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1. Introduction

Quantum dots have attracted significant interest in recent years. Quantum dots attractive
candidates as the building blocks for a quantum computer due to their potential to readily
scale. The number of electrons can be reduced down to one in a gate-defined quantum dot.

High frequency operations on quantum dot systems have been used to observe new
phenomena such as coherent charge oscillations and elastic tunneling behavior. Observation
of these phenomena is made possible by (in situ) control of the rate of tunneling Γ between the
quantum dots.

Measurements with a noninvasive detector in a double quantum dot system (qubit) has been
extensively realized (Astley et al., 2007). A group of electrons is placed in a double quantum
dot, whereas the detector (a quantum point contact) is localized near one of the dots. The
quantum point contact acts as a measuring device.

One remaining key question is the theoretical study of the tunneling dynamics after the
observation in a double quantum dot system (Cruz, 2002). Electrons can be projected onto
a well define quantum dot after the observation takes place, if we consider the two quantum
dots highly isolated (Ferreira et al., 2010).

In addition, we know that if two electron subbands are occupied, the electrical properties
can be strongly modified due to the carrier-carrier interaction between subbands (Shabami et
al., 2010). In this work we shall extend the Coulomb effect analysis when two subbands are
occupied in the quantum dots. Then, the tunneling process could be modified due to the using
of two different wave functions for two electron groups that interact between each other.

2. Model

It has been found that there are two distinct energy bands within semiconductors. From
experiments, it is found that the lower band is almost full of electrons and the conduct by
the movement of the empty states. In a semiconductor, the upper band is almost devoid of
electrons. It represents excited electron states promoted from localized covalent bonds into
extended states. Such electrons contribute to the current flow. The energy difference between
the two bands is known as the band gap. Effective masses of around 0.067m0 for an electron
in the conduction bands and 0.6m0 for a hole in the valence band can be taken in GaAs.
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Fig. 1. A schematic illustration of the proposed experiment in the semiconductor quantum
dot system. Double quantum dot system in absence of external bias.

Fig. 2. Conduction band potential and carrier wave functions at t = 0.1 ps. We have taken an
initial carrier density equal to n1 = 3.0 × 1011cm−2 and n2 = 0.0 × 1011cm−2.
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Fig. 3. Conduction band potential and carrier wave functions at t = 0.2 ps. We have taken an
initial carrier density equal to n1 = 3.0 × 1011cm−2 and n2 = 0.0 × 1011cm−2.

The effective mass approximation is for a bulk crystal. The crystal is so large with respect to
the scale of an electron wave function that is efectively infinite. In such a case, The Schrödinger
equation has been found to be as follows:

−
h̄2

2m∗

∂2

∂z2
ψ(z) = Eψ(z) (1)

This equation is valid when two materials are placed adjacent to each other to form a
heterojunction. The effective mass could be a function of the position and the band gaps of the
materials can also be different. The discontinuity can be represented by a constant potential
term. Thus the Schrödinger equation would be generalized to

−
h̄2

2m∗

∂2

∂z2
ψ(z) + V(z)ψ(z) = Eψ(z) (2)

The one dimensional potential V(z) represents the band discontinuities at the heterojunction.
The one dimensional potential is constructed from alternanting layers of dissimilar
semiconductors, then the eletron or hole can move in the plane of the layers.

In this case, all the terms of the kinetic operator are required, and the Schrödinger equation
would be as follows:

−
h̄2

2m∗ (
∂2

∂x2
ψ +

∂2

∂y2
ψ +

∂2

∂z2
ψ) + V(z)ψ = Eψ (3)

As the potential can be written as a sum of independent functions, i.e.

V = V(x) + V(y) + V(z) (4)

the eigenfunction of the system can be written as:

ψ(x, y, z) = ψx(x)ψy(y)ψz(z) (5)
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Fig. 4. Probability density in the left quantum well versus time at different carrier densities.
n1 = 0.1 × 1011 cm−2 and n2 = 0 × 1011 cm−2.

and using this in the above Schrödinger equation, then:

−
h̄2

2m∗ (
∂2ψx

∂x2
ψyψz +

∂2ψy

∂y2
ψxψz +

∂2ψz

∂z2
ψxψy) + V(z)ψxψyψz = Eψxψyψz (6)

The last component is identical to a one-dimensional equation for a confining potential V(z).
The x and y components represent a moving particle and the wave function must reflect a
current flow and have complex components. Then,

−
h̄2

2m∗

∂2

∂x2
eikx x = Exeikx x (7)

and thus,

−
h̄2

2m∗

∂2

∂y2
eikyy = Eyeikyy (8)

where
h̄2

2m∗ kx
2 = Ex (9)
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Fig. 5. Probability density in the left quantum well versus time at different carrier densities.
n1 = 1 × 1011 cm−2 and n2 = 0 × 1011 cm−2.

and
h̄2

2m∗ ky
2 = Ey (10)

An infinity extent in the x − y plane can be summarized as:

ψx,y(x, y) =
1

A
ei(kx x+kyy) (11)

and

Ex,y =
h̄2k2

x,y

2m∗ (12)

Therefore, while solutions of the Schrödinger equation along the axis of the one-dimensional
produce discrete states of energy Ez in the plane of a semiconductor quantum well, there is a
continuous range of allowed energies.

In order to study the dynamics in the quantum well direction, we need to solve the
time-dependent Schrödinger equation associated with an electron in a well potential for each
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Fig. 6. Probability density in the left quantum well versus time at different carrier densities.
n1 = 2 × 1011 cm−2 and n2 = 0 × 1011 cm−2.

subband. The ψn1 and ψn2 wave functions for each conduction subband in the z axis will be
given by the nonlinear Schrödinger equations Cruz (2011)

ih̄
∂

∂t
ψn1 (z, t) =

[

−
h̄

2

2m∗

∂2

∂z2
+ V(z) + VH

(

| ψn1 |
2, | ψn2 |

2
)

]

ψn1 (z, t), (13)

ih̄
∂

∂t
ψn2 (z, t) =

[

−
h̄

2

2m∗

∂2

∂z2
+ V(z) + VH

(

| ψn1 |
2, | ψn2 |

2
)

]

ψn2 (z, t), (14)

where the subscripts n1 and n2 refer to the subband number, respectively, and V(z) is the
potential due to the quantum wells. The m∗ is the electron effective mass. VH is the Hartree
potential given by the electron-electron interaction in the heterostructure region. Such a
many-body potential is given by Poisson’s equation Cruz (2002)

∂2

∂z2
VH(z, t) = −

e2

ε

[

n1 |ψn1 (z, t)|2 + n2 |ψn2 (z, t)|2
]

, (15)
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Fig. 7. Probability density in the left quantum well versus time at different carrier densities.
n1 = 5 × 1011 cm−2 and n2 = 0 × 1011 cm−2.

where ε is the GaAs dielectric constant and n1 and n2 are the carrier sheet densities in each
subband. Considering the Fermi energy εF, the carrier densities can be easily calculated. If
εF < ε2, we have

n1 = (εF − ε1)ρ0 (16)

and n2 = 0 and if εF > ε2, we have

n1 = (εF − ε1)ρ0 (17)

and
n2 = (εF − ε2)ρ0. (18)

In such a case, L is the quantum well width,

εn = h̄
2
n

2
π

2/2m
∗

L
2 (19)

approaches the quantum well energy levels and

ρ0 = m
∗/πh̄

2 (20)
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Fig. 8. Probability density in the left quantum well versus time at different carrier densities.
n1 = 10 × 1011 cm−2 and n2 = 0 × 1011 cm−2.

is the two dimensional density of states at zero temperature.

Now we discretize time by a superscript ϑ and spatial position in the subbands by a subscript
ξ and ϕ, respectively. Thus,

ψn1 → ψϑ
ξ (21)

and
ψn2 → ψϑ

ϕ. (22)

The various z values become ξδz in the conduction band and ϕδz, where δz is the mesh width.

Similarly, the time variable takes the values ϑδt, where δt is the time step. We have used a
unitary propagation scheme for the evolution operator obtaining a tridiagonal linear system
that can be solved by using the split-step method Cruz (2002).

In the split-step approach, both wave packets are advanced in time steps δt short enough that
the algorithm

e
−iδtTH /2

e
−iδtU

e
−iδtTH /2 (23)
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Fig. 9. Probability density in the left quantum well versus time at different carrier densities.
n1 = 24 × 1011 cm−2 and n2 = 4 × 1011 cm−2.

can be applied to the generator. TH and U are the Hamiltonian kinetic and potential terms.

Then, Poisson’s equation associated with VH is solved using another tridiagonal numerical
method for each δt value. In each time step δt, the algorithm propagates the wave packets
freely for δt/2, applies the full potential interaction, then propagates freely for the remaining
δt/2. The split-step algorithm is stable and norm preserving and it is well suited to
time-dependent Hamiltonian problems.

We have numerically integrated Eqs. (13), (14) and (15) using n1 = 3.0 × 1011 cm−2 and
n2 = 0.0 × 1011 cm−2 carrier densities. In our calculations, we shall consider a GaAs double
quantum dot system. We have assumed that both ψn1 and ψn2 wave functions are initially
created in the center of the left quantum well at t = 0 in our model (Fig. 1).

Then, the equations are numerically solved using a spatial mesh size of 0.5Å, a time mesh
size of 0.2 a.u and a finite box (5,000Å) large enough as to neglect border effects. The electron
effective-mass is taken to be 0.067m0 and L=150 Å. The barrier thickness is 20 Å.
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Fig. 10. Probability density in the left quantum well versus time at different carrier densities.
n1 = 27 × 1011 cm−2 and n2 = 7 × 1011 cm−2.

3. Results

The numerical integration in time allows us to obtain the carrier probability, P, in a defined
semiconductor region [a, b] and electron subband at any time t

Pn1,n2 (t) =
∫

b

a

dz |ψn1,n2 (z, t)|2, (24)

where [a,b] are the quantum well limits. In Fig. 4-10 we have plotted the electron probability
density in the left quantum well versus time at different electronic sheet densities.

The charge density values were obtained through Eq. (24). The existence of tunneling
oscillations between both quantum wells at low densities is shown in Fig. 4. In Fig. 4 it
is found that the amplitude of the oscillating charge density is approximately equal to 1 at
resonant condition.

The electron energy levels of both wells are exactly aligned at n1 = 0.0 × 1011cm−2 and
n2 = 0.0 × 1011cm−2 (Fig. 1) in the conduction band. In our case, the total charge density

28 State-of-the-Art of Quantum Dot System Fabrications
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Fig. 11. Amplitude of the tunneling oscillations versus carrier sheet density. Triangles: first
subband. Squares: second subband.

will oscillate between both wells with a certain tunneling period due to n1 ∼ 0 (n1 =
0.1 × 1011cm−2).

The level splitting between both quantum wells is proportional to the inverse of the tunneling
period. The subsequent evolution of the wave function will basically depend on such a value
of the level splitting. However, the quantum well eigenvalues are not aligned for a higher n1

value, Fig. 5. Then, the amplitude of the oscillating charge is not always equal to 1.

When the n1 wave function is in the right quantum well, Pn2 is never equal to 1, see the arrow
(1) in Fig. 5. And when the n1 wave function is in the left quantum well, Pn2 is never equal to
0, see the arrow (2) in Fig. 5.

In such a case, the charge dynamically trapped in the double-well system produces a reaction
field which modifies the Pn2 value of the charge density oscillations for both wave packets. As
a result, the averaged amplitude of the oscillating charge density is never equal to 1, Fig. 5.
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Fig. 12. Period of the tunneling oscillations versus carrier sheet density. Triangles: first
subband. Squares: second subband.

Now we plot the averaged amplitude of the tunneling oscillations versus n1 for low εF values,
i.e., εF < ε2 in Fig. 11. At n2 = 0.0 × 1011cm−2, it is found that the amplitude of the tunneling
oscillations for both wave packets decreases as we increase n1.

Such a new nonlinear effect is given by the n1 charge density. The n2 curve decrease is less
than that obtained in the n1 case in Fig. 11. Such a result can be easily explained as follows.
If the potential difference between both wells is higher than the level splitting, the resonant
condition is not obtained, and then the tunnelling process is not allowed.

The level splitting in the first subband is much smaller than in the second subband case due to
the different barrier transparency, Fig. 1. We can notice that the barrier transparency increases
as we increase the energy in a double quantum well. Then, the nonlinear effects are more
important in the n1 case.

We plot the period of the tunneling oscillations versus the n1 carrier sheet density at n2 =
0.0 × 1011cm−2 in Fig. 12. It is found that the oscillation period of the first subband is always
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Fig. 13. The maximum probability density in the left quantum well for the second subband
after a small initial period (t > 0.5ps)

higher than in the n2 case. Such a result can be explained as follows. We know that the electron
tunneling time between two quantum wells decreases as we increase energy.

The electrons in the second subband have higher energy, and an smaller oscillation period,
than the n1 electrons. The tunneling time in the first subband is strongly affected by the n1

charge density. As a consequence, the nonlinear effects are more important in the n1 case due
to the level splitting in the first subband is much smaller.

In addition to this, and if the number of electrons is large enough, both electron subbands
can be occupied. In such a case, we have intersubband interaction, i.e., n1 > 0 and n2 > 0
(εF > ε2) in Fig. 9-10. Important nonlinear effect in the tunneling oscillations between both
quantum wells, which modifies the dynamical evolution of the system, are shown.

The time-dependent evolution of the electron wave packets is strongly modified due to the
repulsive intersubband interaction between both wave functions at εF > ε2 values. We have
two different wave functions for two electron groups that interact between each other.

31Quantum Measurement and Sub-Band Tunneling in Double Quantum Dots
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Fig. 14. A schematic illustration of the proposed experiment (a) Double quantum dot system
in absence of external bias. (b) The electrons in the left reservoir can tunnel into the left dot
when an external voltage is applied to the left quantum well. The density of states is filled up
to the Fermi energy εF. As a consequence, electrons can be initially injected in the left
quantum dot.

The charge dynamically trapped in the double-well system produces a reaction field which
modifies the form of the probability curves for both ψn1 and ψn2 . As a result we have found
important nonlinear effects in the tunneling dynamics for both subbands in Fig. 10.

The amplitude of the oscillating charge density is never equal to 1 in the second subband at
high n1 and n2 values after a small initial period (t >0.5 ps). We plot Pmax the maximum
probability density in the left quantum well for the second subband after a small initial period
(t > 0.5 ps) in Fig. 13. It is shown that the Pmax value is decreased as we increase n1.

As we increase both n1 and n2 values, the nonlinear effects due to the repulsive intersubband
interaction are increased. At εF > ε2 values, it is found that the symmetry of the oscillations
is broken due to the nonlinear effects (Fig. 10).

As a result, it is shown the possibility of suppression of the tunneling oscillations in the double
quantum well system in the εF > ε2 regime (n1 > 20.0 × 1011 cm−2), Fig. 13. We explain
this effect by considering our nonlinear effective-mass Schrödinger equations. In absence of
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intersubband interaction, i.e., n1 > 0 and n2 = 0, we know that the maximum P value of the
oscillating charge density is approximately equal to 1 at low n1 values, Fig. 4.

In such a case, the nonlinear effects are generated by a single charge distribution. However,
and at high n1 and n2 values, we have a reaction field generated by two charge distributions.
If two subbands are occupied, important nonlinear effects in the carrier dynamics are obtained
(Fig. 10).

As it is shown in Fig. 1, electrons can be initially distributed in both subbands. The electrons
in the left reservoir can tunnel into the left dot, Fig. 14, when an external voltage is applied
to the left quantum well. Then, the quantum states in the left quantum well are filled up
to the Fermi energy. If we now switch off the applied voltage, Fig. 14, we obtain electrons
distributed in both subbands that are localized in the left quantum well.

The initial wave functions ψn1 (t = 0) and ψn2 (t = 0) correspond to quantum well eigenstates
in the left dot. In such experiment, the superposition of both symmetric and antisymmetric
quantum-well eigenstates in the conduction band leads to coherent tunneling between both
quantum wells. We have two different charge densities that oscillate with different tunneling
periods.

4. Conclusion

In this work, we have studied the post-measurement dynamics in a double quantum dot
system considering two subband wave packets. We have numerically integrated in space and
time the effective-mass Schrödringer equation for two electron gases in a double quantum dot
system.

We found two time-varying moments in the nanostructure with two different frequencies. In
addition, it is found important nonlinear effects if two electron subbands are occupied. The
symmetry of the tunneling oscillation can be broken due to nonlinear effects at high charge
density values.
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