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1. Introduction

One of us (G.G), with collaborators, has been involved in the study of generalized Lorenz-Mie
theories (GLMTs) describing the interaction between electromagnetic arbitrary shaped beams
(typically laser beams) and a class of regular scatterers for which solutions to Maxwell’s
equations can be found by using the method of separation of variables, e.g. Gouesbet &
Gréhan (2000a), J.A.Lock & Gouesbet (2009), Gouesbet (2009a), and references therein. It
has, at a certain time, been found interesting to examine whether the knowledge gained
in the effort of developing electromagnetic GLMTs could be, at least partially, adapted to
quantum mechanical problems. The examination of the issue of quantum scattering of
quantum arbitrary shaped beams produced several papers devoted to (i) the description
of quantum arbitrary shaped beams Gouesbet (2005), Gouesbet & J.A.Lock (2007) (ii) the
evaluation of cross-sections in the case of quantum arbitrary shaped beams interacting with
radial quantum potentials Gouesbet (2006a), Gouesbet (2007a) and (iii) the exhibition of
formal cross-sectional analogies between electromagnetic and quantum scatterings Gouesbet
(2004), Gouesbet (2006b), Gouesbet (2007b). During the development of this work, the
evaluation of two integrals, based on spherical harmonics, has been required. These integrals
may be obtained from a generalized orthogonality relation for spherical harmonics which is
established in this paper. Another recent application concerns the optical theorem and non
plane wave scattering in quantum mechanics Gouesbet (2009b).

Section II is devoted to the demonstrations used to reach the generalized orthogonality
relation mentioned above. Section III is a conclusion.

2. Demonstrations

2.1 Lemma 1

Let X(b) denote the following expression :

X(b) = sin a sin θ cos(ϕ − b) + cos a cos θ (1)
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2 Will-be-set-by-IN-TECH

Then :
2π∫

0

Pn(X(b))e−im(ϕ−b)dϕ =

2π∫

0

Pn(X(0)) cos(|m| ϕ)dϕ (2)

where Pn is the Legendre polynomial of degree n, i =
√
−1 and m ∈ Z.

As a remark for further use, let us insist on the fact that the r.h.s. of Eq.2 does not depend on
b nor on the sign of m.

2.2 Proof of Lemma 1

The integrand Pn(X(b))e−im(ϕ−b) in the l.h.s. of Eq.2 is a linear combination of terms reading
as :

[cos(ϕ − b)]je−im(ϕ−b), j = 0...n (3)

Therefore, to demonstrate Eq.2, it is sufficient to prove that :

2π∫

0

[cos(ϕ − b)]j e−im(ϕ−b)dϕ =

2π∫

0

(cos ϕ)j cos(|m| ϕ)dϕ, ∀j ∈ N (4)

Let us introduce a symbol to denote the l.h.s. of Eq.4, setting :

Kjm =

2π∫

0

[cos(ϕ − b)]j e−im(ϕ−b)dϕ (5)

We then make a change of variables from (ϕ − b) to Ψ, use the Leibniz formula, and establish:

Kjm =

−b+2π∫

−b

(cos Ψ)je−imΨdΨ (6)

=
1

2j

j

∑
k=0

(
j
k

) −b+2π∫

−b

ei(2k−j−m)ΨdΨ

=
2π

2j

(
j
k

)
δ0,2k−j−m, k = 0...j

where δ denotes the Kronecker symbol.

Let us introduce :

K̂jm =

2π∫

0

(cos ϕ)j cos(|m| ϕ)dϕ (7)

Converting cosines to exponentials and using again the Leibniz formula, it readily becomes :

K̂jm =
1

2j+1

j

∑
k=0

(
j

k

) 2π∫

0

[
ei(2k−j−|m|)ϕ + ei(2k−j+|m|)ϕ

]
dϕ (8)

2 Electromagnetic Radiation

www.intechopen.com



Generalized Orthogonality Relation for Spherical Harmonics 3

leading to :

K̂jm =
2π

2j+1

(
j

k

) [
δ0,2k−j−|m| + δ0,2k−j+|m|

]
(9)

We can then deduce the following results :

(i) If (j − m) is odd, or j < |m|, then :

Kjm = K̂jm = 0 (10)

(ii) If (j − m) is even, and |m| ≤ j,

then :

Kjm = K̂jm =
2π

2j+1

[(
j

j+m
2

)
+

(
j

j−m
2

)]
(11)

2.3 Corollary 2

By using Eqs.10 and 11, we obtain the following fairly obvious corollary : if n < |m|, then :

2π∫

0

Pn(X(b))e−im(ϕ−b)dϕ = 0 (12)

We are now going to establish two identities to be used in the sequel.

2.4 Lemma 3

For any integers r, s, n such that s ≤ r ≤ [n/2], in which [i] denotes the integer part of i, we
have :

(i)

1

2n

s

∑
m=0

(−1)m 22m(2n − 2m)!

m!(n − m)!(s − m)!(r − m)!
=

1

r!s!

n−s

∏
j=1

(2j − 1)
n−r

∏
i=n−r−s+1

(2i − 1) (13)

with the convention that Π
i2

i=i1
= 1 if i2 < i1, and :

(ii)
[n/2]

∑
t=r

1

22t(n − 2t)!(t − r)!(t − s)!
=

(2(n − r − s))!

2n(n − r − s)!(n − 2r)!(n − 2s)!
(14)

with the convention that ∑
i2

i=i1
= 0 if i2 < i1.

2.5 Proof of Lemma 3

(i)

Let us denote by S1 the l.h.s. of Eq.13. But we have :

S1 =
(2n − 2m)!

2n−m(n − m)!
=

n−m

∏
j=1

(2j − 1) (15)

3Generalized Orthogonality Relation for Spherical Harmonics
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4 Will-be-set-by-IN-TECH

Hence, S1 can be rewritten as :

S1 =
n−s

∏
j=1

(2j − 1)
s

∑
m=0

(−1)m2m

n−m

∏
j=n−s+1

(2j − 1)

m!(s − m)!(r − m)!
(16)

= (−1)s

n−s

∏
j=1

(2j − 1)

r!s!

s

∑
m=0

2mm!

(
s

m

)(
r

m

) n−m

∏
j=n−s+1

(1 − 2j)

From the r.h.s. of Eq.16, we introduce a polynomial S1(x) reading as :

S1(x) =
s

∑
m=0

2mm!

(
s

m

)(
r

m

) n−m

∏
j=n−s+1

(x + 1 − 2j) (17)

We observe that S1(x) is a polynomial of degree s written in the Newton basis {Ni(x)}s
i=0

with N0(x) = 1 and Ni+1(x) = (x − xi)Ni(x) for i � 0, where x0 = 2n − 2s + 1, xk = x0 + kh
and h = 2. Thus :

n−m

∏
j=n−s+1

(x + 1 − 2j) = Ns−m(x) (18)

Let us prove that :

S1(x) = Q(x) =
n−r

∏
i=n−r−s+1

(x − 2i + 1) (19)

It is sufficient to verify that S1(xk) = Q(xk) for k=0...s. We have :

Q(xk) = 2s (r + k)!

(r + k − s)!
(20)

Since :

S1(x) =
s

∑
m=0

2s−m s!

m!

(
r

s − m

)
Nm(x) (21)

and :

Nm(xk) = 2m k!

(k − m)!
(22)

we obtain :

S1(xk) = 2s k!r!

(r − s + k)!

k

∑
m=0

(
s

m

)(
r − s + k

k − m

)
(23)

in which the summation is originally found to range from m = 0 to s, but can afterward be
reduced from m = 0 to k. By using the following identity (Abramowitz & Stegun (1964), p822)
:

n

∑
m=0

(
r

m

)(
s

n − m

)
=

(
r + s

n

)
, ∀(r + s) ≥ n (24)

we have :

S1(xk) =
2sk!r!

(r − s + k)!

(
r + k

k

)
=

2s(r + k)!

(r + k − s)!
= Q(xk) (25)

4 Electromagnetic Radiation
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Generalized Orthogonality Relation for Spherical Harmonics 5

But :

S1 =
(−1)s

r!s!

n−s

∏
j=1

(2j − 1)S1(0) (26)

Hence, it is readily seen that the first identity holds.

(ii)

On one hand, we introduce the quantity B2 according to :

(n − 2r)!B2 =
1

2r+s(n − 2s)!

n−r−s

∏
i=1

(2i − 1) (27)

=
1

2r+s(n − 2s)!

n−[n/2]−s

∏
i=1

(2i − 1)
n−r−s

∏
i=n−[n/2]−s+1

(2i − 1)

Next, let R(x) denote the polynomial of degree [n/2]− r, given by :

R(x) =
1

2r+s(n − 2s)!

n−[n/2]−s

∏
i=1

(2i − 1)
n−r−s

∏
i=n−[n/2]−s+1

(x + 2i − 1) (28)

so that :
(n − 2r)!B2 = R(0) (29)

On the other hand, we have :

(n − 2r)!S2 =
[n/2]

∑
t=r

1

22t

t−1

∏
j=r

(n − 2j)
t−1

∏
j=r

(n − 2j − 1)

(t − r)!(t − s)!
(30)

One of the two products only involves even integers while the other only involves odd
integers. Thus, we can write them as :

t−1

∏
j=r

2([n/2]− j)
t−1

∏
j=r

(2n − 2 [n/2]− 2j − 1) (31)

Therefore, with fairly obvious changes of variables :

(n − 2r)!S2 =
[n/2]−r

∑
t=0

1

22t+2rt!(t + r − s)!

t−1

∏
j=0

2([n/2]− j − r)
t−1

∏
j=0

[2(n − [n/2]− j − r)− 1]

(32)
Let S̃2(x) denote the polynomial :

S̃2(x) =
[n/2]−r

∑
t=0

1

22t+2rt!(t + r − s)!

t−1

∏
j=0

2([n/2]− j − r)
t−1

∏
j=0

[x + 2(n − [n/2]− j − r)− 1] (33)

so that :
(n − 2r)!S2 = S̃2(0) (34)

5Generalized Orthogonality Relation for Spherical Harmonics
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6 Will-be-set-by-IN-TECH

The polynomial S̃2(x), which is of degree ([n/2] − r), is written in the Newton basis

{Nm(x)}[n/2]−r
m=0 , with x0 = 1 − 2(n − [n/2]− r) and xm = x0 + mh, m = 0... [n/2]− r, h = 2.

Let us now prove that S̃2(x) and R(x) are identical, which is equivalent to verify that S̃2(xm) =
R(xm), m = 0... [n/2]− r.

We have :

S̃2(xm) =
m

∑
t=0

1

22t+2r

t−1

∏
j=0

2([n/2]− j − r)

t!(t + r − s)!

2tm!

(m − t)!
(35)

=
1

22r

m

∑
t=0

([n/2]− r)!m!

t!(t + r − s)!([n/2]− r − t)!(m − t)!

=
m!

22r(m + r − s)!

m

∑
t=0

(
[n/2]− r

t

)(
m + r − s

m − t

)

By using Eq.24, this becomes :

S̃2(xm) =
m!

22r(m + r − s)!

(
[n/2] + m − s

m

)
=

([n/2] + m − s)!

22r(n + r − s)!([n/2]− s)!
(36)

Next, we have :

R(xm) =
1

2r+s(n − 2s)!

n−[n/2]−s

∏
i=1

(2i − 1)
[n/2]−r

∏
i=1

2(r + m + i − s) (37)

=
1

22r+n−2[n/2]

(2(n − [n/2]− s))!([n/2] + m − s)!

(n − 2s)!(n − [n/2]− s)!(r + m − s)!

For any integer n, even or odd, we readily have :

(2(n − [n/2]− s))!([n/2]− s)! = 2n−2[n/2](n − 2s)!(n − [n/2]− s)! (38)

Therefore :
R(xm) = S̃2(xm), m = 0... [n/2]− r (39)

Hence, because :

S2 =
S̃2(0)

(n − 2r)!
=

R(0)

(n − 2r)!
(40)

the second identity holds.

2.6 Theorem 4

We can now prove a first theorem reading as :

2π∫

0

Pn(sin a sin θ cos ϕ + cos a cos θ)dϕ = 2πPn(cos a)Pn(cos θ) (41)

where Pn is the Legendre polynomial of degree n.

6 Electromagnetic Radiation
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Generalized Orthogonality Relation for Spherical Harmonics 7

2.7 Proof of Theorem 4

By using an expansion of Legendre polynomials (e.g. G.B.Arfken & H.J.Weber (2005), p744),
we obtain :

Pn(sin a sin θ cos ϕ + cos a cos θ) (42)

=
1

2n

[n/2]

∑
m=0

(−1)m

(
n

m

)(
2n − 2m

n

)
(sin a sin θ cos ϕ + cos a cos θ)n−2m

But we have :

2π∫

0

(sin a sin θ cos ϕ + cos a cos θ)n−2mdϕ (43)

=
n−2m

∑
j=0

(
n − 2m

j

) 2π∫

0

(sin a sin θ cos ϕ)j(cos a cos θ)n−2m−jdϕ

=
[ n−2m

2 ]

∑
k=0

(
n − 2m

2k

) 2π∫

0

(sin a sin θ cos ϕ)2k(cos a cos θ)n−2m−2kdϕ

in which we have used (see Eq.6) :

2π∫

0

(cos ϕ)jdϕ = 0, for any odd integer j (44)

Using again Eq.6 for j even, we obtain :

2π∫

0

(sin a sin θ cos ϕ + cos a cos θ)n−2mdϕ (45)

=
[ n−2m

2 ]

∑
k=0

2π

22k

(
n − 2m

2k

)(
2k

k

)
(1 − cos2 a)k(1 − cos2 θ)k(cos a cos θ)n−2m−2k

Eq.45 implies that
∫ 2π

0 Pn(sin a sin θ cos ϕ + cos a cos θ)dϕ is a polynomial qn(cos a, cos θ),
symmetrical with respect to the two variables cos a and cos θ, of degree n with respect to

each variable. We then invoke the Leibniz formula to develop (1 − cos2 a)k and (1 − cos2 θ)k

involved in Eq.45 leading to :

qn(cos a, cos θ) =
2π

2n

[n/2]

∑
m=0

[ n−2m
2 ]

∑
k=0

k

∑
j=0

k

∑
i=0

(−1)m−j−i

22k

(
n

m

)(
2n − 2m

n

)
(46)

(
n − 2m

2k

)(
2k

k

)(
k

k − j

)(
k

k − i

)
(cos a)n−2m−2i(cos θ)n−2m−2j

We now intend to identify Eq.46 and the expansion of 2πPn(cos a)Pn(cos θ) with respect to
the variables cos a and cos θ.

7Generalized Orthogonality Relation for Spherical Harmonics

www.intechopen.com



8 Will-be-set-by-IN-TECH

For a fixed integer r such that r = m+ j and r ≤ [n/2], and a fixed integer s such that s = m+ i
and s ≤ [n/2], the factor of (cos a)n−2s(cos θ)n−2r in Eq.46 can be obtained and compared with
its counterpart in 2πPn(cos a)Pn(cos θ). This counterpart reads as :

2π

22n
(−1)r+s

(
n

r

)(
n

s

)(
2n − 2r

n

)(
2n − 2s

n

)
(47)

Since qn is a symmetrical polynomial, it is sufficient to carry out the comparison for s ≤ r. To
approach the aim, we interchange k− and j− summations in Eq.46, according to :

[ n−2m
2 ]

∑
k=0

k

∑
j=0

=
[ n−2m

2 ]

∑
j=0

[ n−2m
2 ]

∑
k=j

(48)

Therefore, for m + j = r, the factor of (cos θ)n−2r is :

2π

2n

r

∑
m=0

[ n−2m
2 ]

∑
k=r−m

k

∑
i=0

(49)

(−1)r−i

22k

(
n

m

)(
2n − 2m

n

)(
n − 2m

2k

)(
2k

k

)(
k

m + k − r

)(
k

k − i

)

(cos a)n−2m−2i

Next, we interchange k− and i−summations, according to :

[ n−2m
2 ]

∑
k=r−m

k

∑
i=0

=
r−m

∑
i=0

[ n−2m
2 ]

∑
k=r−m

+
[ n−2m

2 ]

∑
i=r−m+1

[ n−2m
2 ]

∑
k=i

(50)

Thus, for m + i = s ≤ r, the factor of (cos a)n−2s(cos θ)n−2r is :

2π

2n

s

∑
m=0

[ n−2m
2 ]

∑
k=r−m

(−1)m+r+s

22k

(
n

m

)(
2n − 2m

n

)(
n − 2m

2k

)
(51)

(
2k

k

)(
k

m + k − r

)(
k

m + k − s

)

which is equal to :

(−1)r+s 2π

2n

s

∑
m=0

(−1)m (2n − 2m)!

m!(n − m)!(s − m)!(r − m)!
(52)

[n/2]−m

∑
k=r−m

1

22k(n − 2m − 2k)!(m + k − r)!(m + k − s)!

By using the two identities 13 and 14 from Lemma 3, this result may be rewritten as :

(−1)r+s 2π

r!s!

n−s

∏
j=1

(2j − 1)
n−r

∏
i=n−r−s+1

(2i − 1)
(2(n − r − s))!

2n(n − r − s)!(n − 2r)!(n − 2s)!
(53)

8 Electromagnetic Radiation
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Generalized Orthogonality Relation for Spherical Harmonics 9

which is equal to the expression 47. Hence, the proof is done.

2.8 Corollary 5. Reproducing kernel

A new expression of the reproducing kernel of Legendre polynomials can be readily derived
from Theorem 4. We then obtain a Corollary 5 as follows.

The reproducing kernel Kn(x, t) of Legendre polynomials Pi(x):

Kn(x, t) =
n

∑
i=0

2i + 1

2
Pi(x)Pi(t) (54)

has the following integral representation :

Kn(x, t) =
1

2π

2π∫

0

n

∑
i=0

2i + 1

2
Pi(xt + cos ϕ

√
1 − x2

√
1 − t2)dϕ (55)

2.9 Jacobi polynomials

For further use, we now recall some results concerning Jacobi polynomials P
(α,β)
n (x), α > −1

and β > −1Abramowitz & Stegun (1964), T.S.Chihara (1978), Szegö (1939).

Jacobi polynomials are orthogonal with respect to the linear functional :

+1∫

−1

.(1 − x)α(1 + x)βdx, α, β > −1 (56)

They have the following L2−norm :

+1∫

−1

(1 − x)α(1 + x)β
[

P
(α,β)
n (x)

]2
dx =

2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

Γ(n + 1)Γ(n + α + β + 1)
(57)

where Γ is the Gamma function.

The derivative of P
(α,β)
n (x) is another Jacobi polynomial :

d

dx
P
(α,β)
n (x) =

1

2
(n + α + β + 1)P

(α+1,β+1)
n−1 (x) (58)

We now provide relations valid for α = β > −1.

Jacobi polynomials, for α = β > −1, satisfy a three-term recurrence relation :

(n + α + 1)(2n + 2α + 1)xP
(α,α)
n (x) (59)

= (n + 1)(n + 2α + 1)P
(α,α)
n+1 (x) + (n + α)(n + α + 1)P

(α,α)
n−1 (x)

with P
(α,α)
0 = 1 and P

(α,α)
−1 = 0.

9Generalized Orthogonality Relation for Spherical Harmonics
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10 Will-be-set-by-IN-TECH

Furthermore :

(2n + 2α − 1)P
(α−1,α−1)
n (x) (60)

=
(n + 2α − 1)(n + 2α)

2(n + α)
P
(α,α)
n (x)− (n + α − 1)

2
P
(α,α)
n−2 (x)

2n + 2α + 3

2
(1 − x2)P

(α+1,α+1)
n (x) (61)

= (n + α + 1)P
(α,α)
n (x)− (n + 1)(n + 2)

n + α + 2
P
(α,α)
n+2 (x)

(1 − x2)
d

dx
P
(α,α)
n (x) = (1 − x2)

n + 2α + 1

2
P
(α+1,α+1)
n−1 (x) (62)

= −nxP
(α,α)
n (x) + (n + α)P

(α,α)
n−1 (x)

We now know enough to prove the main theorem.

2.10 Theorem 6

For any integer m ∈ Z and any integer n ∈ N :

2π∫

0

Pn(sin a sin θ cos(ϕ − b) + cos a cos θ)e−im(ϕ−b)dϕ (63)

= 2π
(n − |m|)!
(n + |m|)! P

|m|
n (cos a)P

|m|
n (cos θ)

where i =
√
−1, Pn is the Legendre polynomial of degree n, and P

|m|
n is the associated

Legendre function of order |m| defined by :

P
|m|
n (x) = (−1)|m|(1 − x2)

|m|
2

d|m|

dx|m| Pn(x) (64)

2.11 Proof of Theorem 6

We conveniently introduce, for further use, a specific notation for the l.h.s. of Eq.63 :

Dnm =

2π∫

0

Pn(sin a sin θ cos(ϕ − b) + cos a cos θ)e−im(ϕ−b)dϕ (65)

Now, it happens that Eq.63 of Theorem 6 is already proved for m = 0 (Theorem 4) and for
n < |m| (Corollary 2). Moreover, by using Lemma 1, Eq.63 is equivalent to :

2π∫

0

Pn(sin a sin θ cos ϕ + cos a cos θ) cos(|m| ϕ)dϕ = 2π
(n − |m|)!
(n + |m|)! P

|m|
n (cos a)P

|m|
n (cos θ) (66)
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But P
|m|
j (x) possesses an expression in terms of the Jacobi polynomial P

(|m|,|m|)
j−|m| (x). Indeed, by

using Eqs.58 and 64 :

P
|m|
j (x) = (−1)|m|(1 − x2)

|m|
2

(j + 1)|m|
2|m| P

(|m|,|m|)
j−|m| (x) (67)

where (c)j is the Pochhammer symbol :

(c)j = c(c + 1)...(c + j − 1), ∀j ∈ N

(c)0 = 1

}
(68)

We now prove Eq.63 for m = 1. From Eq.59 with α = 0 and Eq.67, we have :

(2n + 1)XPn(X) (69)

= (2n + 1) sin a sin θ cos ϕPn(X) + (2n + 1) cos a cos θPn(X)

= (n + 1)Pn+1(X) + nPn−1(X)

in which we conveniently used X = X(b = 0). Hence, by using Theorem 4, and remembering
Lemma 1 and its associated remark :

(2n + 1) sin a sin θDn1 (70)

= (n + 1)Dn+1,0 − (2n + 1) cos a cos θDn0 + nDn−1,0

= 2π(n + 1)Pn+1(cos a)Pn+1(cos θ)− 2π(2n + 1) cos a cos θPn(cos a)Pn(cos θ)

+2πnPn−1(cos a)Pn−1(cos θ)

With Eq.59 for α = 0, this expression becomes :

2π

n + 1
[(2n + 1) cos aPn(cos a)− nPn−1 cos(a)] (71)

[(2n + 1) cos θPn(cos θ)− nPn−1(cos θ)]

−2π(2n + 1) cos a cos θPn(cos a)Pn(cos θ) + 2πnPn−1(cos a)Pn−1(cos θ)

which can be factorized to :

2π
(2n + 1)

n(n + 1)
[−n cos aPn(cos a) + nPn−1(cos a)] [−n cos θPn(cos θ) + nPn−1(cos θ)] (72)

This expression is identical to :

2π(2n + 1) sin a sin θ
(n − 1)!

(n + 1)!
P1

n(cos a)P1
n(cos θ) (73)

This result is obtained by using Eq.62 with α = 0 and Eq.64 for m = 1, namely :

(sin a)2 d

d cos a
Pn(cos a) = −n cos aPn(cos a) + nPn−1(cos a) (74)

P1
n(cos a) = − sin a

d

d cos a
Pn(cos a) (75)
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Therefore, Eq.63 holds for m = 1. Now, we can complete the demonstration of Eq.63 by
recurrence, assuming that it is satisfied by any integer n ∈ N up to (m − 1) ≥ 1 (we can
assume that m is positive).

We have :
cos(mϕ) = 2 cos ϕ cos((m − 1)ϕ)− cos((m − 2)ϕ) (76)

From Eqs.76 and 69, we obtain :

sin a sin θPn(X) cos(mϕ) (77)

=
2

2n + 1
cos((m − 1)ϕ) [(n + 1)Pn+1(X)− (2n + 1) cos a cos θPn(X) + nPn−1(X)]

− sin a sin θPn(X) cos((m − 2)ϕ)

Hence :

sin a sin θDnm =
2

2n + 1
[(n + 1)Dn+1,m−1 − (2n + 1) cos a cos θDn,m−1 + nDn−1,m−1](78)

− sin a sin θDn,m−2

We now use the recurrence assumption, yielding, from Theorem 6 :

sin a sin θDnm =
4π

2n + 1
[(n + 1)

(n − m + 2)!

(n + m)!
Pm−1

n+1 (cos a)Pm−1
n+1 (cos θ) (79)

−(2n + 1)
(n − m + 1)!

(n + m − 1)!
cos a cos θPm−1

n (cos a)Pm−1
n (cos θ)

+n
(n − m)!

(n + m − 2)!
Pm−1

n−1 (cos a)Pm−1
n−1 (cos θ)]

−2π
(n − m + 2)!

(n + m − 2)!
sin a sin θPm−2

n (cos a)Pm−2
n (cos θ)

Every Pm−1
j and Pm−2

j is replaced by using the expression 67, leading to :

sin a sin θDnm = 2π
(n − m)!

(n + m)!

(sin a sin θ)m−1

22m−4
((n + 1)m)

2{ 1

2(2n + 1)
(80)

[
(n − m + 1)2

n + 1
P
(m−1,m−1)
n−m+2 (cos a)P

(m−1,m−1)
n−m+2 (cos θ)

−(2n + 1)
n − m + 1

n + m
cos a cos θP

(m−1,m−1)
n−m+1 (cos a)P

(m−1,m−1)
n−m+1 (cos θ)

+
n3

(n + m − 1)2
P
(m−1,m−1)
n−m (cos a)P

(m−1,m−1)
n−m (cos θ)]

− (n − m + 1)2

(n + m − 1)2
P
(m−2,m−2)
n−m+2 (cos a)P

(m−2,m−2)
n−m+2 (cos θ)}

We afterward substitute P
(m−2,m−2)
n−m+2 for P

(m−1,m−1)
j by using Eq.60 and cos aP

(m−1,m−1)
n−m+1 (cos a)

for P
(m−1,m−1)
j by using Eq.59. We then obtain :
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sin a sin θDnm = 2π
(n − m)!

(n + m)!

(sin a sin θ)m−1

22m−4
((n + 1)m)

2{ 1

2(2n + 1)
(81)

[
(n − m + 1)2

n + 1
P
(m−1,m−1)
n−m+2 (cos a)P

(m−1,m−1)
n−m+2 (cos θ)

− n − m + 1

(n + m)(n + 1)2(2n + 1)
((n + m)(n − m + 2)P

(m−1,m−1)
n−m+2 (cos a)

+n(n + 1)P
(m−1,m−1)
n−m (cos a))((n + m)(n − m + 2)P

(m−1,m−1)
n−m+2 (cos θ)

+n(n + 1)P
(m−1,m−1)
n−m (cos θ)) +

n3

(n + m − 1)2
P
(m−1,m−1)
n−m (cos a)P

(m−1,m−1)
n−m (cos θ)]

− (n − m + 1)2

(2n + 1)2(n + m − 1)2
(
(n + m − 1)2

2(n + 1)
P
(m−1,m−1)
n−m+2 (cos a)

−n

2
P
(m−1,m−1)
n−m (cos a))

(
(n + m − 1)2

2(n + 1)
P
(m−1,m−1)
n−m+2 (cos θ)− n

2
P
(m−1,m−1)
n−m (cos θ))}

becoming :

sin a sin θDnm = 2π
(n − m)!

(n + m)!

(sin a sin θ)m−1

22m−4
((n + 1)m)

2 (82)

[
((n − m + 1)2)

2

4(n + 1)2(2n + 1)2
P
(m−1,m−1)
n−m+2 (cos a)P

(m−1,m−1)
n−m+2 (cos θ)

− n(n − m + 1)2

4(n + 1)(2n + 1)2
(P

(m−1,m−1)
n−m+2 (cos a)P

(m−1,m−1)
n−m (cos θ)

+P
(m−1,m−1)
n−m+2 (cos θ)P

(m−1,m−1)
n−m (cos a))

+
n2

4(2n + 1)2
P
(m−1,m−1)
n−m (cos a)P

(m−1,m−1)
n−m (cos θ)]

which factorizes to :

sin a sin θDnm = 2π
(n − m)!

(n + m)!

(sin a sin θ)m−1

22m−2

((n + 1)m)2

(2n + 1)2
(83)

[nP
(m−1,m−1)
n−m (cos a)− (n − m + 1)2

n + 1
P
(m−1,m−1)
n−m+2 (cos a)]

[nP
(m−1,m−1)
n−m (cos θ)− (n − m + 1)2

n + 1
P
(m−1,m−1)
n−m+2 (cos θ)]

We then invoke Eq.61, with α = m − 1, n �→ n − m, to obtain :

sin a sin θDnm = 2π
(n − m)!

(n + m)!

(sin a sin θ)m+1

22m
((n + 1)m)

2P
(m,m)
n−m (cos a)P

(m,m)
n−m (cos θ) (84)

13Generalized Orthogonality Relation for Spherical Harmonics

www.intechopen.com



14 Will-be-set-by-IN-TECH

Therefore, recalling the definition of Dnm, we find that Eq.63, i.e. Theorem 6, holds for any
integer m ∈ Z.

2.12 A consequence

An important consequence of Theorem 6 concerns the spherical harmonics Ym
j (θ, ϕ) which

are defined as :

Ym
j (θ, ϕ) =

√
(2j + 1)

4π

(j − m)!

(j + m)!
Pm

j (cos θ)eimϕ (85)

When m < 0, Pm
j (cos θ) is defined as :

Pm
j (cos θ) = (−1)m (j + m)!

(j − m)!
P−m

j (cos θ) (86)

Therefore, we may uniquely define Pm
j (cos θ) for any integer m ∈ Z, according to :

Pm
j (cos θ) = (−1)

m−|m|
2

(j − |m|)!
(j − m)!

P
|m|
j (cos θ) (87)

in which P
|m|
j (x) is defined by Eq.64.

Eq.85 can then be given an unique form for any integer m ∈ Z, reading as :

Ym
j (θ, ϕ) = (−1)

m−|m|
2

√
2j + 1

4π

√
(j − m)!

(j + m)!

(j − |m|)!
(j − m)!

P
|m|
j (cos θ)eimϕ (88)

simplifying to :

Ym
j (θ, ϕ) = (−1)

m−|m|
2

√
2j + 1

4π

√
(j − |m|)!
(j + |m|)! P

|m|
j (cos θ)eimϕ (89)

From these equations, the complex conjuguate of Ym
j (θ, ϕ) is :

Ym
j (θ, ϕ) = (−1)mY−m

j (θ, ϕ), ∀m ∈ Z (90)

2.13 Corollary 7

For any integers n, j ∈ N, and any integer m ∈ Z :

π∫

0

⎡
⎣

2π∫

0

Pn(sin a sin θ cos(ϕ − b) + cos a cos θ)e−im(ϕ−b)dϕ

⎤
 (91)

Pm
j (cos θ) sin θdθ

=
4π

2j + 1
Pm

j (cos a)δnj
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2.14 Proof of Corollary 7

>From Theorem 6 and Eq.87, the l.h.s. of Eq.91 is :

LHS = 2π(−1)
m−|m|

2
(n − |m|)!
(n + |m|)!

(j − |m|)!
(j − m)!

P
|m|
n (cos a)

π∫

0

P
|m|
n (cos θ)P

|m|
j (cos θ) sin θdθ (92)

But, using Eqs.67 and 57 :

π∫

0

P
|m|
n (cos θ)P

|m|
j (cos θ) sin θdθ (93)

=
1

22|m| (n + 1)|m|(j + 1)|m|

+1∫

−1

P
(|m|,|m|)
n−|m| (x)P

(|m|,|m|)
j−|m| (x)(1 − x2)|m|dx

=
1

22|m| ((n + 1)|m|)
2 22|m|+1

2n + 1

(Γ(n + 1))2

Γ(n − |m|+ 1)Γ(n + |m|+ 1)
δnj =

2

2n + 1

(n + |m|)!
(n − |m|)! δnj

Therefore, Eq.92 becomes :

LHS =
4π

2n + 1
(−1)

m−|m|
2

(n − |m|)!
(n − m)!

P
|m|
n (cos a)δnj =

4π

2j + 1
Pm

j (cos a)δnj (94)

in which we invoked Eq.87. This ends the proof.

2.15 Corollary 8

For any integers n, j ∈ N and any integer m ∈ Z :

π∫

0

2π∫

0

Ym
j (θ, ϕ)Pn(sin a sin θ cos(ϕ − b) + cos a cos θ) sin θdθdϕ (95)

= (−1)m 4π

2j + 1
Y−m

j (a, b)δnj =
4π

2j + 1
Ym

j (a, b)δnj

2.16 Proof of Corollary 8

Corollary 8 is a simple consequence of Corollary 7. Invoking also Eqs.88-90, we indeed have :

π∫

0

2π∫

0

Ym
j (θ, ϕ)Pn(sin a sin θ cos(ϕ − b) + cos a cos θ) sin θdθdϕ

= (−1)
m−|m|

2

√
2j + 1

4π

√
(j − |m|)!
(j + |m|)!
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π∫

0

2π∫

0

P
|m|
j (cos θ)e−imϕPn(sin a sin θ cos(ϕ − b) + cos a cos θ) sin θdθdϕ

= (−1)
m−|m|

2 e−imbP
|m|
j (cos a)

√
4π

2j + 1

√
(j − |m|)!
(j + |m|)! δnj = (−1)m 4π

2j + 1
Y−m

j (a, b)δnj (96)

2.17 Additional remarks

In the series of papers Gouesbet (2006a), Gouesbet (2006b), Gouesbet (2007b), Gouesbet
(2007a), one of the integrals required for use in the considered physical issues is Eq.95 of
Corollary 8, with however b = 0.The second integral required in the same series of papers
was given under the following form :

Iij =

π∫

0

2π∫

0

Y0
i (sin a sin θ cos ϕ + cos a cos θ)Y0

j (θ) sin θdθdϕ =

[
(i−ǫ)/2

∑
k=0

Cǫ
ki(cos a)2k+ǫ

]
δij (97)

in which :

Cǫ
ki =

(−1)(i−ǫ)/2

2i
(−1)k (i + 2k + ǫ)!

( i−ǫ
2 − k)!(2k + ǫ)!( i+ǫ

2 + k)!
(98)

where ǫ = 0, 1 for i even,odd, respectively.

We again use the expansion of Legendre polynomials already invoked at the beginning of the
proof of Theorem 4 (Eq.42), and establish that Eq.97 becomes :

Iij(a) = Pi(cos a)δij (99)

Then, by using :

Y0
l (θ) =

√
2l + 1

4π
Pl(cos θ) (100)

it is easily established that Eq.100 is a special case of Eq.98 (Corollary 8) for m = 0.

2.18 Summary

In the framework of a study examining analogies between electromagnetic and quantum
scatterings, the evaluation of two integrals were required. One integral is given by Corollary
8, for b = 0, namely :

π∫

0

2π∫

0

Ym
j (θ, ϕ)Pn(sin a sin θ cos ϕ + cos a cos θ) sin θdθdϕ (101)

= (−1)m 4π

2j + 1
Y−m

j (a, b)δnj =
4π

2j + 1
Ym

j (a, b)δnj

The second integral can be obtained as a special case of this result, and can be written as :

π∫

0

2π∫

0

Y0
i (sin a sin θ cos ϕ + cos a cos θ)Y0

j (θ) sin θdθdϕ = Pi(cos a)δij (102)
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3. Conclusion

Legendre polynomials, associated Legendre polynomials and associated Legendre functions,
are widely used in physics, and particularly in light scattering. One of the most famous
occurrences of associated Legendre functions is to be found in the Lorenz-Mie theory
describing the interaction between an illuminating electromagnetic plane wave and a
spherical particle defined by its diameter and its complex refractive index Mie (1908).

However, in this theory, only associated Legendre functions P±1
n (or P1

n ) do appear. In
a generalized Lorenz-Mie theory describing the interaction between an electromagnetic
arbitrary shaped beam and (again) a spherical particle defined by its diameter and its complex

refractive index, all Pm
n ’s (or P

|m|
n ’s) may appear, e.g. Gouesbet et al. (1988), Maheu et al.

(1988).They actually appear in several places, first of all in the basis functions on which
the electromagnetic fields are expanded. Second, expansion coefficients (called beam shape
coefficients) can be evaluated by numerical integrations involving the expressions of the
electromagnetic fields and associated Legendre functions, e.g. Gouesbet, Lock & Gréhan
(2011). Associated Legendre functions also appear in many expressions generated by the
theory, for the evaluation in particular of various cross-sections, under the form of yet other
quadratures which, however, may be analytically performed, e.g. appendices in Gouesbet
& Gréhan (2011). Homogeneous spheres defined by a diameter and a complex refractive
index are not the only cases of light scattering theories in which associated Legendre functions
are involved. They are actually involved whenever the symmetries of the scattering particle
require the use of spherical coordinates, such as for multilayered spheres Onofri et al. (1995),
assemblies of spheres and aggregates Gouesbet & Gréhan (1999), or for a spherical particle
with an eccentric host sphere Gouesbet & Gréhan (2000b). May be more surprisingly,
associated Legendre functions also play an important role in spheroidal coordinates insofar
as, at the present time, beam shape coefficients in spheroidal coordinates are best expressed
in terms of beam shape coefficients in spherical coordinates Gouesbet, Xu & Han (2011).
Motivated by the successes of generalized Lorenz-Mie theories and by their numerous
applications, an effort has then been devoted to the examination of analogies between
electromagnetic arbitrary shaped beams and quantum arbitrary shaped beams, somehow
culminating in a generalized optical theorem for non plane wave scattering in quantum
mechanics Gouesbet (2009b). During this effort, one of us (G.G) encountered quadratures
involving associated Legendre functions which he never encountered before in the framework
of generalized Lorenz-Mie theories. This paper provides an analytical evaluation of these
quadratures. The reader might be interested in playing with the obtained results, using a
symbolic computation software like Maple, as we did to extensively check our derivations.
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