strong 
need for specific ESCs markers to be identified. 

Identifying stem cells by their cell cycling properties has limited potential. Therefore, several 

research groups have undertaken wide attempts to characterize a set of stem cell specific 

markers. Much of this research has focused on the bulge region, as this is the most clearly 

defined stem cell niche in the skin (Fuchs & Horsley, 2008; Watt et al., 2006). 

Many efforts have been made in recent years to recognize ESCs. The potential candidate hair 

follicle stem cells markers include integrin beta 1, keratin 15, keratin 19, CD71, transcription 

factor p63 and CD34 (Ma et al., 2004). Keratinocyte shows the characteristics of keratin 

intermediate filaments. In the epidermis, keratins 5 and 14 are expressed in the basal layer, 

while keratins 1 and 10 are found in the suprabasal layer. The hair follicle stem cells 

expressed the above keratins and keratins 6, 16 and 17 (Al-Refu et al., 2009; Hoang et al., 

2009), and desmosomal proteins, including desmoglein, may serve as negative markers of 

ESCs (Wan et al., 2003). 

In 2001, p63 was identified as a marker for ESCs; p63 is a transcription factor belonging to a 

family that contains an additional two structurally-related proteins, p53and p73 (Pellegrini 

et al., 2001). Although p53 fulfils an important role in tumour suppression, p63 and p73 

participate in morphogenetic processes (Klein et al., 2010). Their expression is evidenced in 

ESCs. 

CD34 is also a specific marker for bulge keratinocytes. The mouse bulge marker CD34, often 

used for isolating murine bulge cells, is expressed below the bulge region in human hair 

follicles (Ohyama et al., 2006). As mentioned before, CD34 is also a specific marker for 

haematopoietic stem and progenitor cells, however, much more work is needed to clarify 

specific markers for ESCs. 

10. Conclusion  

Flow cytometry is able to rapidly check thousands of cells stained with antibodies 
conjugated to fluorescent dyes. Each cell is individually assessed for a mixture of features 
such as size and biochemical and/or antigenic composition. High accuracy and sensitivity, 
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combined with the large numbers of cells that can be examined, allows resolution of even 
very minor subpopulations from complex mixtures with high levels of statistical validity. 

As mentioned earlier, the main problem with stem cell research is that a specific marker for 
each stem cell is not available for researchers and markers usually are common between 
some cell populations. Therefore, it is clear that we should wait to hear more from future 
studies to resolve this issue and introduce new and specific markers for each individual 
stem cell. 
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