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1. Introduction 

Born in the field of medicine for the analysis of mammalian cell DNA, flow cytometry 
(FCM) was first used in microbiology studies in the late 1970s thanks to optical 
improvements and the development of new fluorochromes (Steen & Lindmo, 1979; Steen, 
1986). Its initial applications in clinical microbiology are dated to the 1980s (Steen & Boyne, 
1981; Ingram et al., 1982; Martinez et al., 1982; Steen 1982; Mansour et al., 1985), and, by the 
end of that decade, FCM had also become popular in environmental microbiology (Burkill, 
1987; Burkill et al., 1990; Yentsch et al., 1983; Yentsch & Pomponi, 1986; Yentsch & Horan, 
1989; Phinney & Cucci, 1989). Today, it is a poweful and commonly used tool for the study 
of aquatic micro-organisms. FCM has thus become a precise alternative to microscopic 
counts, increasing the number of both the micro-organisms detected and the samples that 
can be analyzed. The advantages of FCM include single-cell detection, rapid analysis (5000 
cells per second or more), the generation of multiple parameters, a high degree of accuracy 
and statistically relevant data sets.  

The significance of flow cytometry can be summarized as the measure (-metry) of the optical 
properties of cells (cyto-) transported by a liquid sheath (flow) to a light source excitation 
(most often a laser) (Shapiro, 2003).  

FCM facilitates single cell analyses of both cell suspension, such as eukariotic and 
prokariotic cells, and “non cellular” suspension, such as microbeads, nuclei, mitochondria 
and chromosomes.  

A typical flow cytometer is formed by different units: the light source, the flow cell, the 
hydraulic fluidic system, several optical filters, a group of photodiodes or photomultiplier 
tubes and, finally, a data processing unit (Veal et al., 2000; Longobardi, 2001; Shapiro, 2003; 
Robinson, 2004; Diaz et al., 2010). 

In a flow cytometer, individual cells pass in a single file within a hydrodynamically focused 
fluid stream. Single cells are centered in the stream so that they intercept an excitation 
source, meaning that scatter and/or fluorescence signals can be collected and optically 
separated by dichroic filters and detectors. The data collected are then converted into digital 
information. Finally, software displays data as events along with their relative statistics. 
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The light scattering properties are detected as FALS (forward angle light scatter) and RALS 

(right angle light scatter). FALS, collected in the same direction as the incident light (0-13° 

conic angle with respect to the incident point of the laser), is measured in the plane of the 

laser beam and provides information on cell size, while RALS is usually measured at 90º 

(70-110° conic angle) to the beam and provides data on cell granularity or the internal 

structure of the cell (Hewitt & Nebe-Von-Caron, 2004) (Fig. 1). 

 

Fig. 1. Light fractions scattered and fluorescence by an excited single cell 

Together with the FALS and RALS data, fluorescent information can also be collected, 

which includes signals from autofluorescence or induced fluorescence.  

Each single value can be amplified, and stored events are commonly represented in a 

monoparametric histogram or biparametric dot plot. One-parameter histograms represent 

the number of cells or particles per channel (y-axis) versus the scattering or fluorescence 

intensity (x-axis). Dot plots are the most common graphic representations of the relative 

distribution of different cell populations.  

Regions and gates can be made to better separate and analyze populations of interest. 

Furthermore, on the basis that the dyes used to stain cells have overlapping emission 

spectra, the compensation is normally made to reduce interference. 

While basic instruments may only permit the simultaneous collection of two or three 

fluorescence signals, the more complex and expensive research instruments mean that it is 

possible to obtain more than 14 parameters (Winson & Davey, 2000; Chattopadhyay et al., 

2008) depending on the laser equipment utilized. Selection of the lasers will depend on the 

range of wavelengths needed for the excitation of the selected fluorochromes. 
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Some flow cytometers have the ability to physically separate different sub-populations of 
interest (cell sorting) depending on their cytometric characteristics (stream-in-air), thus 
permitting the recovery and purification of cell subsets from a mixed population for further 
applications (Bergquist et al., 2009; Davey, 2010). 

In natural samples in particular, a very important advantage of FCM is the opportunity to 
analyze micro-organisms with minimal pre-treatment and without the need for cultivation 
steps, also taking into account that the most of natural bacteria are resistant to cultivation 
(Fig. 2). Furthermore, FCM is particularly well-suited for the investigation of natural 
picoplankton. This is because of their small size (<2 µm; Sierbuth, 1978), which renders the 
analysis thereof difficult by more traditional methods. Particularly due to the rapidity with 
which data can be obtained, flow cytometry has been routinely used over the last few 
decades for the analysis of different types of micro-organisms in marine samples (Porter et 
al., 1997; Yentsch & Yentsch, 2008; Vives-Rego et al., 2000; Wang et al., 2010). It is now 
commonly accepted as a reference technique in oceanography. 

Knowledge of seawater microbial diversity is important for understanding community 
structure and patterns of distribution. In the ocean water column, organisms <200 μm 
include a variety of taxa, such as free viruses, autotrophic bacteria (cyanobacteria, which 
include the group known formerly as prochlorophytes), heterotrophic bacteria, protozoa 
(flagellates and ciliates) and small metazoans (Legendre et al., 2001), all of which have 
different morphological, ecological and physiological characteristics.  

Heterotrophic and autotrophic bacteria, viruses and authotrophic picoeukaryotes represent 
marine picoplankton (2- 0,2 μm), while the larger fraction of micro-organisms is divided into 
nano-plankton (20-2 μm) and micro-plankton (200-20 μm). 

Among these taxa, bacteria are very important because they play a crucial role in most 
biogeochemical cycles in marine ecosystems (Fenchel, 1988), taking part in the 
decomposition of organic matter and the cycling of nutrients. Bacteria are also an important 
source of food for a variety of marine organisms (Das et al., 2006), and their activity has a 
major impact on ecosystem metabolism and function. Both autotroph and heterotroph 
micro-organisms constitute two fundamental functional units in ecosystems, where the 
former generally dominate eutrophic systems and the latter generally dominate oligotrophic 
systems (Dortch & Postel, 1989; Gasol et al., 1997). An extensive body of literature has 
documented the great importance of the activity of algae in terms of the size of picoplankton 
in the global primary production of aquatic ecosystems (Craig, 1985; Stockner & Antia, 1986; 
Stockner, 1988; Callieri & Stockner, 2002). Picocyanobacteria are a diverse and widespread 
group of photosynthetic prokaryotes and belong to the main group of primary producers 
(Castenholz & Waterbury. 1989; Rippka, 1988). Picoeukaryotes, meanwhile, are a diverse 
group that is widely distributed in the marine environment, and they have a fundamental 
role in aquatic ecosystems because of their high productivity. Like bacteria, marine viruses 
are thought to play important roles in global and small-scale biogeochemical cycling. They 
are also believed to influence community structure and affect bloom termination, gene 
transfer, and the evolution of aquatic organisms. Viruses are the most numerous ‘lifeforms’ 
in aquatic systems, being about 15 times more abundant than total of bacteria and archaea. 
Data from literaure seem to indicate that the abundance of marine viruses is linked to the 
abundance of their hosts, so that changes in the prokaryotic host populations will affect viral 
abundance (Danovaro et al., 2011).  
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Given that the vast majority of the biomass [organic carbon (OC)] in oceans consists of 
micro-organisms, it is expected that viruses and other prokaryotic and eukaryotic micro-
organisms will play important roles as agents and recipients of global climate change 
(Danovaro et al., 2011). 

Accordingly, the accurate determination of micro-organism abundance, biomass and 
activity is essential for understanding the aquatic ecosystem. Consequently, the aim of this 
review is to provide a general overview of the applications of flow cytometric tecniques to 
studies in marine microbiology. 

 

Fig. 2. Scheme of the main step: from sampling to the flow cytometric data 

2. Autofluorescence analyses  

The opportunity to measure fluorescence by flow cytometry is a key aspect in microbial 
ecology, since light-scattering characteristics alone are not usually enough to uncover much 
detail about either the taxonomic affinities or the physiological status of micro-organisms 
(Davey & Kell, 1996). Phytoplanktonic micro-organisms are an ideal subject for flow 
cytometric analysis because they are naturally autofluorescent by virtue of their 
complement of photosynthetic pigments. Most of these pigments can absorb the blue light of 
the 488 nm line of an Argon laser, meaning that they can be distinguished because of their 
unique fluorescence emission spectra. Standard filter arrangements in a dual laser system 
(488 and 633 nm lasers) can distinguish and quantify chlorophyll fluorescence (red ex, em > 
630 nm), phycoerythrin (PE) fluorescence (blue ex, em 570 nm) and phycocyanine (PC) 
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fluorescence (red ex, em >630 nm) (Callieri, 1996; Callieri & Stockner, 2002). Accordingly, 
flow cytometric data collected from natural phytoplankton assemblages can be used to 
identify and classify phytoplankton based on scattering characteristics (size) and 
fluorescence (pigmentation) (for an example, see Figure 3).  

 

Fig. 3. Autotrophic picoplankton by flow cytometry. Image provided by Daniel Vaulot, 
CNRS, Station Biologique de Roscoff, France 

The use of flow cytometry in aquatic microbial ecology increased our knowledge of the 
structure of phytoplankton assemblages (Olson et al., 1993). Based on flow cytometric 
analyses, phytoplankton are typically divided into Cyanobacteria (Synechococcus, 
Prochlorococcus) and small (pico-) and large eukaryotes. They are also able to define the 
distributions and dynamics of each group (e.g. Olson et al., 1990; Campbell et al., 1994; Li, 
1995; Lindell & Post, 1995; Partensky et al., 1996; Campbell et al., 1997). The phycoerythrin 
(PE)-containing Synechococcus can be distinguished from Prochlorococcus, which are similar 
in size, but do not produce the ‘orange’ fluorescence that is typical of phycoerythrin. 
Eukaryotic phytoplankton, meanwhile, are distinguished based on their larger scatter and 
chlorophyll fluorescence signals.  

The application of flow cytometry to marine samples led to the discovery of a primitive, 
prokaryotic picocyanobacteria of the Prochlorophyta group (Chisholm et al., 1988), with 
divinyl chlorophyll-a (chl-a) as the principal light-harvesting pigment and divinyl 
chlorophyll b (chl-b), zeaxanthin, alfa-carotene and a chl-c-like pigment as the main 
accessory pigments (Goericke & Repeta, 1993). 
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In some cases, the larger cells may be further distinguished based on their scattering 

characteristics (coccolithophorids) or the presence of both PE and chlorophyll (cryptophytes) 

(Olson et al., 1989; Collier & Campell, 1999). 

Many authors have reported the distributions and dynamics of each photosynthetic group 

in the water column in different marine environments (Li, 1995; Campbell & Vaulot, 1993; 

Vaulot & Marie, 1999). As both cyanobacteria and picoeukaryotes are widely distributed in 

the marine environment, they play a fundamental role in aquatic ecosystems because of 

their high productivity.  

Cyanobacteria are a diverse group of unicellular and multicellular photosynthetic 

prokaryotes (Castenholz & Waterbury, 1989; Rippka, 1988); they are often referred to as 

blue-green algae, even though it is now known that they are not related to any of the other 

algal groups.  

Seasonal patterns of picoplankton abundance have been observed in many studies, revealing a 

strong relation with water temperature. A study on picophytoplankton populations conducted 

by Alonso and colleagues (2007) in north-west Mediterranean coastal waters showed a peak 

during the winter for picoeukaryotes, and peaks in spring and summer for Synechococcus. 

Meanwhile, Prochlorococcus was more abundant from September to January. 

Zubkov et al. (2000) found that Prochlorococcus spp. were the dominant cyanobacteria in the 

northern and southern Atlantic gyres and the equatorial region, giving way to Synechococcus 

spp. in cooler waters. Synechococcus cells also become more numerous and even reach 

blooming densities near the tropical region affected by the Mauritanian upwelling. Finally, 

the concentrations of Picoeukaryotes tend to be at their height in temperate waters.  

The small coccoid prochlorophyte species, Prochlorococcus marinus, were found to be 

abundant in the North Atlantic (Veldhuis & Kraay, 1990), the tropical and subtropical 

Pacific Ocean (Campbell et al., 1994), the Mediterranean (Vaulot et al., 1990) and in the Red 

Sea (Veldhuis & Kraay, 1993).  

A monitoring study conducted in the Central Adriatic Sea (authors’ unpublished results) 

revealed the presence of cyanobacteria, pico-eukariotes and nano-plankton (Fig. 4), while 

prochlorococcus were absent throughout the entire year.  

Other authors (Marie et al., 2006) have underlined the similarity of the distribution of 

picoeukariotes to that of total chlorophyll-a in the Mediterranean Sea, with maximum 

concentrations reaching around 2x102 cell/ml.  

Shi and co-authors (2009) have characterized photosynthetic picoeukaryote populations by 

flow cytometry in samples collected in the south-east Pacific Ocean, registering abundances 

from 6x102 to 3,7x104 cell/ml. Meanwhile, 18S rRNA gene clone libraries were constructed 

after flow sorting. 

3. Total cell counting 

Total cell counting is one of the most important functions of flow cytometry. The rapidity 
and accuracy of the data obtained overcome the limitations (e.g. time-consuming, 
subjectiveness linked to the operator) of other techniques such as epifluorescence microscopy. 
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Fig. 4. Example of dot plot showing autothrophic micro-organisms in the Central Adriatic 
Sea 

Flow cytometric countings can be determined with high statistical confidence. Some flow 
cytometers are equipped with volumetric counting hardware that enables the absolute cell 
count to be made through a predefined volume. Yet most cytometers do not have this 
equipment, and, in such circumstances, cell counting is perfomed by: 1) the addition of 
synthethic counting beads; 2) the calibration of the flow rate; and 3) weighing the sample 
before and after conducting any analyses. The addition of precounted beads is now also 
possible with commercially available beads for “absolute counting” (e.g. Coulter Flowcount 
beads, Cytocount counting beads, DakoCytomation, and Trucount tubes by Becton 
Dickinson). Accompanying datasheets provide the exact number per µl of beads to use 
(Cantineaux et al., 1993; Brando et al., 2000, Manti et al., 2008). The number of cells per 
microlitre is obtained by the following formula:  

Number of cells = (cell events/beads events)*  
(bead number/µl)* Dilution Factor 

Other methods have proposed the use of standard beads (Polysciences latex beads), as well 
described by Gasol and del Giorgio in 2000. Briefly, the beads have to be counted every day 
and must be sonicated to avoid aggregation.  

Flow rate calibration can be performed by weighing a tube containing water, processing 
various volumes, estimating the time needed for each volume to go through and then 
reweighing the tube. This makes it possible to calculate the mean of the flow rate per minute 
(Paul, 2001).  

The third method is comprised of estimating volume differences: the volume of the sample 
is measured by a micro-pipette before and after the run through the flow cytometer. 
However, these measurements are not as precise as those obtained using weight differences.  

The flow cytometric counting of non-fluorescent cells is possible through the staining of 
nucleic acids (or other cellular components) with fluorescent dyes. There are commercially 
available probes that allow the direct counting of marine bacteria, such as, for example, the 
nucleic acid dyes Syto-9, Syto-13 (Lebaron et al., 1998; Vives-Rego et al., 1999), SYBR Green I 
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and II (Lebaron et al., 1998; Marie et al., 1997), Pico Green (Sieracki et al., 1999; Marie et al., 
1996), TO-PRO 1, and TOTO-1 (Li et al., 1995). Their use permits the separation of cells from 
abiotic particles and background signals in a water sample. An initial selection step is 
represented by the threshold, usually in the typical channel fluorescence (e.g. green 
fluorescence when SYBR Green I is used). In order to better visualize cells, a dot plot 
containing the scatter signal (FCS or SSC) against fluorescence signals (green or red 
fluorescence) is recommended.  

Figure 5 shows a marine sample stained with SYBR Green I and analyzed by a FACScalibur 
flow cytometer (Becton Dickinson). 

 

Fig. 5. Dot plot SSC vs. FL1 showing bacteria population stained with SYBR Green I 

The affinity of the cyanine dyes, TOTO- 1 and YOYO- 1, and their monomeric equivalents, 
YO-PRO- 1 and TO-PRO-l, decreases significantly with increasing ionic strength, meaning 
that their use is inappropriate for the analysis of seawater samples (Marie et al., 1996). Other 
dyes, such as the SYBR Greens I and II, SYTOX Green and the SYTO family, are less 
dependent on medium composition and can therefore be used to count marine bacteria 
(Marie et al., 1999b; Lebaron et al., 1998). As SYBR Green I (SYBR-I) has a very high 
fluorescence yield, its use is recommended for enumerating bacteria from marine samples 
(Table 1).  

Zubkov and collegues (2000) determined the total number of picoplankton in marine 
samples using the fluorochromes TOTO-1 iodide and SYBR Green I. These dyes bind 
strongly to nucleic acids, but SYBR Green 1 penetrates cell membranes, whereas it is 
necessary to use detergent to aid the penetration of TOTO-1 into cells (Li et al., 1995; Marie, 
et al., 1996; Marie, et al., 1997). The number of bacteria found in subsamples stained by SYBR 
Green I were the same as the TOTO-1 counts for the same samples. The results obtained 
were evidence that the intensity of fluorescence with SYBR Green 1 was greater than with 
TOTO-1; at the same time, SYBR Green I improved the recognition of cells with low 
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staining, helping the separation of their signal from the background noise level. This 
confirms that SYBR Green is more adaptable for the analysis of marine bacteria. 

In a study reported by Gregori and colleagues (2001), SYBR Green II expresses a higher 
selectivity for RNA, with a quantum yield of 0.54, while also maintaining a strong affinity 
for double-stranded DNA, with a quantum yield of 0.36, about half that of SYBR Green I. 

In 1999, Gasol and co-workers published a study on a comparison of different nucleic acid 
dyes and techniques, such as flow cytometric and epifluorescence microscopy. They found 
that Syto13 counts correlate well with DAPI and SYBR Green I counts, generating slightly 
lower fluorescence yields than those of the other fluorochromes. This was particularly true 
in seawater, meaning that, without dismissing the potential of other stains, this 
fluorochrome is a viable alternative to the total counting of marine planktonic bacteria.  

Alonso and co-authors published (Alonso et al., 2007) a monthly study in Blanes Bay, which 
revealed that the abundance of heterotrophic prokaryotes (ranging from 0,5 x106 to 1,5x106 
cell/ml) roughly followed the pattern of Chl-a.  

In general, heterotrophic bacterial abundances followed the distribution of total 
picophytoplankton, revealing seasonal changes in their distribution, as reported for the 
subtropical northern Pacific Ocean (Campbell & Vaulot, 1993; Zubkov et al., 2000).  

Lasternas and colleagues (2010) produced results from a cruise on the Mediterranean Sea 
during the summer of 2006. The composition and viability of pelagic communities were 
studied in relation to nutrient regimes and hydrological conditions. It was found that the 
picoplankton fraction dominated the pelagic community across the study region, with 
bacterioplankton being the most abundant (mean ± SE 7,73 ± 0,39x105 cells/ml) component. 

4. Detection of viruses  

Viruses control microbial and phytoplankton community succession dynamics (Fuhrman & 
Suttle, 1993; Suttle, 2000; Castberg et al., 2001; Weinbauer, 2004; Weinbauer & 
Rassoulzadegan, 2004; Sawstrom et al., 2007; Rohwer & Thurber, 2009). They also play an 
important role in nutrient (Wilhelm & Suttle, 1999) and biogeochemical cycling (Fuhrman, 
1999; Mathias et al., 2003; Wang, et al., 2010).  

Initial studies of viruses in aquatic environments were performed using either transmission 
electron microscopy (TEM) (Bergh et al., 1989; Borsheim et al., 1990; Sime-Ngando et al., 
1996; Field, 1982) or epifluorescence microscopy (EFM) (Hennes & Suttle, 1995; Chen et al., 
2001; Danovaro et al., 2008). The use of EFM combined with the development of a variety of 
highly fluorescent nucleic acid specific dyes soon became the accepted study method, 
because it involved faster and less expensive technology. Nowadays, viruses (especially 
bacteriophages) are still typically counted by EFM using fluorochromes such as SYBR Green 
I, SYBR Green II, SYBR Gold or Yo- Pro I (Xenopoulos & Bird, 1997; Marie et al., 1999a,b; 
Shopov et al., 2000; Hewson et al., 2001a,b,c; Chen et al., 2001; Middelboe et al., 2003; Wen et 
al., 2004; Duhamel & Jacquet, 2006). These techniques are selective for viruses that are 
infectious to a specific host, but they are very time-consuming.  

In 1999, however, Marie and colleagues (Marie et al., 1999a,b) successfully proposed the use 
of flow cytometry for the analysis of viruses in the water column. Other authors then 
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applied FCM to virus studies (Marie et al., 1999a,b; Brussaard et al., 2000; Chen et al., 2001; 
Jacquet et al., 2002a,b).  

The protocol proposed by Marie and collagues in 1999 included the use of SYBR Green I to 
stain virus nucleic acids. This protocol was revised and optimized by Broussard in 2004.  

Viruses are too small in particle size (less than 0.5 micron) to be discriminated solely on the 
basis of their light scatter properties using the standard, commercially available, benchtop 
flow cytometers. As most flow cytometers are not designed for the analysis of these small 
and abundant particles, attention to detail must be paid to obtain high quality data. It is, 
therefore, crucial to determine the level of background noise with the use of an adequate 
negative control such as a 0. 2μm pore-size filtered liquid of a comparable composition.  

Brussaard (2004) has shown that a variety of viruses of different morphologies and genome 
sizes could be detected by flow cytometry. Indeed, flow cytometry (FCM) data suggested 
that two virus groups (V-I and V-II) were present in natural water samples (Marie et al., 
1999; Wang et al., 2010).  

In their research, Wang et al. (2010) revealed a viral abundance ranging from 7,06x106 VLP 
ml-1 to 5,16x107 VLP ml-1, with the average being 2,47 x107 VLP ml-1. The V-II group was the 
dominant virioplankton, and had lower DNA compositions than the V-I group.  

5. DNA content 

The use of nucleic acid dyes for the detection of bacterioplankton cells revealed a tendency 
to cluster into distinct fractions based on differences in individual cell fluorescence (related 
to the nucleic acid content) and side and forward light scatter signals. There were at least 
two major fractions: cells with a high nucleic acid content (HNA cells) and cells with a low 
nucleic acid content (LNA cells) (Robertson & Button, 1989; Li et al., 1995; Marie et al., 1997; 
Gasol et al., 1999; Troussellier et al., 1999; Zubkov et al.,2001; Lebaron et al., 2001; Sherr et 
al., 2006) (Fig. 6). In a recent study, Bouvier and co-authors (2007) underlined that despite 
the large presence of these clusters in aquatic ecosystems (fresh to salt water, eutrophic to 
oligotrophic environments), there is still no consensus among scientists about their 
ecological significance.  

The results obtained by Bouvier and others (Bouvier et al., 2007) support the notion that it is 
more likely that the existence of these two fractions in almost all of the bacterioplankton 
assemblages is the result of complex processes involving both the passage of cells from one 
fraction to another as well as bacterial groups that are characteristic of either HNA or LNA 
fractions. 

The findings by Zubkov et al., (2007), which were based on the results of fluorescence in situ 
hybridization, revealed that 60% of heterotrophic sorted bacteria, with low nucleic acid 
content, were comprised of SAR11 clade cells.  

The SAR11 clade has the smallest genome size among free-living bacteria (Giovannoni et al., 
2005), and they are also the most abundant class of the bacterial ribosomal RNA genes 
detected in seawater DNA by gene cloning. 

Many authors have presented data about the presence of HNA and LNA, not only in marine 
environments, but also in freshwater (Boi et al., in prep.) and in lakes (Stenuite et al., 2009).  
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Fig. 6. Dot plot SSC vs. FL1 showing HNA and LNA cells stained with SYBR Green I 

6. Physiological states 

There is a wide and extensive variety of stains used in combination with FCM, with different 
degrees of specificity (Collier & Campell, 1999). Numerous classifications are available 
according to several criteria (Davey & Kell, 1996; Vives –Rego et al., 2000; Shapiro, 2000). 

The most valuable source lists on fluorescent probes for flow cytometry are the Handbook of 
Fluorescent Probes and Research Chemicals (Haugland, 1996) and the catalogue of Molecular 
Probes, Inc. (Eugene, OR, USA; www.invitrogen.com). The current edition, which is the 11th, 
lists a range of dyes with different spectral characteristics and high specificities for nucleic 
acids. 

Some fluorochromes bind specifically to cell molecules (nucleic acids, proteins and lipids) 
while increasing their fluorescence. Others accumulate selectively in cell compartments, or 
modify their properties through specific biochemical reactions in response to changes in the 
environment, such as pH, membrane polarization (cyanines, oxonols) or enzymatic activity 
(fluorogenic substrates) (Fig. 7). 

A number of commercial kits are available which allow microbiologists to enumerate and 
determine physiological states and Gram status (Davey et al., 1999; Haugland et al., 1996; 
Winson & Davey, 2000). 

Knowledge of the living/non-living and active/inactive states of cell populations is 
fundamental to understanding the role and importance of micro-organisms in natural 
ecosystems. Several probes, or a combination thereof, have been used to assess bacteria 
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physiological states (Lebaron et al., 1998; Joux & Lebaron, 2000; Gregori et al., 2001). Among 
others, an interesting application of FCM in microbiology is the determination of viability, 
even if this is one of the most fundamental properties of a cell that is difficult to define and 
measure.  

 

Fig. 7. Different cellular target sites for physiological and taxonomic fluorescent dyes from 
Joux & Lebaron, 2000 

Many approaches are based on membrane integrity, such as the Life/Dead kits (e.g. the 
LIVE/DEAD BacLight bacterial viability kit from Molecular Probes) that are based on the 
rely of the propidium iodide based assessment of dead cells. Usually, a combination of 
SYBR Green dyes or Sytox 9 and PI is used to analyze dead cell numbers.  

Barbesti and co-authors (2000) proposed a protocol for the assessment of viable cells based 
on nucleic acid double staining (NADS). The NADS protocol uses, simultaneously, a 
permeant dye, such as SYBR Green (Lebaron et al., 1998), and an impermeant one, as 
propidium iodide (Jones & Senft. 1985; Lopez-Amoros, 1997; Sgorbati et al., 1996; Williams 
et al., 1998). The efficiency of the combined staining is magnified by the energy transfer from 
SYBR Green to PI when both are bound to the nucleic acids, as described by Barbesti and 
colleagues (2000). Both dyes can be readily excited with the blue light from the laser or arc 
lamp of relatively simple and portable flow cytometers; the green nucleic acid probes lead to 
energy transfer from SYBR Green to the red PI fluorescence in the case of double staining 
(Barbesti et al., 2000; Falcioni et al., 2008; Manti et al., 2008). In order to better distinguish 
dead from viable cells, a dot plot containing fluorescence signals (green vs red fluorescence) 
is recommended (Fig. 8). Membrane intact cells that are considered to be viable emit a green 
fluorescence that is only due to the incorporation of SYBR Green. Cells with a damaged 
membrane will enable PI to enter and to bind some nucleic acids, with a corresponding 
increase in red and a decrease in green fluorescence. 
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In 2001, Gregori and co-authors optimized the double staining protocol, comparing two 
dyes belonging to the SYBR Green family. SYBR Green II expresses greater selectivity for 
RNA, while keeping a strong affinity for double-stranded DNA of about half that of SYBR 
Green I. The authors thus concluded that using SYBR Green II on marine samples was 
better.  

 

Fig. 8. Dot plot FL1 vs. FL3 of a marine sample stained with SYBR Green I and PI  

Cell viability can be tested by assessing esterase activity or bacterial respiration.  
5-cyano-2,3-ditolyl tetrazolium chloride (CTC) in flow cytometry has been used to assess 
‘‘active bacteria’’ in seawater (del Giorgio et al., 1997), and is referred to cells that have an 
active electron transport system and are capable of reducing the tetrazolium salt (CTC) 
(Table 1). Because CTC is reduced to a brightly fluorescent formazan, it is possible to 
enumerate respiring cells with great sensitivity, precision and speed. 

While the use of this method has increased over the last few years (e.g. Sherr et al. 1999; 
Jugnia et al., 2000; Haglund et al., 2002), there have also been a number of studies that are 
highly critical of CTC as a means of distinguishing metabolically active cells (e.g. Ullrich et 
al., 1996, 1999; Karner & Fuhrman, 1997; Servais et al., 2001). Some authors have stated that 
CTC could be toxic for some bacteria, while in some cases the results obtained would 
underestimate the real activity of bacteria, especially in natural seawater (Gasol & del 
Giorgio, 2000). Although abundances of CTC+ cells in natural samples tend to be well 
correlated to measures of either bacterial production (e.g. del Giorgio et al., 1997; Sherr et al., 
1999) or respiration (Smith, 1998), the proportion of total cells scored as CTC+ tends to be 
too low, generally less than 20%, and sometimes less than just a few percent (Smith & del 
Giorgio, 2003). 

5 (and 6)-carboxyfluorescein diacetate (CFDA) was employed to detect esterase activity in 
living cells in seawater samples. CFDA is a non-fluorescent molecule, but upon intracellular 
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enzymatic cleavage produces a green fluorescent compound that can be detected by FCM 
(Gasol & del Giorgio, 2000) (Table 1). Some authors (Yamaguchi et al., 1994; Schupp & 
Erlandsen, 1987; Yamaguchi & Nasu, 1997) coupled 6CFDA with proidium iodide to 
distinguish active from inactive cell membranes. Accordingly, after 6CFDA-PI double 
staining, bacterial cells with esterase activity display only green CFDA fluorescence, while 
damaged cells show only red PI fluorescence.  

DYE EX/EM REFERENCE 

SYTO- 13 485-508/ 
498-527 

Andrade et al., 2003 
Gasol et al., 1999 
Gasol & del Giorgio, 2000 
Alonso et al., 2007 

SYBR Green 
I/II 

497-520 Lebaron et al., 1998, Gregori et al., 
2001,  
Marie et al., 1997 

Propidium 
Iodide (PI) 

536-623 Barbesti et al., 2000  
Gregori et al., 2001 

 
 
NUCLEIC 
ACID 
PROBES 

TOTO-1 509-533 Guindulain et al., 1997; Zubkov et 
al., 2000 

DEHYDROGENASE
ACTIVITY 

CTC 480/580-
660 

Gasol et al., 1995, Sherr et al. 
1999, Servais et al., 2001; Pearce et 
al., 2007 

ENZIMATIC 
ACTIVITY 

CFDA 492/517 Gregori et al., 2001; Pearce et al., 
2007 

Table 1. Shows some available dyes used for the analysis of marine micro-organisms, their 
excitation and emission maximal wavelengths, along with some selected references 

Another interesting application of FCM to microbiology requires the use of fluorochromes 
conjugated to antibodies or oligonucleotides for the detection of microbial antigens or DNA 
and RNA sequences to directly (Vives-Rego et al., 2000; Amann et al., 1990a; Marx et al., 
2003; Temmerman et al., 2004) identify micro-organisms in natural ecosystems (Amann et 
al., 1990b; Amann et al., 2001; Wallner et al., 1997; Biegala et al., 2003). 

7. Bacteria identification with antibodies and nucleic acid probes (FISH) 

Immunodetection techniques utilize the specificity of the antibody/antigen association as a 
probe for recognizing and distinguishing between micro-organisms. Parallel, immunological 
detection methods can provide quantitative data, including in relation to the sensitivity of 
the method used. The application of immunology in phytoplankton research started when 
Bernhard and co-authors (1969) developed antibodies against two species of diatoms, but it 
was in the 1980s that immunological techniques for species identification were actually 
applied in marine research. The first species investigated were prokaryotes (Dahl & Laake, 
1982; Campbell et al., 1983); later Hiroish et al. (1988) and Shapiro et al. (1989) conducted 
studies on eukaryotic organisms. 

The use of antibodies in combination with FCM is a powerful tool for the specific detection 
and enumeration of micro-organisms in medical, veterinary and environmental microbiology 
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(Cucci & Robbins, 1988; Porter et al., 1993; Vrieling et al., 1993a; McClelland & Pinder, 1994; 
Vrieling & Anderson, 1996; Kusunoki et al., 1998; Chitarra et al., 2002). Antibodies also have 
a role to play in determinations of the physiological characteristics of cells; Steen and 
colleagues used fluorescently labelled antibodies as part of a flow cytometric method of 
antigenicity determination (Steen et al., 1982) that may vary according to growth conditions 
(Davey & Winson, 2003). 

The availability of antibodies against bacteria is limited mostly to the research and 
identification of pathogens (e.g. Kusunoki et al., 1996; Kusunoki et al., 1998; McClelland & 
Pinder, 1994; Tanaka et al., 2000). 

Barbesti and colleagues (Barbesti et al., 2000) performed bacterial viability measurement and 
identification tests using a Cy5-labelled monoclonal antibody combined with SYBR Green I 
and propidium iodide. 

A recent study (Manti et al., 2010) conducted in natural seawater samples reports the 
immunodetection of Vibrio parahaemolyticus and an examination of the specificity and 
sensitivity of the polyclonal antibody used. 

As described above for antibodies, oligonucleotides allow the detection and recognition of 
micro-organisms in a mixed population. The phylogenetic heterogeneity of micro-organisms 
can be studied with analyses of ribosomal RNA sequences. Fluorescence in situ 
hybridization (FISH) is based on the omology of an oligonucletide probe with a target 
region in an individual microbial cell. 

In natural samples, however, the signal derived from the use of labelled oligonucleotide 
probes is often undetectable because of the low rRNA content. Among other methods, FISH 
with horseradish peroxidase (HRP)-labelled oligonucleotide probes and tyramide signal 
amplification, also known as catalyzed reporter deposition (CARD), is especially suitable for 
aquatic habitats with small, slow growing, or starving bacteria (Diaz et al., 2007). 

Oligonucleotide probes labelled (directly or indirectly) with fluorescent markers can be 
detected by epifluorescence and confocal microscopy, or by flow cytometry (Giovannoni et 
al, 1988; De Long et al, 1989; Amann et al., 1990a; 1990b; 2001; Pernthaler et al., 2001). 
Several publications have reported the combination of rapidity and the multi-parametric 
accuracy of flow cytometry, with the phylogenetic specificity of oligonucleotide FISH probes 
as a powerful emerging tool in aquatic microbiology (Yentsch & Yentsch, 2008; Hammes & 
Egli, 2010; Muller & Vebe-Von-Caron, 2010; Wang et al., 2010). 

The combination of FCM and FISH has been successfully applied to describe microbial 
populations dispersed in a liquid suspension derived from different media (Lim et al., 1993; 
Joachimsthal et al., 2004; Rigottier-Gois et al., 2003; Barc et al., 2004; Lange et al., 1997; 
Wallner et al., 1993 and 1995; Miyauchi et al., 2007).  

Only a few studies (Lebaron et al., 1997; Gerdts & Luedk, 2006; Kalyuzhnaya et al., 2006; 
Yilmaz et al., 2010) have combined FISH and FCM for the analysis of acquatic microbial 
communities. The main limitation of combining CARD-FISH and FCM is that the former is 
commonly performed and optimized on a solid support (i.e. polycarbonate membrane 
filters; Pernthaler et al., 2002), while the latter requires liquid samples with a well dispersed 
suspension of single cells (Shapiro, 2000). Schonhuber and co-authors (1997) have bridged 
the two methodologies while working with liquid suspensions, although the proposed 
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permeabilization procedure was not ideal for the detection of large bacterial groups with 
different cell walls. Meanwhile, Biegala and colleagues (2003) successfully performed a 
CARD-FISH-FCM protocol for the detection of marine picoeukaryotes, while Sekar and co-
authors (2004) proposed the enumeration of bacteria by flow cytometry identified by in situ 
hybridization. 

A recent study (Manti et al., 2011) proposed an improved protocol for the flow cytometric 
detection of CARD-FISH stained bacterial cells, remarking on the importance of improving 
the identification and quantification of phylogenetic populations within heterogeneous, 
natural microbial communities. 

8. Conclusions 

Flow cytometry is a powerful technique with a wide variety of potential applications in 
marine microbiology. Due to its characteristics, FCM has contributed to the knowledge of 
free living planktonic microbial community structures and their distribution.  

The employment of new techniques and probes normally used in other ecosystems or in 
clinical microbiology could enhance the field of application of flow cytometry and so the 
studies of marine assemblages.  

Furthermore, modern flow cytometers also provide quantitative data and image analyses 
for the detection of microbial subgroups, thereby extending the field of flow cytometry 
applications (Andreatta et al., 2004; Olson & Sosik, 2007). 

Last but not least, the development of a portable and cheap flow cytometer, and/or imaging 
system with a reliable interpretation may render the monitoring of microbial communities 
in marine ecosystems faster and efficient. 
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