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1. Introduction 

Inherited dilated cardiomyopathies are a major cause of heart disease in human, often with 
an onset in adolescence or early adult life. Despite technological advances that foster early 
diagnosis and alleviation of some symptoms, inherited dilated cardiomyopathies remains a 
critical unsolved problem for public health. The recent years provided some clues to explain 
the pathogenesis of inherited dilated cardiomyopathies, which might open new and 
encouraging perspectives for clinical trials. 

2. LMNA dilated cardiomyopathy 

Cardiomyopathy is an anatomic and pathologic condition associated with muscle 

dysfunction of the heart. Dilated cardiomyopathy, the most common form, is characterized 

by an increase in both myocardial mass and volume, which compromises cardiac 

contractility and ultimately results in reduced left ventricular function (Luk et al. 2008). 

Dilated cardiomyopathy is the third leading cause of heart failure in the United States 

behind coronary artery disease and hypertension. Genetically inherited forms of dilated 

cardiomyopathy have been identified in 30% of patients presenting with this disease 

(Michels et al., 1992). Many other acquired conditions may result in an identical clinical 

presentation and pathological function, which include alcohol-induced cardiomyopathy, 

hypertension, chronic anemia, ischemic cardiomyopathy, valvular diseases and viral 

myocarditis (Maron et al., 2006).  

Inherited dilated cardiomyopathies are caused by mutations in genes that encode 
components of a wide variety of cellular components and pathways, including the nuclear 
envelope, contractile apparatus and the force transduction apparatus (Morita et al., 2005). 
The generation of contractile force by the sarcomere and its transmission to the extracellular 
matrix are the fundamental functions of cardiac cells. Inadequate performance in either 
components of this structural cellular network leads to cardiac remodeling and ultimately to 
dilated cardiomyopathy. Defects in generating force are typically due to a loss of integrity of 

the sarcomere unit. Mutations in the loci coding for -cardiac myosin heavy chain, actin 
(Olson et al., 1998) and cardiac troponin T (Li et al., 2001) have been identified to disrupt 
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force generation (Kamisago et al, 2000). Defects in the force transmission occur when there is 
impairment in the propagation of force from the sarcomere to the sarcolemma (Schonberger 

et al. 2001). Mutations in -tropomyosin (Olson et al. 2001), dystrophin (Muntoni et al., 

1993), desmin (Li et al 1999) and -sarcoglycan (Tsubata et al. 2000) have been identified to 
disrupt force transmission. 

Among the causing genes, LMNA mutations encoding proteins of the inner nuclear 
membrane, have also been found associated to dilated cardiomyopathy (Fatkin et al. 1999). 
This finding raises the possibility that the nuclear envelope may play an important function 
as mechanosensor in cardiomyocyte (Nikolova et al. 2004, Lammerding et al. 2004). LMNA 
mutations appear to be responsible for approximately 8% of cases of inherited 
cardiomyopathy (Taylor et al., 2003), which strongly suggest that LMNA may be the most 
prevalent dilated cardiomyopathy gene. LMNA dilated cardiomyopathy is characterized by 
cardiac dilatation and impaired systolic function. In addition, affected patients exhibit early 
conduction defects before the left ventricular dysfunction and dilatation stages. The onset of 
symptoms in LMNA dilated cardiomyopathy is variable, ranging from the first to sixth 
decade of life and occurring most frequently in the third decade (mean age = 38 years) (Ben 
Yaou et al., 2006). There are high rates of life-threatening arrhythmias (abnormal electrical 
conduction), gradually worsening and leading to sudden death (Sanna et al. 2003). LMNA 
dilated cardiomyopathy has a more aggressive course than other inherited dilated 
cardiomyopathies. While sudden death from arrhythmias may be prevented by 
implantation of a pacemaker and/or implantable defibrillator, the progressive heart failure 
eventually becomes resistant to treatment (Golzio et al. 2007, van Berlo et al. 2005, Meune et 
al., 2006). No drugs are curative and heart transplantation is frequently necessary. 

3. A-type nuclear lamins 

LMNA, located on human chromosome 1q21.2-21.3, encodes A-type lamins. Lamin A and 

lamin C are the major A-type lamins expressed in somatic cells. They arise via alternative 

splicing of pre-mRNA encoded by exon 10 (Lin & Worman 1993). Lamin A is synthesized as 

a precursor, prelamin A, which has a unique C-terminal amino acid tail that triggers a series 

of enzymatic reactions to yield lamin A. Two other genes in the mammalian genome, 

LMNB1 and LMNB2, respectively encode lamins B1 and B2. Lamins A and C are widely 

expressed in most differentiated somatic cells but lacking from early embryos and some 

undifferentiated cells whereas lamins B1 and B2 are expressed in all or most somatic cells. 

However, there are little data and no systemic studies on the differences in the relative 

amounts of lamins A, C, B1 and B2 expression. Lamins are intermediate filaments proteins 

that polymerize to form the nuclear lamina, a fibrous meshwork underlining the inner 

nuclear membrane of most eukaryotic cells (Fisher et al. 1986, McKeon et al. 1986, Aebi et al. 

1986). The nuclear lamina is attached to the inner nuclear membrane via interactions with 

integral proteins and to the chromatin. More recently, it has been demonstrated that lamin 

A/C also have interactions with the cytoskeleton, through a multi-protein complex called 

“LINC” (LInker of Nucleoskeleton and Cytoskeleton) (Stewart et al. 2007). One function of 

the lamina is to provide structural support to the nucleus. Nuclear lamins have also been 

implicated in processes such as chromatin organization, gene regulation, DNA replication 

and RNA splicing (Dechat et al. 2008). However, the specific mechanistic roles of lamins in 

these processes, particularly in a cell or tissue type-specific context, remain obscure.  
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4. Pathogenesis of LMNA dilated cardiomyopathy 

The pathogenesis of LMNA dilated cardiomyopathy remains a puzzle in medical genetics. 

Mouse models have been extremely helpful in deciphering critical mechanisms, which could 

partially explain the pathogenesis of the disease as well as for proposing potential 

innovative pharmacological therapies. Using a murine model of LMNA dilated 

cardiomyopathy, we recently brought some insights into the molecular pathogenesis of this 

disease, which have paved the way to potential therapies. To approach the issue of 

understanding the pathogenesis of LMNA dilated cardiomyopathy, we studied the 

transcriptome from hearts of Lmna H222P mice (a mouse model of LMNA dilated 

cardiomyopathy), using the Affymetrix® array technology. Male Lmna H222P mice develop 

cardiac chamber dilation, decreased left ventricle ejection fraction and hypokinesis 

detectable by echocardiography at 8 to 10 weeks of age (Arimura et al. 2005). To avoid 

interference caused by fibrotic cells and nonspecific tissue damage in hearts from older 

Lmna H222P mice, we initially analyzed samples from mice at 10 weeks of age where there 

were no detectable cardiac histological abnormalities. We analyzed gene ontology terms 

applied to genes, to identify functional classes of genes differentially expressed in hearts of 

Lmna H222P mice compared with those expressed in controls. Analysis using functional 

class scoring improves sensitivity by statistically evaluating genes in biologically 

meaningful groups. Genes encoding proteins in mitogen-activated protein kinase (MAPK) 

signaling pathway demonstrated significantly altered expression in hearts of Lmna H222P 

mice (Muchir et al. 2007) (Figure 1). Because enhanced activity of the Extracellular signal-

regulated kinase1/2 (ERK1/2), a branch of MAPK signaling pathways, has been formerly 

shown to be causing cardiomyopathy, we focused subsequent experiments on analyzing 

this signaling in tissues form Lmna H222P mice and in cultured cells. We then demonstrated 

an aberrant activation of ERK1/2 signaling in hearts from Lmna H222P mice, as early as 4 

weeks of age (Muchir et al. 2007). Our work proved that the activation of ERK1/2 signaling 

pathway preceded the cardiac dysfunction of Lmna H222P mice and that it is a consequence 

of alterations in A-type lamins and not secondary to non-specific affects.  

5. MEK-ERK signaling pathway 

MAPK signaling pathways are major information highways from extracellular mitogens, 

growth factors and cytokines at the cell surface to the nucleus to control gene expression 

(Davis, 1993). These signaling pathways control complex cellular programs, such as 

embryogenesis, differentiation, proliferation and cell death, in addition to short-term 

changes required for mechanical stress response and acute hormonal responses. The output 

of these pathways is transduced via MAPK family members that phosphorylate and 

regulate a wide array of substrates including transcription factors, cytoskeletal elements and 

other protein kinases (Seger & Krebs, 1995). Stimulation of many receptor classes can 

activate ERK1/2 including receptors with intrinsic tyrosine kinase activity, cytokine 

receptors and G-protein-coupled receptors (GPCR), including those coupling via G-proteins 

of the Gq/11, Gi/o and Gs family. In the heart, ERK1/2 stimulation has been shown by 

fibroblast growth factor, insulin-like growth factor-1, estrogen, neuregulin-1, atrial 

natriuretic peptide, 1- and -adrenoceptor agonists. Moreover, cardiac ERK1/2 can be 

activated independently than GPCR receptors, via mechanical stress, osmotic shock.  
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The MAPKs are activated by protein kinase cascades comprising at least three enzymes 

acting in series. ERK are activated directly by ERK kinases (MEK), which are dual specificity 

protein kinases that generally recognize only certain MAPKs as substrates. MEK are 

activated by MEK kinases, a structurally diverse group of kinases with less predictable 

specificities. MEK1/2, which activate ERK1/2, have very narrow substrate specificity. It is 

assumed, from lack of evidence to the contrary, that ERK1/2 are the only substrates of 

MEK1/2. Activated ERK1/2 kinases phosphorylate and activate a variety of substrates. All 

these substrates can be categorized into several groups including: transcription factors (Atf2, 

Elk1, c-Fos…), protein kinases and phosphatases (FAK1, MLCK, PAK1,…), cytoskeletal and 

scaffold proteins (dystrophin, Tau, Synaptin…), receptors and signaling molecules (EGFR, 

PLCg,…) and apoptosis-related proteins (Bad, Calpain, caspase 9, …). Some of the 

substrates can be found in the cytosol (paxilin, calnexin…), in agreement with the role of 

ERK1/2 in the regulation of both cytosolic and nuclear processes  

6. Pharmacological therapy 

Because we found abnormal activation of ERK1/2 signaling pathway in hearts of Lmna 
H222P mice, we hypothesized that pharmacological inhibition of this signaling pathway 
would prevent the cardiac deterioration. We treated Lmna H222P mice with PD098059, a 
tool compound that inhibits MEK1/2. We administered PD098059 or placebo 
(dimethylsulfoxide; DMSO) (daily, intraperitoneal injection) to Lmna H222P mice. We 
first treated male Lmna H222P mice starting at 8 weeks of age, prior to the onset of 
clinically detectable cardiac abnormalities, and analyzed them at 16 weeks (Muchir et 
al. 2009). Pathological dilatation of the cardiac left ventricle is often associated with 
fibrosis, and reactivation of a fetal gene expression program characterized by increased 

levels of atrial natriuretic peptide, brain natriuretic peptide, and -myosin light and 
heavy chains. Accordingly, in hearts from untreated Lmna H222P mice and those 
treated with vehicle (DMSO), expression of mRNAs encoding natriuretic peptide 
precursors as well as mRNAs encoding myosin light chains were significantly 
increased. We showed that after treatment with PD098059, the cardiac expression of 
these mRNAs was significantly lowered compared to vehicle-treated Lmna H222P mice 
(Muchir et al. 2009). Similarly, we also demonstrated that Lmna H222P mice treated 
with PD98059 had a lower degree of cardiac fibrosis than the Lmna H222P mice treated 
with the vehicle. After 8 weeks of treatment with DMSO or PD98059 Lmna H222P mice 
were anesthetized and the cardiac dimensions and function measured by cardiac 
ultrasound. M-mode transthoracic echocardiography showed increased left ventricle 
end-diastolic diameter and left ventricle end-systolic diameter in Lmna H222P mice 
treated with DMSO compared with control mice. Lmna H222P mice treated with 
PD98059 had significantly smaller left ventricle end-systolic diameters compared to the 
DMSO-treated mice (Table 1). Cardiac fractional shortening and ejection fraction were 
reduced in Lmna H222P mice compared to control mice but increased in the Lmna 
H222P mice treated with PD98059.  

As treatment of cardiomyopathy in human subjects may more likely be administered after 
the onset of symptoms or detectable cardiac abnormalities, we next treated mice with 
PD98059 starting at 16 weeks of age, when male Lmna H222P mice have left ventricular 
dilatation and an ejection fraction approximately 70 percent that of wild type mice, and 
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analyzed the mice at 20 weeks (Wu et al. 2011). Treatment with PD98059 prevented left 
ventricular end-systolic dilatation, increased ejection fraction (Table 1), blocked increased 
cardiac expression of RNAs encoding natriuretic peptide precursors and reversed the 
induction of elements of the “fetal gene program” compared to placebo-treated mice. As 
significant cardiac fibrosis occurs in end-stage dilated cardiomyopathy, particularly LMNA 
dilated cardiomyopathy, we also examined cardiac fibrosis after treatment. Lmna H222P 
mice treated with PD98059 had a lower degree of cardiac fibrosis than the Lmna H222P mice 
treated with placebo. Overall, this work showed that inhibiting ERK1/2 signaling had 
positive effects on cardiac biochemistry and physiology in a mouse model of LMNA dilated 
cardiomyopathy, (Figure 1).  

 

  8-16 weeks 16-20 weeks 

Genotype  
(Treatment) 

n LVEDD (mm) 
LVESD 
(mm) 

EF (%) n 
LVEDD 

(mm) 
LVESD 
(mm) 

EF (%) 

                  
Lmna+/+ 13 3.3 ± 0.1 2.0 ± 0.1 76.8 ± 2.0 12 3.5 ± 0.1 2.1 ± 0.1 73.2 ± 1.2 

LmnaH222P/H222P 
(DMSO) 

15 3.6 ± 0.1 * 2.7 ± 0.1*** 56.9 ± 2.9 *** 12 4.4 ± 0.1 * 3.5 ± 0.1 *** 42.6 ± 3.6 *** 

LmnaH222P/H222P 
(PD98059) 

7 3.1 ± 0.2 1.8 ± 0.2 ‡‡ 73.5 ± 4.7 ‡‡ 19 3.6 ± 0.1 2.4 ± 0.1 ‡‡‡ 65.5 ± 2.6 ‡‡ 

LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; EF, 
ejection fraction. 
Values are means ± standard errors. 
Comparison between DMSO-treated LmnaH222P/H222P and Lmna+/+ mice was performed using Student 
unpaired t-test, *P<0.05, ***P<0.0005. 
Comparison between PD98059-treated LmnaH222P/H222P and DMSO-treated LmnaH222P/H222P mice was 
performed using Student unpaired t-test, ##P<0.005, ###P<0.0005. 

Table 1. Echocardiographic data for Lmna+/+ mice and LmnaH222P/H222P mice treated with 
vehicle (DMSO) or MEK1/2 inhibitor (PD98059) between 8-16 weeks of age and 16-20 weeks 
of age. 

7. MEK1/2 inhibitors 

In the field of target identification there has been a great deal of enthusiasm for identifying 
novel drug targets based on knowledge of key signal transduction components and their 
link to human disease. As signaling disorders represent a major cause for the pathological 
states and as most of the recently validated target molecules of drug research are signal 
transduction kinases, signal transduction therapy has become one of the most important 
areas of drug research (Keri et al. 2006, Levitzki 1996). Approximately 25% of the druggable 
genome consists of kinases involved in signal transduction. However, only a handful of 
kinases inhibitors are being used in clinical practice (Margutti & Laufer 2007). This remains 
then a wide perspective for drug discovery. The common feature conserved throughout the 
entire protein kinase family is the catalytic domain. The chemical activity of a kinase 
involves removing a phosphate group from ATP and covalently attaching it to a free 
hydroxyl group. Most kinases act on both serine and threonine, others act on tyrosine, and a 
number act on all three (dual-specificity kinases), like MEK1/2. The fact that kinases share a 
highly homologous catalytic domain, and the common co-substrate ATP, initially led to the 
assumption that protein kinases constitute a non-druggable family of protein kinases. A  
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Fig. 1. Study from LmnaH222P/H222P mice suggests that activation of ERK1/2 underlies the 
development of LMNA dilated cardiomyopathy. LmnaH222P/H222P mice develop cardiac 
chamber dilation and decreased left ventricle ejection fraction. Affymetrix approach showed 
that ERK1/2 signaling pathways is abnormally activated in the heart of LmnaH222P/H222P mice 
compared to Lmna+/+ mice, before any detectable sign of cardiac deterioration. 
Pharmacological intervention using PD98059, an inhibitor of MEK1/2, the kinase that 
activate ERK1/2, improves the cardiac function of LmnaH222P/H222P mice. 

type of inhibitor, allosteric (non-ATP competitive), could potentially solve the selectivity 
issues related to protein kinase inhibition. PD098059 (Dudley et al. 1995) and U0126 (Favata 
et al. 1998) were among the first specific MEK1/2 allosteric inhibitors described. Although 
they have been extremely useful in the in vitro study of MAPK signaling, they have not been 
pursued in clinical development because of poor pharmacologic characteristics.   
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Several allosteric MEK1/2 inhibitors are in clinical and pre-clinical development. Some of 
the MEK1/2 inhibitors that have been used in human subjects include: 

CI-1040 (PD184352), a benzhydroxamate from Pfizer, was the first small-molecule MEK1/2 

inhibitor that proceeded to clinical testing. It was developed based on compounds and 

structures identified during the screening that led to the identification of PD098059, but had 

improved potency and selectivity (Barrett et al. 2008). Cl-1040 is an oral MEK1/2 inhibitor 

with promising pre-clinical activity that led to its clinical development (Sebolt-Leopold et al. 

1999). It underwent phase I testing in 77 patients with advanced solids tumors (LoRusso et 

al. 2005). CI-1040 was well tolerated with no grade IV toxicities and only a limited number 

of grade III toxicities. The majorities of toxicities (98%) were grade I/II and included 

diarrhea (43%), fatigue (30%), rash (18%) and nausea (16%). Antitumor activity was seen in 1 

pancreatic cancer patient who had a partial response lasting 12 months. Nineteen (25%) 

subjects had stable disease for 3 months, and this observation was commonly associated 

with symptomatic benefit. On the basis of these results, a multicenter, parallel arm phase II 

study of CI-1040 was performed in patients with advanced breast, colon, pancreatic, and 

non-small cell lung cancer. CI-1040 was relatively well tolerated, with 19% experiencing 

grade III toxicities and no patients having grade IV toxicities. The toxicities included 

diarrhea, nausea, fatigue, rash, edema, abdominal pain, anorexia, and facial edema. 

However, no patients had a partial or complete response and the trial was closed. It appears 

that CI-1040 will not be further developed in these tumor types. 

PD0325901 is a second-generation oral MEK1/2 inhibitor subsequently developed by Pfizer. 

Relatively minor changes distinguish the chemical structure of PD0325901 from that of CI-

1040. The cyclopropylmethoxy group of CI-1040 was replaced with a R-dihydroxy-propoxy 

group and the 2-chloro substituent of CI-1040 was replaced with a 2-fluoro group on the 

second aromatic ring. Nevertheless, these minor structural changes imparted significant 

increases in potency with PD0325901 (Brown et al. 2007). Pre-clinical findings of 

significantly improved pharmacologic and pharmaceutical properties of PD0325901 were 

determined to hold promise for the use of the compound as a therapeutic agent. The first-in-

human trial of PD0325901 employed an open-label, dose-escalating design in 41 patients 

with advanced colon, melanoma, and non-small cell lung cancer. Adverse events were 

observed, including rash (49%), diarrhea (49%), fatigue (34%), visual disturbance (34%), 

nausea (29%), edema (29%), pruritus (14%), anemia (11%) and dyspepsia (11%). The 

compound underwent a phase II testing in patients with advanced colon, melanoma and 

non-small cell lung cancer. More concerns have been focused on neurologic adverse event 

(confusion and hallucination) in three patients observed in the first trial, leading to putting a 

halt on the human trials using PD0325901. It is unclear if the drug caused these adverse 

events. 

ARRY-142886/AZD6244/selumetinib (Array Biopharma/AstraZeneca) is a potent, highly 
specific MEK1/2 inhibitor. ARRY-142886/AZD6244 has undergone phase I testing in a trial 
of 57 patients with solid tumors. Hypoxia, rash, diarrhea, nausea, fatigue and blurred vision 
have been documented as the most common treatment-related toxicities in this study (grade 
I to III). Thirty-nine patients completed the study and 19 of them had stabilization of their 
disease after the treatment, 9 remained stable for five or more months. These promising 
results triggered a phase II study, which is currently under investigation.  
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ARRY-162, ARRY-300 and other Array MEK inhibitors (Array Biopharma/Novartis) are 
potent, highly specific MEK1/2 inhibitors. ARRY-162 is currently in phase I development 
for cancer. Previously, it failed to meet efficacy endpoints in phase II studies in rheumatoid 
arthritis. ARRY-162 is an orally active, potent, selective, non-ATP-competitive inhibitor of 
MEK 1/2.  

RDEA119 (Ardea Biosciences/Bayer) is another highly selective MEK1/2 inhibitor. Pre-
clinical and clinical results suggest that RDEA119 has favorable properties, including oral 
dosing, excellent selectivity and limited retention in the brain, which, in turn, may result in a 
reduced risk of central nervous system side effects. In preclinical studies, RDEA119 has 
demonstrated synergistic activity when used in combination with multiple anti-cancer 
agents in a wide range of tumor cell lines. Ardea Biosciences initiated a phase I clinical of 
RDEA119 trial in 60 patients with advanced cancer.  

8. Discussion 

Less than a decade ago the kinases constituting mammalian MAPK pathways were 
identified through intense efforts to understand the molecular events underlying cellular 
responses to extracellular signals. During this decade the kinases constituting ERK1/2 
signaling pathways have come to be appreciated as key cellular signal transducers and thus 
attractive targets for drug development. Successful drug development has required the 
demonstration that the difficulties presented by a large gene family with a highly conserved 
catalytic core could successfully be targeted with specific and potent small-molecule 
inhibitors. These efforts are now beginning to bear fruit with the initiation of clinical trials in 
multiple human diseases. It is currently unclear whether it will be efficacious in LMNA 
dilated cardiomyopathy. The relevance of pre-clinical to basic research to human clinical 
protocols is still relatively unclear. Nevertheless, the outcome of clinical trials of compounds 
inhibiting ERK1/2 signaling pathways is of significant interest to both the basic and the 
clinical scientific communities focusing on LMNA dilated cardiomyopathy. Their positive 
outcome would be a triumph of translating basic scientific understanding of cellular 
function into successful human therapies. 
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