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1. Introduction 

An effective host defense against pathogens requires appropriate recognition of the 

invading microorganism by immune cells, conducing to an inflammatory process that 

involves recruitment of leukocytes to the site of infection, activation of antimicrobial effector 

mechanisms and induction of an adaptive immune response that ultimately will promote 

the clearance of infection. All these events require the coordination of multiple signaling 

pathways, initially triggered by the contact of the pathogen with innate immune cells. The 

“signal alarm” is normally triggered by ligation of microorganism, or microorganism’s 

components, to pattern-recognition receptors, causing their phosphorylation and recruitment 

of adapter molecules, which in turn will activate second messengers within the cytosol of the 

cells, allowing the transduction of the signal. The second messengers are often protein 

kinases that in a cascade process ultimately activate the transcription factors responsible for 

the expression of effector molecules like, cytokines, chemokines and reactive oxygen species, 

crucial elements to mount an adequate immune response. The activity of such critical 

intracellular signaling pathways is a process extremely well controlled by a balance of 

positive and negative regulation, being the activation of a given protein kinase normally 

counterbalanced by the activation of its opposing phosphatase. However, as part of their 

pathogenic strategies, several microorganisms exploit host cell signaling mechanisms by 

distorting this balance between positive and negative signals. They hijack crucial immune-

cell signaling pathways, subverting the immunogenic abilities of these cells and evading this 

way the host immune response. In the last few years a great effort has gone into 

understanding the molecular mechanisms behind this subversion, and various signaling 

cascades were identified as main targets of pathogens and virulence factors. Among these 

targets, assume particular importance the transcription factor nuclear factor-κB (NF-κB), a 

cornerstone of innate immunity and inflammatory responses, as well as the mitogen 

activated protein kinases (MAPKs), signaling cascades implicated in the regulation of 

crucial aspects of immunity. Overall in this chapter, we will provide an overview of the 

current understanding of how pathogens interact with host cells and how these 

microorganisms exploit host immune response in a signaling point of view.  
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2. Immune response to invading microorganisms  

In mammals, immune system can be subdivided into two branches: innate and adaptive 

immunity. Following infection, innate immune cells like macrophages, dendritic cells (DCs) 

and neutrophils (collectively called phagocytes) engulf and destroy microorganisms, 

representing that way a rapid first defense barrier against infection. In turn, adaptive 

immunity is mediated via the generation of antigen-specific B and T lymphocytes, through a 

process of gene rearrangement resulting in the production and development of specific 

antibodies and killer T cell, respectively. Adaptive immunity is also behind immunological 

memory, allowing the host to rapidly respond when exposed again to the same pathogen. 

Contrarily to the originally thought, the innate immune response is not completely 

nonspecific, but rather is able to discriminate between self antigens and a variety of 

pathogens (Akira et al., 2006). Furthermore, much evidence has demonstrated that 

pathogen-specific innate immune recognition is a prerequisite to the induction of antigen-

specific adaptive immune responses (Hoebe et al., 2004; Iwasaki & Medzhitov, 2010), being 

dendritic cells central players in this linking (Steinman, 2006). DCs are specialized antigen-

presenting cells that function as sentinels, scanning changes in their local microenvironment 

and transferring the information to the cells of the adaptive immune system (Banchereau & 

Steinman, 1998; Banchereau et al., 2000). Upon activation by microorganisms or 

microorganism components, immature DCs suffer a complex process of morphological, 

phenotypical and functional modifications to become mature DCs that enter draining 

lymphatic vessels and migrate to the T-cell zones of draining lymph nodes where they 

present antigens to T lymphocytes. Depending on their maturation/activation profile, DCs  

 

Fig. 1. Dendritic cells link innate to adaptive immunity. Once in contact with microbial 
antigens, DCs mature and migrate to draining lymph nodes where they present antigens to 
naïve T lymphocytes. Different pathogens trigger disticnt DCs maturation profiles, leading 
to the polarization of different T-cell subsets. The adaptive immune response is therefore 
modulated, in some extent, to match the nature of the pathogen. Ag: antigen; CTL: cytotoxic 
T cell; DC: dendritic cell; Mφ: macrophage. 
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will polarize and expand distinct T-cell subsets (T-helper cells [Th1, Th2, and Th17], regulatory 

T cells, and cytotoxic T cells) (Sporri & Reis e Sousa, 2005; Diebold, 2009) and given that the 

recognition of different microorganisms lead to distinct DC maturation/activation profiles, the 

adaptive immune response is, therefore, modulated to match the nature of the pathogen 

(Figure 1) 

2.1 Recognition of microorganisms by innate immune cells 

To a rational understanding of molecular mechanisms by which pathogens escape the 

immune system, we need first to know how our immune cells sense microorganisms and 

spread the “alarm”.  

Innate immune cells, like macrophages and DCs, recognize microorganisms through 

sensing conserved microbial components, globally designated as pathogen associated 

molecular patterns (PAMPs) (Kawai & Akira, 2010; Takeuchi & Akira, 2010; Medzhitov, 

2007). These molecular patterns are normally essential components of microbial 

metabolism, including proteins, lipids, carbohydrates and nucleic acids, not subjected to 

antigenic variability. Another important feature of PAMPs is that they are markedly 

distinct from self-antigens, allowing the innate immune system to discriminate between 

self and non-self. 

The recognition of PAMPs is mediated by constitutively expressed host´s germline-encoded 

pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors 

(CLRs), retinoic acid-inducible gene-1(RIG-1)-like receptors and nucleotide-oligomerization 

domain (NOD)-like receptors. The beauty of this evolutionary sensor mechanism is that 

different PRRs react with specific PAMPs, triggering a signaling pathway profile that 

ultimately lead to distinct anti-pathogen responses (Akira, 2009). Therefore, innate immunity 

is a key element in the infection-induced non specific inflammatory response as well as in the 

conditioning of the specific adaptive immunity to the invading pathogens (Akira et al., 2001; 

Iwasaki & Medzhitov, 2004). 

2.1.1 Toll-like receptors 

Among PPRs, TLRs are by far the most intensively studied and the more expressive group, 

being considered the primary sensors of pathogen components. TLRs are type I membrane 

glycoproteins formed by extracellular leucine rich repeats involved in PAMP recognition, 

and a cytoplasmic signaling domain homologous to that of the interleukin 1 receptor (IL-

1R), know as Toll/IL-1R homology (TIR) domain. These receptors were originally identified 

in Drosophila as essential elements for the establishment of the dorso-ventral pattern in 

developing embryos (Hashimoto et al., 1988). However, in 1996, Hoffmann and colleagues 

would initiate a novel era in our understanding of innate immunity, demonstrating that 

Toll-mutant flies were highly susceptible to fungal infection, showing that way that TLRs 

were involved in the defense against invading microorganisms (Lemaitre et al., 1996). 

Afterward, mammalian homologues of Toll receptor were progressively identified, and 

actually most mammalian species are believed to have between ten and thirteen types of 

TLRs. In human, ten functional receptors (TLR1-10) have been identified so far and an  
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TLR family Cellular location Microbial components Pathogens 

TLR1/2 Cell surface 
Tri-acyl lipopeptides 

Soluble factors 

Bacteria, mycobacteria 
Neisseria meningitides 

TLR2 Cell surface 

Diacyl lipopeptides  

Triacyl lipopeptides  

Peptidoglycan  

Lipoteichoic acid  

Porins 

Lipoarabinomannan  

Phenol-soluble modulin  

tGPI-mutin  

Glycolipids 

Hemagglutinin protein  

Zymosan  

Phospholipomannan  

Glucuronoxylomannan  

Mycoplasma 

Bacteria and 

mycobacteria 

Gram-positive bacteria 

Gram-positive bacteria 
Neisseria 

Mycobacteria 
Staphylococcus 
epidermidis 
Trypanosoma Cruzi 
Treponema maltophilum 

Measles virus 

Fungi 
Candida albicans 
Cryptococcus 
neoformans 

TLR3 Endolysosome 

Viral double-stranded RNA Vesicular stomatitis 

virus, lymphocytic 

choriomeningitis virus 

reovirus 

TLR4 Cell surface 

LPS  

Fusion protein  

Envelope proteins  

HSP60  

Manan 

Glycoinositolphospholipids  

Gram-negative 

bacteria 

Respiratory syncytial 

vírus 

Mouse mammary 

tumor virus 
Chlamydia pneumoniae 
Candida albicans 
Trypanosoma 

TLR5 Cell surface Flagellin Flagellated bacteria 

TLR6/2 Cell surface 

Diacyl lipopeptides  

Lipoteichoic acid  

Zymosan  

Mycoplasma  

Group B Streptococcus 
Saccharomyces cerevisiae 

TLR7 Endolysosome 
Viral single-stranded RNA 

RNA 

Several virus 

Bacteria from group B 
Streptococcus 
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TLR family Cellular location Microbial components Pathogens 

TLR8 (only 

human) 
Endolysosome 

Viral single-stranded RNA Several virus 

TLR9 Endolysosome 

CpG-DNA  

dsDNA viruses  

Hemozoin  

Bacteria and 

mycobacteria 

Herpes simplex virus 

and murine 

Cytomegalovirus 

Plasmodium 

TLR10 Cell surface Unknown Unknown 

TLR11 (only 

mouse) 
Endosome 

Profilin-like molecule  Toxoplasma gondii  

Uropathogenic E. coli 

TLR12 (only 

mouse) 
Cell surface 

ND Unknown 

TLR13 (only 

mouse) 
Cell surface 

ND Virus 

Table 1. Toll-like receptors cellular location and microbial ligands. ND: not determined. 

eleventh has been found to be encoded at gene level but, as it contains several stop codons, 

protein is not expressed (Zhang et al., 2004). TLRs are involved in sensing a wide panel of 

microbial products (Kawai & Akira, 2010), including lipids, peptidoglycans, proteins, and 

nucleic acids (Table 1). Regarding their cellular location, these receptors are either found at  

cell surface membrane or within intracellular compartments. A growing body of data 

suggests that TLRs involved in sensing bacterial chemical structures (TLR1, TLR2, TLR4 and 

TLR5) are located on the cell surface, while nucleic acid-recognizing TLRs (TLR3, TLR7, 

TLR8 and TLR9) are uniquely positioned intracellularly (McGettrick & O'Neill, ; Barton & 

Kagan, 2009). 

2.1.1.1 Signaling through TLRs 

Recognition of microbial components by TLRs leads to the activation of an intricate network 

of intracellular signaling pathways that ultimately result in the induction of molecules 

crucial to the resolution of infection such, proinflammatory cytokines, type I interferon 

(IFN), chemokines, and co-stimulatory molecules (Takeuchi & Akira, 2010 ; Kumar et al., 

2010). These signaling cascades originate from cytoplasmic TIR domains and are meditated 

via the recruitment of different TIR domain-containing adaptor molecules, such as myeloid 

differentiation primary response gene 88 (MyD88), TIR-containing adaptor protein/ 

MyD88-adaptor-like (TIRAP/MAL), TIR-containing adaptor inducing interferon-┚ (IFN-

┚)/TIR-domain-containing adaptor molecule 1 (TRIF/TICAM1) and TIR-domain-containing 

adaptor molecule/TRIF-related adaptor molecule 2 (TRAM/TICAM2) (Fitzgerald et al., 
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2001; Horng et al., 2001; Yamamoto et al., 2002; Takeda & Akira, 2004; Yamamoto et al., 

2004).  

In the signaling pathways downstream of the TIR domain, the TIR domain-containing 
adaptor MyD88 assumes a crucial role. With exception for TLR3, all TLRs recruit MyD88 
and initiate MyD88-dependent signaling cascades to activate NF-κB and MAP kinases. 
MyD88 is used as the sole adapter in TLR5, TLR7 and TLR9 signaling, while TLR1, TLR2, 
and TLR6, additionally recruit the adaptor TIRAP. TLR4 uses the four adaptors, including 
MyD88, TIRAP, TRIF and TRAM (Yamamoto et al., 2002; Yamamoto et al., 2003)  

In a general point of view, TLR signaling could be divided into two major pathways: 
MyD88-dependent and TRIF-dependent pathways. 

MyD88-dependent pathway 

Following stimulation, MyD88 recruits IL-1 receptor-associated kinase proteins (IRAK) to 

TLRs, resulting in IRAK phosphorylation and subsequent association and activation of 

tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) (Swantek et al., 2000; 

Suzuki et al., 2002). The IRAK-1/TRAF6 complex dissociates from the TLR receptor and 

associates with TGF-┚-activated kinase 1 (TAK1) and TAK1 binding proteins, TAB1 and 

TAB2. From this new formed complex, IRAK-1 is degraded, whereas the remaining complex 

of TRAF6, TAK1, TAB1, and TAB2 is transported across the cytosol where it forms large 

complexes with E2 protein ligases such as the Ubc13 and Uev1A. As result, TRAF6 is 

polyubiquitinated and thereby induces TAK1 activation (Deng et al., 2000) which, in turn, 

activates the IκB kinases complex (IKK). The active IKK complex promotes the 

phosphorylation and subsequent ubiquitination of the NF-κB inhibitory protein IκB-┙, 

leading to its proteosomal degradation. This allows the NF-κB subunits to be translocated to 

the nucleus, where they initiate the transcription of genes involved in inflammatory 

response (Wang et al., 2001). Additionally to NF-κB activation, MyD88-dependent signaling 

cascade also culminates into the activation of the three MAPK pathways (extracellular 

signal–regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38), regulating both, the 

transcription of inflammatory genes and the mRNA stability of those transcripts (Figure 2). 

TRIF-dependent pathway  

Besides this MyD88-dependent pathway, NF-κB could also be activated follow TLR3 and 

TLR4 engagement in a TRIF-dependent manner. In TLR3 signaling, TRIF interacts directly 

with the TIR domain of the receptor, whereas for TLR4 another TIR domain containing 

adaptor, TRAM/TICAM-2, acts as a bridging between TLR4 and TRIF (Oshiumi et al., 2003; 

Oshiumi et al., 2003). In this pathway, TRIF recruits TRAF-6 and RIP1, molecules that 

cooperate in TAK1 activation, and lead to robust NF-κB activation. 

TRIF-dependent signaling cascade also assumes a crucial role in the expression of type I IFN 

and IFN-inducible genes (ISGs). These genes are mainly potent antiviral molecules and their 

expression, follow TLR3 sensing of viral double stranded RNA, is of critical importance for 

the control of viral infections (review by Taniguchi et al., 2001). In this pathway, TRIF 

associates with TBK1 and IKKi, which in turn phosphorylate IRF3 and IRF7, leading to their 

nuclear translocation and induction of type I IFN genes and co-stimulatory molecules 

(Figure 2). 
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Fig. 2. Schematic representation of TLRs-mediated signaling. TLR signaling pathways were 
triggered by recognition of PAMPs by plasma membrane-localized TLRs, such as TLR4, 
TLR5, and TLR2 (TLR1 and TLR6 form heterodimers with TLR2 becoming functional 
receptor complexes) and endosomal-localized TLRs, such as TLR3, TLR7, and TLR9. 
Depending on the adaptor molecules involved, two major pathways could be established: 
the MyD88-dependent pathway (black arrows) and the TRIF-dependent pathway (blue 
arrows). MyD88-dependent signaling is initiated through the recruitment and activation of 
IRAK that associates and activates TRAF6. The IRAK-1/TRAF6 complex subsequently 
activates the TAK1 kinase, which in turn activates the IKK complex. The active IKK complex 
activates NF-κB subunits leading to their translocation to nucleus where they initiate the 
transcription of inflammatory cytokines/chemokines genes. In the TRIF-dependent 
signaling pathway, TRIF recruits TRAF-6 and RIP1, molecules that cooperate in TAK1 
activation, leading to NF-κB activation. Besides, TRIF also recruits TBK1 and IKKi, leading 
to phosphorylation and nuclear translocation of IRF3 and IRF7, which results in 
transcription of type I IFN genes and co-stimulatory molecules 

2.1.2 C-Type lectin receptors  

C-type lectin receptors are a large superfamily of proteins characterized by the presence of 

one or more C-type lectin-like domains (CTLDs) that were originally described as Ca2+-

dependent, carbohydrate binding proteins (Weis et al., 1998). Over the past decade more 

than 60 CLRs have been identified in human immune cells (van Vliet et al., 2008). In recent 

years, some of these CLRs have emerged as PRRs with important roles in the induction of 

immune responses against numerous pathogens. Although the TLRs have a well defined 

role in alerting innate immune cells to the presence of pathogens, CLRs are mainly involved 

in the recognition and subsequent endocytosis or phagocytosis of microorganisms. These 
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receptors have also crucial functions in recognizing glycan structures expressed by the host, 

facilitating this way cellular interaction between DCs and other immune cells, like T-cells 

and neutrophils (Geijtenbeek et al., 2000; van Gisbergen et al., 2005; Bogoevska et al., 2006). 

Based on their structural features, C-type lectin receptors are sorted into two major groups: 
type I and type II receptors. Type I receptors are transmembrane proteins with multiple 
carbohydrate recognition domains (CRDs), being members of this group the mannose 
receptor (MR), DEC-205 (CD205), and Endo 180 (CD280), among others. Type II receptors 
are also transmembrane proteins, but in contrast, they have just a single CRD. DC-specific 
intercellular adhesion molecule (ICAM)-3 grabbing nonintegrin (DC-SIGN), Langerin, DC-
associated C-type lectin-1 (Dectin 1), Dectin 2, DC-immunoreceptor (DCIR) and 
macrophage-inducible C-type lectin (Mincle) are examples of type II CLRs.  

Originally, CLRs were thought to be predominantly involved in antifungal immunity, but 
are currently recognized to participate in immune responses induced by a wide spectrum of 
other pathogens, including bacteria, viruses and nematodes (Table 2). 

2.1.2.1- Signaling through C-Type lectin receptors 

Besides its roles in recognition and uptake of antigens, CLRs have also important signaling 
functions, shaping the immune responses to innumerous pathogens. Whereas some CLRs 
possess intrinsic signaling properties and are thus capable of directly activate transcription 
factors leading to cytokines expression, others predominantly act as modulators of 
responses to other PRRs, such as TLRs. This crosstalk between groups of PRRs is actually 
seen as a crucial event by which immune responses are balanced through collaborative 
induction of positive or negative feedback mechanisms. While TLRs engagement triggers   
 

CLR Group CLR Microbial components Pathogens 

Type I 

Mannose 
receptor 
(CD206) 

High-mannose 
oligosaccharides, Fucose,  
Sulphated sugars and  
N-Acetylgalactosamine 

M. tuberculosis  
M. kansasii 
Francisella tularensis,  
Klebsiella pneumoniae,  
HIV-1 and Dengue 
vírus 
Candida albicans 
Cryptococcus 
neoformans 
Pneumocystis carinii 
Leishmania spp. 

DEC205
(CD205)

ND ND 

Type II 
DC-SIGN 
(CD209) 

High-mannose 
oligosaccharides and 
fucose  

M. tuberculosis, 
M.leprae 
BCG, Lactobacilli spp. 
Helycobacter pylori 
HIV-1 and Dengue 
vírus 
Schistosoma mansoni  
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Leishmania spp. 
Candida albicans  
Ixodes scapularis 
Salp15 protein 

Langerin 
(CD207) 

High-mannose 
oligosaccharides, Fucose 
and 
N-Acetylgalactosamine

HIV-1 
M.leprae 

CLEC5A ND Dengue virus  

MGL 
(CD301) 

Terminal N-
Acetylgalactosamine 

Schistosoma mansoni  
Filoviruses  

Dectin 1 
(CLEC7A) 

┚-1,3 glucans 

Pneumocystis carinii 
Candida albicans  
M. tuberculosis 
Aspergillus fumigatos  
Histoplasma 
capsulatum 

CLEC2 
(CLEC1B) 

ND HIV-1 

MICL
(CLEC12A)

ND ND 

CLEC12B ND ND 

DNGR1 
(CLEC9A) 

ND ND 

Dectin 2 
(CLEC6A) 

High-mannose 
oligosaccharides 

Aspergillus fumigatos  
M. tuberculosis 
Candida albicans  
Trichophyton rubrum 
Paracoccoides 
brasiliensis  
Soluble components 
of Schistosoma mansoni 
eggs 

Mincle 
(CLEC4E) 

┙-mannose 
Trehalose-6,6-dimycolate 

Malassezia spp 
Mycobacteria. 

BDCA2 
(CD303) 

ND ND 

DCIR 
(CLEC4A) 

ND HIV-1 

 

Table 2. Major C-type lectin receptors involved in pathogen recognition. BCG: Bacillus 
Calmette-Guérin; HIV-1: Human immunodeficiency virus type 1; ND: not determined. 
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intracellular signaling cascades that result in macrophage activation, DC maturation and 

ultimately T cell activation, binding of ligands to CLRs normally results in tolerogenic 

signals. Therefore the cross talk between TLRs and CLRs may fine-tune the balance 

between immune activation and tolerance. In terms of immunity this represents a paradox: 

if crucial to maintain tolerance to self-antigens, CLRs could be used by pathogens to escape 

immune system. Several pathogens exploit this “security breach”, taking part of their 

capacity to activate C-type lectin receptors to promote an unresponsive state against their 

antigens recognized by other PPRs and increasing, this way, their chances of survival in 

host.  

2.1.2.1.1 Mannose receptor  

The mannose receptor is a type I transmembrane protein expressed on the surface of 

macrophages and immature dendritic cells. This receptor is primarily involved in 

recognition, phagocytosis and processing of glycans structures containing mannose, fucose 

and N-acetylglucosamine, molecules commonly found on the cell walls of pathogenic micro-

organisms, such as mycobacteria, fungus, parasites and yeast (East & Isacke, 2002).  

While MR has been shown to be involved in the expression of several pro and anti-

inflammatory cytokines, the lack of an intracellular signaling motif on its cytoplasmic tail 

indicates that it requires an interaction with other PPRs in order to trigger any signaling 

cascade (Gazi & Martinez-Pomares, 2009). In fact, it was recently showed an intriguing 

interplay between the mannose receptor and another main CLR, Dectin-1. The recognition 

of fungi species, like Candida albicans, Aspergillus fumigates and Pneumocystis carinii by 

Dectin-1 enhances MR shedding in a serine/threonine protein kinase Raf-1 and 

phosphatidylinositol 3-kinase (PI3K)-dependent pathways. As these cleaved MR-cysteine-

rich domains are capable of binding fungi particles and are recognized by tissues lacking 

mannose receptors this could represent a system delivery of MR-ligands to organs that do 

not possess MR receptors. 

2.1.2.1.2 DC-SIGN 

DC-SIGN is one of the most extensively studied type II CLRs. This receptor is primarily 

expressed in myeloid DCs being involved in numerous functions, like egress of DC-

precursors from blood to tissues, DC-T-cell interactions and antigen recognition 

(Geijtenbeek et al., 2000; van Kooyk & Geijtenbeek, 2003). The receptor is involved in 

recognition of carbohydrate antigens of viruses, bacteria and protozoa, modulating the TLR 

signaling triggered by these pathogens. 

Binding of several pathogens, including M. tuberculosis, C. albicans and HIV-1, to DC-SIGN 
triggers three routes that converge to activate Raf-1: the activation of the small GTPase Ras 
protein leads to its association with Raf-1 allowing Raf-1 phosphorylation at residues 
Ser338, Tyr340 and Tyr341, by p21-activated kinases (PAKs) and Src kinases, respectively. 
Raf-1 activation leads in turn to the modulation of TLR-induced NF-κB activation. After 
TLR-induced nuclear translocation of NF-κB, activated Raf-1 mediates the phosphorylation 
of NF-κB subunit p65 at the Ser276, which in turn leads to p65 acetylation. Acetylated p65 
prolongs and increases the transcription of IL-10 gene resulting in an augmented production 
of the immunosuppressive cytokine IL-10 (Gringhuis et al., 2007) (Figure 3a).  
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Recently, a different mechanism of TLR modulation by DC-SIGN was described after the 
interaction of the receptor with Salp15, an immunosuppressive protein of tick saliva (Hovius 
et al., 2008). Binding of Salp15, from the tick Ixodes scapularis, to DC-SIGN activates RAF1 
that, with another not yet defined receptor, leads to MAPK/ERK kinase (MEK) activation. 
MEK-dependent signaling attenuates, in turn, the TLR-induced proinflammatory cytokine 
production at two distinct levels: enhancing the decay of Il6 and Tnf (tumor necrosis factor) 
mRNA and decreasing nucleosome remodeling at the IL-12p35 promoter, resulting in 
impaired IL-12p70 cytokine production (Figure 3b).  

 
 

 

Fig. 3. Signaling through DC-SIGN. a) Carbohydrate antigens of HIV-1, Mycobacterium 
tuberculosis and Candida albicans are recognized by DC-SIGN, leading to activation of the 
small GTPase Ras proteins which associate with the serine/threonine protein kinase RAF1. 
RAF1 is then phosphorylated at residues Ser338, and Tyr340 and Tyr341 by PAKs and Src 
kinases, respectively. RAF1 activation leads to modulation of TLR-induced NF-κB activation 
by inducing the phosphorylation of p65 at Ser276 and its subsequent acetylation (Ac). 
Acetylated p65 exhibits enhanced transcriptional activity, particularly for Il-10 gene, thereby 
increasing the production of IL-10. b) Binding of the salivary protein Salp15 from the tick 
Ixodes scapularis to DC-SIGN activates RAF1, and by a yet unknown co-receptor, changes 
downstream effectors of RAF1, leading to MEK activation. MEK-dependent signaling 
modulates B. burgdorferi-induced TLR1–TLR2-dependent pro-inflammatory cytokine 
production by enhancing the decay of Il-6 and Tnf mRNA. 
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2.1.2.1.3 Dectin 1 

In humans, Dectin-1 is mainly expressed in myeloid cells, such as macrophages, neutrophils 
and dendritic cells (Taylor et al., 2002), although it was also been found in other cell types, 
like B-cells, eosinophiles and mast cells (Ahren et al., 2003; Olynych et al., 2006). Unlike 
many other CLRs, Dectin-1 recognizes ┚-glucans in a Ca2+-independent fashion (Brown & 
Gordon, 2001) and it lacks the conserved residues within its CRD that are typically 
necessary for binding carbohydrate ligands (Weis et al., 1998). The receptor contains a single 
CRD in the extracellular region and an immunoreceptor tyrosine-based activation (ITAM)-
like motif within its intracellular tail.  

It was the first non-TLR PPR shown to possess intrinsic signaling properties, being able to 
signal through both, spleen tyrosine kinase (Syk)-dependent and Syk-independent pathways 
(Brown, 2006) (Figure 4).  

In the Syk-dependent pathway, and upon binding to Dectin-1, the ITAM-like motif is 
phosphorylated in tyrosine residues via Src kinases, promoting the recruitment of the 
signaling protein Syk (Rogers et al., 2005). Activated Syk then signals through the downstream 
transducer caspase recruitment domain protein (Card)9, that forms a complex with the B cell 
lymphoma 10 (Bcl10) and the mucosa associated lymphoid tissue translocation protein 1 
(Malt1) (Gross et al., 2006). This activated CARD9–BCL10–MALT1 (CBM) complex controls 

NF-B activation and subsequent expression of cytokines/chemokines, like TNF-┙, IL-1┚, IL-
10, IL-6, IL-23, CCL2 and CCL3 (LeibundGut-Landmann et al., 2007). Dendritic cells, trough 
this Dectin-1-Syk-Card9 axis and by orchestration of the cytokines IL-1┚, IL-6 and IL-23, 
promote the differentiation of Th17 helper cells, establishing this way a crucial host response 
against extracellular bacteria and fungi (Osorio et al., 2008). Moreover, there are evidences of a 
collaborative Dectin-1/TLR2 pathway for the induction of a specific Candida albicans-Th17 
response, by the induction of prostaglandin E2, which in turn up-regulates the Th17 polarizing 
cytokines IL-6 and IL-23 (Smeekens et al., 2010). Besides the canonical NF-kB activation, Detin-
1 can also activate, through Syk, the NIK-dependent non-canonical RelB subunit of NF-kB 
(Gringhuis et al., 2009). Another Syk downstream signal recently described, points to the 
activation of phospholipase C gamma-2, which in turn activates several calcium-dependent 
and MAPKs-dependent pathways (Xu et al., 2009). One of these calcium-mediated responses 
involves the calcineurin activation of the nuclear factor of activated T-cells (NFAT), leading to 
the expression of the cytokines IL-2 and IL-10 and of inflammatory mediators, like 
cyclooxygenase-2 (COX-2) (Suram et al., 2006; Goodridge et al., 2007). Recently, another 
calcium-dependent pathway downstream of Dectin-1 and Syk was described. In this pathway, 
activated calmodulin-dependent kinase II and Pyk2 promote the activation of the ERK–MAPK 
pathway and CREB, resulting in the generation of an oxidative burst and in the production of 
IL-2 and IL-10 (Slack et al., 2007; Kelly et al., 2010). The generated reactive oxygen species act 
through NLRP3 inflammasome and are essential to IL-1┚ production in response to fungal 
infections (Gross et al., 2009; Kumar et al., 2009; Said-Sadier et al., 2010). 

The Syk-independent pathway downstream Dectin-1 is not fully characterized; however, 
recent findings suggest that Dectin 1 activation leads to the phosphorylation and activation 
of RAF1 by Ras proteins, which promotes the phosphorylation of p65, at Ser276 residue, 
facilitating its acetylation by the histone acetyltransferases CREB-binding protein. Similarly 
to that described for DC-SIGN, acetylated p65 prolongs and increases the transcription of IL-
10 gene. 
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Fig. 4. Signaling through Dectin 1. Recognition of microorganisms by Dectin 1 leads to 

signal through both, Syk-dependent (black arrows) and Syk-independent pathways (blue 

arrows). In the Syk-dependent pathway, binding of glucans to Dectin-1 causes the 

phosphorylation of ITAM-like motifs in its tyrosine residues. Syk is then recruited to the 

two phosphorylated receptors, leading to the formation of a complex involving CARD9, 

BCL-10 and MALT1. This activated complex controls NF-B activation and subsequent 

expression of cytokines/chemokines, like TNF-┙, IL-1┚, IL-10, and IL-6. Activation of Syk 

also leads to the activation of the non-canonical NF-B pathway, a process mediated by NIK 

and IKK, and in which RelB-p52 dimers were translocated to nucleus. Another Syk 

downstream signal leads to activation of PLC2, which in turn activates MAPKs-dependent 

and calcineurin-dependent pathways. Activation of calcineurin promotes the activation of 

NFAT, leading to the expression of the cytokines IL-2 and IL-10 and COX-2. In turn, 

activation of ERK, results in the generation of an oxidative burst that acting through the 

NLRP3 inflammasome, is essential to IL-1┚ production. In the Syk-independent pathway, 

Dectin 1 activation leads to the phosphorylation and activation of RAF1 by Ras proteins, 

leading in turn to the phosphorylation and acetylation of p65. Binding of acetylated p65 to 

the Il-10 enhancer, increases the transcription of the gene. C1: caspase 1; pC1: pro-caspase. 

2.1.2.1.4 Dectin 2  

Dectin 2 was originally found in DCs (Ariizumi et al., 2000), although it is also expressed in 
tissue macrophages, inflammatory monocytes, B cells, and neutrophils (Fernandes et al., 
1999). The receptor has been shown to be involved in recognition of mannan-like or 
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mannan-containing glycoproteins, glycolipids or oligomannosides present in fungi hyphae, 
being critical for the establishment of Th17 antifungal responses (Sato et al., 2006; Robinson 
et al., 2009). Furthermore, murine Dectin-2 was also associated with helminth infections by 
recognition of soluble components derived from the eggs of Schistosoma mansoni (Ritter et 
al., 2010). In contrast to Dectin-1, Dectin-2 does not contain defined signaling motifs in its 
cytoplasmic tail and is therefore incapable of inducing intracellular signaling on its own. 
However, the receptor associates with the adaptor molecule Fc receptor ┛ chain (FcR┛) to 
transduce intracellular signals, through a Dectin 2-FcR┛-Syk-dependent pathway. FcR┛ 
chain contains an ITAM motif that is dually phosphorylated by Src kinases, promoting the 
recruitment and activation of Syk. Syk activates, in turn, the NF-κB and MAPKs pathways in 
a CARD9-dependent or independent fashion, respectively (Saijo et al., 2010) (Figure 5a).  

2.1.2.1.5 Mincle 

Mincle is a type II transmembrane protein with a highly conserved C-type lectin domain, 
predominantly expressed in macrophages. It has been implicated in the recognition of 
Saccharomyces cerevisiae, C. albicans and mycobacteria, and was shown to be responsible for 
specific recognition of ┙-mannose residues in Malassezia species (Bugarcic et al., 2008; Wells 
et al., 2008; Ishikawa et al., 2009; Yamasaki et al., 2009). Similarly to Dectin-2, it lacks a 
signaling motif but couples to FcR┛ to transduce intracellular signals. Ligation to Mincle of 
trehalose-6,6-dimycolate, an abundant mycobacterial cell wall glycolipid, was shown to 
trigger a FcR┛-Syk-CARD9 dependent pathway, leading to protective Th1 and Th17 
immune responses (Werninghaus et al., 2009) (Figure 5b). 

2.1.2.1.6 BDCA2 

BDCA2 is a type II C-type lectin receptor primarily expressed in human plasmacytoid 

dendritic cells (Dzionek et al., 2001). As endogenous or microbial ligands for BDCA2 have 

not yet been identified, it is difficult to understand the pathophysiological implications of 

this CLR. However, it has been shown, by treatment with anti-BDCA-2 monoclonal 

antibodies, that the receptor crosstalk with other PPARs, namely TLR-9, decreasing the 

induced IFN-I expression (Jahn et al., 2010). As for Dectin-2 and Mincle, BDCA2 signals 

through the ITAM motifs of the FcR┛ chain. Activation of BDCA2 results in phosphorylation 

of ITAM motifs of FcR┛, followed by the recruitment and activation of Syk. Activated Syk 

leads to the formation of a complex, consisting of B cell linker (BLNK), Bruton's tyrosine 

kinase (BTK) and phospholipase C2 (PLC2), which induces calcium mobilization. This 

calcium increase appears to be involved in the inhibition of MYD88 adapter recruitment to 

TLR9 and, thereby, in the reduction of the induced expression of IFN-I, TNF-┙ and IL-6 

(Figure 5c).  

2.1.2.1.7 CLEC5A 

CLEC5A, also known as Myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 
(MDL-1), is a type II C-type lectin receptor expressed in cells of myeloid origin, like 
monocytes and macrophages, and in human CD66-positive neutrophils (Aoki et al., 2009). 
Contrarily to other CLRs predominantly involved in fungal and micobacterial recognition, 
CLEC5A was the first CLRs directly linked to viral recognition. It has been shown that this 
receptor plays a crucial role in the pathophysiology of dengue virus infection, being directly 
involved in the production of proinflammatory cytokines by infected macrophages (Chen et  
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Fig. 5. Signaling through ITAM-coupled C-type lectin receptors. Dectin-2, Mincle and 

BDCA2 do not contain defined signaling motifs in their cytoplasmic tail being incapable of 

inducing intracellular signaling on their own. Following ligand binding, these receptors 

associate with FcR┛ leading to recruitment of Syk and subsequent activation of downstream 

signaling cascades (black arrows). CLEC5a also lacks a citoplasmatic catalytic domain. 

Recognition of Dengue virions by CLEC5a, results in the association and phosphorylation of 

DAP12, leading to recruitment of Syk and activation of Syk-dependent downstream 

signaling.  

al., 2008; Watson et al., 2011). CLEC5A has a very short cytoplasmic region lacking a defined 

signaling motif, yet it transduces intracellular signals trough non-covalent association with 

the ITAM-bearing adapters DAP10 and DAP12 (Bakker et al., 1999; Inui et al., 2009). DAP10 

ITAM motif contains a cytoplasmic sequence that facilitates PI3K recruitment and 

activation, being possible that it cooperates with DAP12-associated receptors to mediate co-

stimulatory signals (Kerrigan & Brown, 2010). Moreover, it was showed that the interaction 

of dengue virus with CLEC5A causes the phosphorylation of the coupled DAP12 ITAM 

motif (Chen et al., 2008). Although not formally demonstrated, this molecular event may 

result in Syk recruitment and activation, followed by downstream signaling that leads to the 

observed induction of proinflammatory cytokines (Figure 5d)  

2.1.2.1.8 DCIR 

DCIR was found to be expressed at high levels in blood monocytes, myeloid and 
plasmacytoid DCs, macrophages and in a less extent in B cells (Bates et al., 1999). Although 
no endogenous or exogenous specific ligands were yet identified, the receptor was recently 
shown to play an important role in HIV-1 infection by acting as an attachment factor for the 
virus (Lambert et al., 2008). DCIR and DC-associated C-type lectin-2 (DCAL-2) are, among 
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the presently identified human CLRs, the only ones containing intracellular immune 
receptor tyrosine-based inhibition motifs (ITIMs). These ITIMs motifs are responsible, in a 
phosphatase dependent fashion, for the negative signals that result in repressed activation 
of neutrophils and dendritic cells (Kanazawa et al., 2002; Richard et al., 2006).  

At the molecular level, the activation of DCIR by anti-DCIR antibodies leads to receptor 
internalization into endosomal compartments in a clathrin-dependent process. As in these 
endosomal structures are also located TLR8 and TLR9, it is likely that internalized DCIR will 
interact with them, modulating their signaling. Supporting this hypothesis, recent data 
shows that the phosphorylation of ITIM promotes the recruitment of the phosphatases SH2-
domain-containing protein tyrosine phosphatase 1 (SHP1) or SHP2, which, by an 
unidentified mechanism, leads to the downregulation of TLR8-induced IL-12 and TNF 
production in myeloid DCs (Meyer-Wentrup et al., 2009), and to the down-modulation of 
TLR9-induced IFN and TNF production in plasmacytoid DCs (Meyer-Wentrup et al., 2008). 

2.1.3 RIG-I-Like receptors 

RIG-I-like receptors (RLRs) constitute a family of three cytoplasmic RNA helicases: retinoic 
acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and 
laboratory of genetics and physiology 2 (LGP2). These receptors share a common functional 
RNA helicase domain near the C terminus (HELICc) that specifically binds to the RNA of 
viral origin and are, therefore, crucial for antiviral host responses (Yoneyama et al., 2004; 
Wilkins & Gale, 2010). These responses result from the action of induced inflammatory 
cytokines and type I interferons over the cells of the innate and adaptive immune system. 
Inflammatory cytokines primarily promote the recruitment of macrophages and dendritic 
cells, while type I interferons inhibit viral replication, promote the apoptosis of infected cells 
and increase the lytic capacity of natural killer cells (Takahasi et al., 2008). 

RIG-I is involved in the recognition of a wide variety of RNA viruses belonging to the 

paramyxovirus and rhabdovirus families, as well as Japanese encephalitis virus, while 

MDA5 specifically detect, Picornaviruses, such as encephalomyocarditis virus, mengovirus 

and poliovirus. Somme virus such as dengue virus and West Nile Virus, require, however, 

the activation of both RIG-I and MDA5 to generate a robust innate immune responses. 

Despite structural similarity, RIG-I and MDA5 have been shown to bind distinct types of 

viral RNAs (Kato et al., 2006). MDA5 preferentially binds long dsRNAs, whilst RIG-I has 

high affinity for 5′-triphosphate ssRNAs and short dsRNAs without a 5′-triphosphate end 

(Pichlmair et al., 2006; Kato et al., 2008; Lu et al., 2010). The RIG-I distinction of self from 

viral ssRNAs is ensured by the predominantly nuclear localization of cellular 5′-
triphosphate ssRNAs that even if present in the cytoplasm are normally capped or 

processed. Recently, the notion that 5′-triphosphate ssRNAs were sufficient to bind to and 

activate RIG-I was challenged by data obtained with synthetic single-stranded 5´- 

triphosphate oligoribonucleotides (Schlee et al., 2009). In these experiments, the synthetic 5′-
triphosphate ssRNAs were unable to activate RIG-I and only the addition of the synthetic 

complementary strand resulted in optimal binding and activation of the receptor. The 

authors hypothesized that this newly data explains how RIG-I detects negative-strand RNA 

viruses lacking long dsRNA but containing blunt short double strand 5´-triphosphate RNA 

in the panhandle region of their single-stranded genome. 
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2.1.3.1 Signaling through RIG-I-Like receptors 

RIG-I and MDA5 contain a DExD/H-box helicase domain that recognizes the viral RNA, 
inducing conformational changes and exposing the caspase-recruitment domains (CARDs) 
responsible for downstream signaling of these cytoplasmic sensors. CARDs interact with a 
CARD-containing adaptor, IFN-┚ promoter stimulator-1 (IPS-1), located in the outer 
mitochondrial membrane and on peroxisomes (Kawai et al., 2005; Dixit et al., 2010). While 
peroxisomal IPS-1 induces early expression of interferon-stimulating genes (ISGs) via 
transcription factor IRF1, mitochondrial IPS-1 induces delayed responses via IRF3/IRF7-
controled expression of ISGs and type I interferons. Therefore, signaling through 
mitochondrial and peroxisomal IPS-1 is essential to an effective antiviral response. From the 
interaction of IPS-1 with RIG-I and MDA5 CARDs also results the activation of NF-κB, a 
process that involves the recruitment of TRADD, FADD, caspase-8, and caspase-10 and 
leads to the induction of proinflammatory cytokines (Takahashi et al., 2006) (Figure 6a). The 
third member of this cytoplasmic PRRs family, LGP2, similarly to RIG-I and MDA5, 
possesses a DExD/H-box helicase domain but is devoid of a CARD domain (Yoneyama et 
al., 2005) and was therefore considered as a negative regulator of RIG-I- and MDA5-
mediated signaling (Rothenfusser et al., 2005; Komuro & Horvath, 2006; Saito et al., 2007). 
Recent in vivo experiment showed, however, precisely the opposite, suggesting that LPG2 
could contribute to a robust antiviral response, acting as a facilitator of the interaction 
between viral RNA, RIG-I and MDA5 (Satoh et al., 2010).  

2.1.4 NOD-like receptors 

Nucleotide-oligomerization domain (NOD)-like receptors (NLRs) are cytosolic sensors of 
microbial components highly conserved trough evolution. A great number of homologs of 
these receptors have been described in animals and plants, attesting their importance as 
ancestral host defense mechanisms. In humans, 23 members of the NLR family were 
identified, being primarily expressed in immune cells, such lymphocytes, macrophages and 
dendritic cells, although also found in epithelial and mesothelial cells (Franchi et al., 2009). 
NLRs contain tree characteristic domains: a) a C-terminal leucine-rich repeat (LRR) domain, 
responsible for ligand sensing and autoregulation, b) a central nucleotide-binding 
oligomerization (NOD) domain, required for nucleotide binding and self-oligomerization 
upon activation and c) a N-terminal effector domain responsible for downstream signal 
propagation. To date, four different N-terminal domains have been identified: acidic 
transactivation domain, caspase-recruitment domain (CARD), pyrin domain (PYD), and 
baculoviral inhibitory repeat (BIR)-like domain (Chen et al., 2009). NOD1 and NOD2, the 
most studied NLRs, both sense bacterial molecules produced during peptidoglycan 
synthesis and remodeling. Peptidoglycan is a major component of the bacterial cell wall, 
formed by alternated residues of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid 
(MurNAc), which are crosslinked by short peptide chains. The bridging aminoacids inside 
these peptide chains are differentially found in gram-negative and gram-positive bacteria, 
being responsible for the differential recognition abilities of NOD1 and NOD2 (McDonald et 
al., 2005). Therefore, NOD2 senses muramyl dipeptide (MDP), which is found in the 
peptidoglycan of nearly all gram-positive and gram-negative bacteria, while NOD1 sense ┛ -
D-glutamyl-meso-diaminopimelic acid (iE-DAP), an amino acid that is predominantly 
found in gram-negative bacteria and in some gram-positive bacteria, such as Listeria 
monocytogenes and Bacillus spp (Chamaillard et al., 2003). 
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2.1.4.1 Signaling through NOD-like receptors 

The intracellular NLR proteins organize signaling platforms, such as NOD signalosomes 

and inflammasomes that trigger NF-κB and MAPKs pathways and control the activation of 

inflammatory caspases (Chen et al., 2009). Upon recognition of their respective ligands, both 

NOD1 and NOD2 self-oligomerize to recruit and activate the serine-threonine kinase RICK 

that becomes polyubiquitinated. RICK directly interacts with the regulatory subunit of IKK, 

the inhibitor of NF-κB kinase ┛ (IKK┛), promoting the activation of the catalytic subunits 

IKK┙ and IKK┚ (Inohara et al., 2000). These activated subunits phosphorylate the inhibitor 

IκB-┙, leading to its ubiquitination and subsequent degradation via the proteasome. The 

released NF-κB translocates to the nucleus, where it promotes the expression of 

proinflammatory cytokines and chemokines (Masumoto et al., 2006; Werts et al., 2007; 

Buchholz & Stephens, 2008). Additionally, RICK also promotes the K63-linked 

polyubiquitination of IKK┛, which facilitates the recruitment of transforming growth factor 

┚-activated kinase (TAK1) (Hasegawa et al., 2008). TAK1 forms a complex with the ubiquitin 

binding proteins TAK1-binding protein 1 (Tab1), Tab2, and/or Tab3, promoting the 

phosphorylation of the IKK┚ subunit of IKK, that in turn leads to the phosphorylation and 

degradation of IκB-┙. Signaling through NOD1 and NOD2 also results in MAPK activation 

by a process not fully characterized, but dependent of TAK1 and RICK (Shim et al., 2005) 

(Figure 6b).  

Another process by which NLRs participate in host response to microbial infections is 
through their involvement in inflammasome formation. Inflammasomes are large protein 
complexes that includes NLRs proteins, the adapter ASC (apoptosis-associated speck-like 
protein containing a C-terminal CARD) and pro-caspase-1. This molecular platform is 
crucial for caspase-1 activation and subsequent processing of pro-IL-1┚ and pro-IL-18, 
resulting in the secretion of their mature biologically active forms (Lamkanfi et al., 2007). 
NLR family members, such as NLRP1, NLRP3 and NLRP4, have shown to be critical factors 
in the activation of proinflammatory caspase-1 and IL-1┚ secretion in response to several 
microbial stimuli (Pedra et al., 2009) (Figure 6b). 

NLR signaling: NOD1 senses iE-DAP, an amino acid predominantly found in gram-negative 
bacteria while NOD2 senses MDP, which is found in the peptidoglycan of nearly all gram-
positive and gram negative bacteria. Following recognition of their respective ligands, both 
NOD1 and NOD2 self oligomerize to recruit and activate RICK, which in turn activates NF-κB 
via the IKK complex. Signaling through NOD1 and NOD2 also results in MAPK activation by 
a process not fully characterized but dependent of TAK1 and RICK. Another member of the 
NLR family constitutes the inflammasome, a multi-protein complex that includes NLRs 
proteins, the adapter ASC and pro-caspase-1(pC1). In this complex pro-caspase 1 is activated, 

promoting in turn the maturation of pro-IL-1 cytokine to its bioactive form. 

3. Molecular mechanisms by which microorganisms subvert the innate 
immune system 

Common features of pathogenic microorganisms are the exploitation of cytoskeleton and 
membranous structures to invade/or to gain motility inside the host cell, and also the 
manipulation of key signaling pathways. In this section, we will specially focus on the 
mechanisms by which pathogens manipulate signaling pathways in immune cells. 
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Fig. 6. Signaling through RLRs and NLRs. RLR signaling: RIG-I and MDA5 function as 
cytosolic sensors of viral RNA, recognizing preferentially 5′-triphosphate ssRNAs and long 
dsRNAs, respectively. Binding of viral RNAs to these receptors activates signaling through 
the adaptor protein IPS-1, located in the outer mitochondrial membrane or on in 
peroxisomes. Mitochondrial IPS-1 leads to activation of NF-κB and IRF3/IRF7 through the 
IKK complex and TBK1/IKKi, respectively, which results in the production of inflammatory 
cytokines, type I interferons and interferon-stimulating genes (ISGs). In turn, peroxisomal 
IPS-1 induces early expression of ISGs via transcription factor IRF1. 

As stated in above sections, pattern-recognition receptors confer to mammals an extremely 

efficient “detection system” of invading microorganism, triggering an intricate signaling 

network that ultimately orchestrates the establishment of an adequate immune response. 

However, as part of their pathogenic strategies, several microorganisms evade immune 

system by circumventing, or distorting, these signaling pathways and creating, therefore, 

conditions that facilitate their replication and spreading in the host. In the last few years 

great efforts have been made to understand the molecular mechanisms behind this 

subversion, and various signaling cascades were identified as main targets of pathogens and 

virulence factors. When globally analyzed, cascade signals downstream PPRs activation 

mainly converge to two key signaling pathways: the transcription factor nuclear factor-κB 

(NF-κB) and the mitogen activated protein kinases (MAPKs). NF-κB is a cornerstone of 

innate immunity and inflammatory responses, controlling the expression of effector 
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molecules, such as proinflammatory cytokines/chemokines, anti-apoptotic factors and 

defensins; MAPKs are also signaling cascades intimately connected to the regulation of 

innumerous aspects of immunity. Therefore is expectable that pathogens try to circumvent, 

or manipulate, these pathways. This manipulation can be achieved by directly targeting 

signaling intermediates (through cleavage or dephosphorylation), or by distorting the 

balance between immunogenic and tolerogenic signals. The later mechanism mostly results 

from the exploitation of signaling crosstalk between several receptors of innate immune 

system (Hajishengallis & Lambris, 2011). A classical example is the crosstalk between TLRs 

and DC-SIGN: while antigen recognition by TLRs triggers a deleterious response, 

recognition of another antigen of the same pathogen by DC-SIGN negatively modulates the 

TLR signal, promoting an unresponsive state. In the present chapter we do not intent to 

cover the general immune evasion strategies of pathogens, but rather focus on the 

mechanisms by which the microorganisms directly, or by “crosstalk manipulation”, 

interfere with key immune signaling pathways. 

3.1 Exploiting CLRs signaling and their crosstalk with other receptors 

Mycobacterium tuberculosis, the causative agent of tuberculosis, has been a major world-wide 

threat for centuries. In 2009 the disease was responsible for 1.8 million deaths and a recent 

estimative suggests that a third of the world’s population is infected (WHO 2010). 

Macrophages are the primary targets for M. tuberculosis and mainly drive the initial innate 

immune response against the pathogen, while dendritic cells play a central role in the 

establishment of a subsequent cellular response (Fenton & Vermeulen, 1996; Demangel & 

Britton, 2000). In this process, DCs capture and process the pathogen, migrate to draining 

lymph nodes and present the antigenic peptides to naïve T cell, initiating an adaptive 

immune response. M. tuberculosis was shown to modulate the functions of both 

macrophages and DCs (Balboa et al., 2010; Geijtenbeek et al., 2003), promoting immune 

conditions that allow a latent infection. Macrophages phagocyte bacteria into phagosomes, 

which then mature by acquiring low pH, degradative enzymes and reactive 

oxygen/nitrogen species. Phagosomes fuse with lysosomes to form phagolysosomes, 

exposing the engulfed microorganism to the lethal action of hydrolases, proteases, super 

oxide dismutase and lysozymes. However, M. tuberculosis escapes death by blocking the 

maturation of phagosomes and preventing their fusion with lysosomes (Fratti et al., 2003; 

Hmama et al., 2004). This process was shown to be partially mediated by the binding of 

mannosylated lipoarabinomannan (ManLAM) to the mannose receptor in macrophages 

(Kang et al., 2005). ManLAM is a major mannose-containing lipoglycan present in M. 

tuberculosis cell wall that downregulates calmodulin-dependent signal transduction and 

inhibits sphingosine kinase, preventing the conversion of macrophage sphingosine to 

sphingosine-1 phosphate (S-1P) (Malik et al., 2003). This arrests the S-1P-dependent increase 

in Ca2+ concentration, disrupting the PI-3K signaling and the subsequent recruitment of 

Rab5 effector early endosomal antigen 1 (EEA1) to phagosomes (Fratti et al., 2001). EEA1 is 

crucial for the delivery of lysosomal components from the trans-Golgi network to the 

phagosome and regulates fusion of phagosomes with lysosomal vesicles. Therefore the MR-

mediated phagocytosis of ManLAM-containing M. tuberculosis prevents phagosomes to 

mature and to fuse with lisosomes, allowing bacteria to survive.  

www.intechopen.com



 
Pathogen Strategies to Evade Innate Immune Response: A Signaling Point of View 143 

One of the most ingenious mechanisms used by microorganisms to escape host immune 
response is to subvert or disrupt the molecular signaling crosstalk between receptors of the 
innate immune system (Hajishengallis & Lambris, 2011). 

This signaling hijacking frequently leads to an augmented production of immunosuppressive 

molecules, such as IL-10 and/or to a decreased expression of proinflammatory molecules, such 

IL-12 and IFN. 

Both M. tuberculosis and M. bovis BCG are able to induce DC maturation through TLR2- and 
TLR4-mediated signaling (Henderson et al., 1997; Tsuji et al., 2000). However, the 
concomitant engagement of ManLAM to the C-type lectin receptor DC-SIGN modulates the 
TLR-induced NF-κB activation, blocking the expression of co-stimulatory molecules CD80, 
CD83 and CD86 and inducing the production of the immunosuppressive cytokine IL-10 
(Geijtenbeek et al., 2003; Gringhuis et al., 2007). Immature mycobacteria-infected DCs and 
IL-10 dependent blockage of IL-12 production impair the generation of a protective Th1 
response, contributing therefore to the establishment of a latent infection. Besides M. 
tuberculosis, other important human pathogens, such M. leprae, Candida albicans, measles 
virus and HIV-1, were shown to explore TLR-DC-SIGN crosstalk to induce the expression of 
the immunosuppressive cytokine IL-10 (Bergman et al., 2004; Gringhuis et al., 2007; 
Gringhuis et al., 2009). Similarly to M. tuberculosis, HIV-1 activates the Raf-1 pathway 
through DC-SIGN, modulating TLR signaling, and leading to IL-10 increased production, 
impairment of TLR-induced dendritic cell maturation and reduced T-cell proliferation. In a 
process independent of TLR activation, DC-SIGN interacts with HIV-1 envelope 
glycoprotein gp120, and regulates the gene expression profile of DCs (Hodges et al., 2007). 
Among the modulated genes, activating transcription factor 3 (ATF3) is of particular 
importance since it acts as a negative regulator of TLR4-induced expression of 
proinflammatory cytokines IL-6 and IL-12 (Gilchrist et al., 2006). This is therefore suggestive 
that DC-SIGN, besides modulating, also represses TLR4 signaling (den Dunnen et al., 2009). 
Additionally, HIV-1 also exploits the crosstalk between DCIR and TLR8/TLR9 to promote 
DC infection and to evade host immune response. Binding of the virus to DCIR was shown 
to down-modulate the production of TLR8-induced IL-12 and TLR9-induced IFN-┙, in 
myeloid and in plasmacytoid DCs, respectively. 

In contrast to the above referred mannose-containing pathogens (mycobacteria, C. albicans 
and HIV-1), Helicobacter pylori induces IL-10 production and Th1 inhibition, through a Raf-1 
independent mechanism. In fact, binding of the fucose-containing LPS Lewis antigens from 
Helicobacter pylori to DC-SIGN actively dissociated the KSR1–CNK–Raf-1 complex from the 
DC-SIGN signalosome, modifying downstream signal transduction (Gringhuis et al., 2009). 
Recently, a new form of crosstalk between DC-SIGN and TLRs was described in dendritic 
cells (Hovius et al., 2008). In this process, Borrelia burgdorferi lipoproteins trigger TLR2 
activation, while Salp15, a salivary protein from Ixodes scapularis, the human vector of 
B.burgdorferi, binds to DC-SIGN and leads to RAF1-mediated MEK activation. MEK-
dependent signaling attenuates, in turn, the TLR2-induced proinflammatory cytokine 
production, by enhancing the decay of Il6 and Tnf mRNA and decreasing IL-12p70 cytokine 
production. Additionally, this crosstalk synergistically enhances IL-10 production. This 
immunosuppression reveals to be advantageous for both, the vector and the bacteria, given 
that it impairs the establishment of an effective adaptive immune response against tick 
and/or B. burgdorferi antigens (Hovius et al., 2008). 
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In neutrophils, mycobacteria bind, to a yet unidentified C-type lectin receptor (potentially 

CLEC5A) and induce, via Syk, a crosstalk with the TLR2 adapter molecule MYD88. This 

results in a rapid and synergistic phosphorylation of Akt and p38 MAK, leading to 

increased IL-10 production, that in turn contributs to the persistence of high mycobacterial 

burden (Zhang et al., 2009). Finally, another example of CLRs-TLRs crosstalk that could 

contribute to the successes of invading pathogens was recently characterized (Goodridge et 

al., 2007). The C-type lectin receptor Dectin-1 is, in DCs and macrophages, crucial for the 

detection of the pathogenic fungi Candida albicans, Aspergillus fumigates and Pneumocystis 

carinii. Traditionally, regarded as inflammatory stimuli, ligands of Dectin-1 induce 

significant amounts of the anti-inflammatory cytokine IL-10, conditioning inflammatory 

cytokine production and Th subsets polarization. The receptor collaborates with TLR2 in 

NF-κB activation, inducing proinflammatory cytokines, such as IL-6 and TNF-┙ (Gantner et 

al., 2003). However, engagement of Dectin 1 was also shown to activate the nuclear factor of 

activated T-cells (NFAT) that, directly and/or by interference with TLR2, regulates the 

expression of the immunosuppressive cytokine IL-10 (Goodridge et al., 2007). Moreover, 

Dectin-1, due to its cytoplasmic adapter ITAM, signals in an autonomous manner, leading to 

IL-10 production through a calcium-dependent calmodulin (CaM) dependent kinase 

(CaMK)–Pyk2–ERK signaling pathway (Kelly et al., 2010). Accordingly, the genetic deletion 

of Dectin-1 only partially blocks inflammatory cytokine production, while severely impairs 

IL-10 expression (Taylor et al., 2007).  

3.2 Exploiting TLRs signaling and their crosstalk with other receptors 

Among pattern recognition receptors, TLRs are, by excellence, the orchestrators of innate 
immunity. However, pathogens might have evolved to interact with, and exploit, TLRs 
signaling cascades, inducing conflicting signals by distinct pathogen-expressed TLR ligands. 
TLR2-induced responses represent a paradigm of this TLR-TLR interplay. Signaling through 
this receptor leads to an overall proinflammatory response, however it also induces the 
production of substantial levels of the immunosuppressive cytokine IL-10. It was 
hypothesized that this probably results from the crosstalk between TLR2 and particular co-
receptors such CLRs (Zhang et al., 2009). 

Several microorganisms exploit TLR2 crosstalk with other TLRs to evade immune system. 
For example, in macrophages, C. albicans was shown to trigger both TLR4 and TLR2 signals. 
While TLR4 signaling confers protection against infection, TLR2 signaling promotes host 
susceptibility to invasive candidiasis, through the induction of high levels of IL-10 (Netea et 
al., 2004). Lipoproteins from M. tuberculosis cell wall bind TLR2 and down-regulate the 
bacterial CpG DnA-TLR9 induced production of IFN┙ and IFN┚ (Simmons et al., 2010). 
Similarly, in human monocytes, Hepatitis C virus induces TLR2-mediated expression of IL-
10, which in turn suppresses TLR9-induced IFN┙ production by plasmacytoid DCs 
(Dolganiuc et al., 2006). The pathogens M. tuberculosis and Toxoplasma gondii promote their 
survival in macrophages, through TLR2-MYD88-dependent induction of IL-6, IL-10 and 
granulocyte colony-stimulating factor (GCSF) (El Kasmi et al., 2008). These cytokines, 
through signal transducer and activator of transcription 3 (STAT3), increase the expression 
of arginase 1 (ARG1), which by competing with inducible Nitric Oxide Synthase (iNOS) for 
the common substrate arginine, inhibits the TLR4-mediated production of nitric oxide (NO) 
(Qualls et al., 2010). 
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Additionally to interfering with PPR signaling crosstalk, microorganisms also exploit the 
interplay between other immune receptors, such as TLRs and complement receptors. 
Normally, complement receptors and TLRs are rapidly activated in response to infection, 
and their signals synergistically converge to activate ERK and JNK, promoting an effective 
early innate immune response. However, in macrophages this crosstalk between TLRs and 
complement receptors is frequently subversive, particularly by reducing the cytokines of IL-
12 family (IL-12, IL-23, and IL-27). This decreased cytokine expression translates into a 
limited polarization of protective Th1 responses (Hawlisch et al., 2005). The molecular 
mechanisms of this crosstalk are not fully known, but anaphylatoxin receptor C5aR was 
shown to interfere with TLR-induced cytokine expression, by ERK and PI3K-dependent 
pathways. The C5aR-ERk-IRF1 pathway preferentially inhibits IL-12p70 production, while 
the C5aR–PI3k–IRF8 pathway mainly decreases the production of IL-23 (Hawlisch et al., 
2005). Several other complement receptors, such as gC1qR, CD46 and CR3, limit the TLR4 
and TLR2-induced IL-12 production (Karp et al., 1996; Marth & Kelsall, 1997). HCV core 
protein has been shown to associate with the putative gC1q receptor expressed in host 
immune cells, specifically inhibiting TLR-induced production of IL-12. Therefore, 
engagement of gC1qR on DCs by HCV depresses Th1 immunity and contributes to viral 
persistence (Waggoner et al., 2007). L. monocytogenes and S. aureus were also shown to 
interact with gC1qR, leading probably to a similar evasion mechanism (Braun et al., 2000; 
Nguyen et al., 2000). Other human pathogens, such as P. gingivalis, Histoplasma capsulatum 
and B. pertussis inhibit IL-12 release through CR3-TLR-dependent crosstalk. The fimbriae of 
Porphyromonas gingivalis interacts with complement receptor 3, activating ERK1 and ERK2, 
and thereby limiting TLR2-induced IL-12 production (Hajishengallis et al., 2007).  

These are only some examples of molecular mechanisms by which microorganisms disrupt, 
or subvert, signaling crosstalk between innate immune receptors, being particularly 
emphasized in this review the PPRs interplay. This is an exciting and dynamic Immunology 
field that in last decade brought considerable advances to the understanding of the 
pathophysiology of several human infectious diseases.  

3.3 Direct targeting of signaling intermediates 

Another common evasive maneuver used by pathogens is to directly impair signal 
transduction, through cleavage or dephosphorylation of intermediate molecules in signaling 
cascades. Cascade signals downstream PPRs activation mainly converge to NF-κB and 
MAPKs pathways to establish effective immune responses, making the intermediates of 
these pathways main targets of microorganism hijacking strategies.  

Phosphorylation is the most frequent intracellular modification for signal transduction and 
many pathogens modulate host cell phosphorylation machinery, in order to block or 
circumvent deleterious signals. Yersinia species, causative agents of human diseases, such as 
bubonic and pneumonic plagues and gastrointestinal disorders, use a wide spectrum of 
strategies to circumvent immune response. Through a type III secretion system, bacteria can 
inject into the cytosol of the host cell six different Yersinia outer proteins (Yop). These 
effector proteins interfere with signaling pathways involved in the regulation of the actin 
cytoskeleton, phagocytosis, apoptosis and the inflammatory response, thus favoring 
survival of the bacteria (Viboud & Bliska, 2005). The protein YopP/J was shown to be the 
main antiinflammatory effector protein of Yersinia, by inactivating MAPKs and NF-κB 
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pathways. NF-κB pathway inhibition was initially clearly associated to the de-ubiquitinating 
activity of YopP/J. IκB-┙ de-ubiquitination impairs its targeting for proteosomal 
degradation, effectively sequestering NF-κB into the cytoplasm (Zhou et al., 2005). However, 
this ubiquitin-like protease activity was unable to explain the effects of YopP/J over 
MAPKs, as ubiquitination is not known to play a direct role in MAPK signaling. Recent data 
demonstrate that YopP/J has acetyltranferase activity, transferring acetyl moieties to 
Ser/Thr residues in the activation loop of MKKs and IKKs (Mittal et al., 2006). It was 
suggested that acetylation competes effectively with phosphorylation at these sites, thereby 
blocking signal transduction. Vibrio outer protein A (VopA), an YopJ-like protein from 
Vibrio parahaemolyticus, was also shown to selectively inhibit MAPKs signaling by 
acetylating a conserved lysine in the ATP-binding pocket of MKKs. This not only prevents 
MKKs activation but also decreases the activity of activated MKKs (Trosky et al., 2007).  

Salmonella, another important human pathogen, delivers effector proteins into host cell, 

suppressing cellular immune response through blockade of NF-κB and MAPKs cascades 

(McGhie et al., 2009). The effector protein SptP, by its GTPase-activating protein and tyrosine 

phosphatase activities, reverses MAPKs activation (Murli et al., 2001; Lin et al., 2003) and 

AvrA, through its acetyltransferase activity toward specific mitogen-activated protein kinase 

kinases (MAPKKs), potently inhibits JNK (Jones et al., 2008). Other Salmonella effector proteins, 

such SpvC, a phosphothreonine lyase, directly dephosphorylates ERK, JNK and p38 MAPKs 

(Mazurkiewicz et al., 2008) and Avra and SseL proteins suppress NF-κB activation by 

impairing IκB-┙ ubiquitination and degradation (Ye et al., 2007; Le Negrate et al., 2008).  

Similarly, as a strategy for repressing innate immunity, Shigella flexneri has evolved the 
capacity to precisely modulate host cell epigenetic “information”, interfering with MAPKs 
and NF-κB pathways at several points. This is mainly drived by the effector protein OspF. 
OspF is remarkable not only for its biochemistry but also for the fact that is one of the few 
bacterial effectors that is known to translocate to the host-cell nucleus. At the cytosol level, 
the protein binds to the ubiquitylated form of the E2 ubiquitin-conjugating enzyme 
UBCH5B, and independently of IκB phosphorylation, prevents the transfer of ubiquitin to IκB 
by an E3 ubiquitin–protein ligase (Kim et al., 2005). Additionally, OspF dephosphorylates ERK 
and p38 MAPKs by either phosphatase (Arbibe et al., 2007) or phosphothreonine lyase (Li et 
al., 2007) activities. Recent data showed that this protein also manipulates the physical and 
spatial context of DNA encoding NF-κB-responsive genes (Arbibe et al., 2007). At the host-
cell nucleus, OspF dephosphorylates the MAPK ERK2, impairing the activation of mitogen- 
and stress-activated kinase 1 (MSK1) and MSK2. This prevents subsequent histone 
phosphorylation, which is necessary for NF-κB-dependent transcription. Therefore, several 
innate immune-related genes under control of NF-κB remain silent, allowing S. flexneri to 
avoid a deleterious response. 

The mechanisms used by microorganisms to modulate NF-κB signaling are diverse and, as 
exemplified above, a common strategy is to target the steps that lead to IκB degradation. 
However, several pathogens, such Toxoplasma gondii and Leishmania spp have evolved 
distinct processes to block this central signaling pathway. Infection by T. gondii provides 
potent signals for IL-12 production and for induction of strong Th1 immunity, being NF-κB 
an important player in this process (Caamano & Hunter, 2002). However, at early times of 
infection (up to 24h) the parasite impairs in macrophages, the NF-κB signaling, limiting the 
production of IL-12, TNF-┙ and NO. This blockage was shown to occur independently of 
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infection-induced IKK-dependent degradation of IκB-┙, resulting in specific impairment of 
NF-κB nuclear translocation. The termination of NF-κB signaling was therefore associated 
with reduced phosphorylation of p65/RelA subunit, an event involved in the ability of NF-
κB to translocate to the nucleus and to bind DNA (Shapira et al., 2005). 

Regarding Leishmania, the infection by this protozoan parasite has long been regarded as the 
paradigm of a Th2 immune response. Extensive studies have been conducted to disclose the 
molecular mechanism by which Leishmania modulate intracellular signaling events in 
infected macrophages and dendritic cells. Obtained data indicate that the parasite use an 
extensive “arsenal” of strategies and virulence factors to alter the host cell signaling, 
favoring its survival. Infection of macrophages with L. donovani promastigotes was shown to 
increase intracellular ceramide content causing a downregulation of classical PKC activity, 
up-regulation of calcium independent atypical PKC-zeta and dephosphorylation of ERK. 
Downregulation of ERK signaling was subsequently found to be associated with the 
inhibition of activated protein 1 (AP-1) and NF-κB transactivation (Ghosh et al., 2002). Other 
studies whit the same infection model showed that Leishmania alters signal transduction 
upstream of c-Fos and c-Jun, by inhibiting ERK, JNK and p38 MAP Kinases, resulting in a 
reduction of AP-1 nuclear translocation (Prive & Descoteaux, 2000). Until recently, little was 
known about the intervenients and molecular mechanisms behind these immunosuppressive 
abilities of Leishmania. In macrophages infected with Leishmania mexicana amastigotes, 
Cameron and co-workers showed that cysteine peptidase B (CPB) is the virulence factor 
responsible for proteolytic degradation of NF-κB, ERK and JNK (Cameron et al., 2004). 
Additionally, CPB is also involved in the activation of host protein tyrosine phosphatase 1B 
(PTP-1B), inhibition of AP-1 and cleavage of STAT-1┙ (Abu-Dayyeh et al., 2010). Another 
Leishmania virulence factor, the surface metalloprotease GP63, was shown to cleave host 
protein tyrosine phosphatases PTP-1B, TCPTP, and SHP-1, resulting in the stimulation of 
their phosphatase activity and consequent dephosphorylation of key kinases, such as 
JAK/STAT, IRAK-1 and MAPKs (Gomez et al., 2009). Moreover, GP63 is also responsible for 
the observed cleavage of NF-κB p65RelA subunit in L. mexicana and L.infantum -infected 
macrophages and dendritic cells (Gregory et al., 2008; Neves et al., 2010). From this cleavage 
results a fragment of approximately 35 kDa that is rapidly translocated into the nucleus 
where it has some transcriptional activity. It was postulated that the resulting p35RelA 
fragment may represent an important mediator by which Leishmania promastigotes induce 
several chemokines without inducing other NF-κB-regulated genes, such as iNOS and IL-12 
that are detrimental for parasite survival. 

Recently, the metalloprotease GP63 was shown to be involved in the decreased general 

translation observed in macrophages infected with L.major (Jaramillo et al., 2011). The parasite 

protease cleaves the serine/threonine kinase mammalian/ mechanistic target of rapamycin 

(mTOR), impairing the formation of mTOR complex 1 (mTORC1) and the downstream 

phosphorylation of translational repressor 4E-binding protein 1/2 (4E-BP1/2). The activity of 

the translational repressors 4E-BPs is controlled through their phosphorylation state and, in 

normal conditions, mTORC1 formation leads to hyperphosphorylation of 4E-binding proteins 

(4E-BPs), causing their dissociation from eukaryotic initiation factor 4F, facilitating this way 

the translation of mRNA (Gingras et al., 1999). mTORC1, through its downstream targets p70 

ribosomal S6 protein kinases 1 and 2 (S6K1/2) and 4E-BPs controls the translation of key 

innate immune effector molecules, such as type I IFN (Cao et al., 2008; Costa-Mattioli & 
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Sonenberg, 2008). This cleavage of mTOR by Leishamania GP63 represents, therefore, a 

survival mechanism where the parasite directly targets the host translational machinery. This 

strategy is also a common feature of several human viruses. Lytic viruses, such members of the 

picornavirus group (enterovirus, rhinovirus and aphtovirus) inhibit overall host cellular 

translation, redirecting the translational apparatus to viral protein synthesis. This effect was 

shown to be due to the poliovirus 2A protease-mediated cleavage of the translation initiation 

factor eIF4G (Borman et al., 1997). 

Bacillus anthracis, Chlamydia and Escherichia coli are examples of other human pathogens that 

directly cleave intermediate molecules from NF-κB and MAPKs signaling cascades. Bacillus 

anthracis, a spore-forming encapsulated gram-positive bacterium kwon to cause anthrax 

disease, produces innumerous virulence factors critical for the establishment of infection 

and pathogenesis (Turnbull, 2002). Among these factors, the plasmid-encoded enzymes 

lethal factor (LF) and oedema factor (OF) are of major importance for the evasion abilities of 

B. anthracis. LF is a particularly selective metalloproteinase that cleaves MKKs at specific 

sites outside of their catalytic domains, impairing the downstream MAPK activation 

(Duesbery et al., 1998). In addition, it blocks the p38 MAPK-dependent activation of IRF3 

(Dang et al., 2004) and, although not directly affecting NF-κB activity, it causes the 

downregulation of NF-κB target genes that simultaneously require p38 activity for induction 

(Park et al., 2002). Consequently, macrophage production of proinflammatory cytokines, 

such as TNF-┙, IL-1┚ and IL-6, is severely impaired. In turn, OF is an active Ca2+ and 

calmodulin-dependent adenylate cyclase that increases cAMP in the cytosol of host cells 

(Drum et al., 2002). Raised intracellular levels of cAMP activate PKA, causing downstream 

inhibition of ERK and JNK pathways, as well as a decreased NADPH oxidase activity, 

resulting in impaired TNF-┙ and microbicidal superoxide production (Hoover et al., 1994). 

The obligate intracellular bacterial parasite Chlamydia is the leading cause of preventable 

blindness worldwide and urogenital tract infection remains the most prevalent cause of 

sexually transmitted diseases in developed countries. The parasite avoids host inflammatory 

response, partially by disrupting the NF-κB signal resultant from the PPR recognition of 

bacterial component such LPS. This blockage was shown to result from the selective 

cleavage of the p65RelA subunit of NF-κB by the chlamydial protease-like activity factor 

(CPAF) (Christian et al., 2010). Similarly, E.coli decreases production of proinflammatory 

cytokines and reduces macrophage bactericidal activity, by targeting NF-κB signal 

transduction at multiple points. Infection by E coli induces a host caspase 3-mediated 

cleavage of p65RelA, by a mechanism not completely defined, but thought to be mediated 

through the mitochondrial pathway of apoptosis (Albee & Perlman, 2006). In addition, 

several studies have recently demonstrated that E. coli also downregulates NF-κB-mediated 

gene expression by injecting into host-cells several non-LEE encoded (Nle) effector proteins, 

such as NleB, NleC and NleE. NleB and NleE prevent IKK┚ activation and consequently the 

degradation of IκB-┙, thus limiting p65 translocation to the nucleus (Nadler et al., 2010; 

Newton et al., 2010) while the zinc-dependent metalloprotease NleC was shown to 

enzymatically degrade p65RelA and JNK (Yen et al., ; Baruch et al., 2010). 

Although more frequent in bacteria, the shutdown of PPR signaling by direct cleavage of 
cascade intermediates is also a strategy used by some relevant human viral pathogens. As 
an example, hepatitis C virus-host interactions have revealed several evasion mechanisms 
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used by the virus to control PPRs signaling, providing a molecular basis for viral 
persistence. In viral infections, recognition of pathogen associated molecular patterns by 
TLRs and RLRs leads, through independent signaling cascades, to the activation of 
transcription factors, such as IRF1, IRF3, IRF5, IRF7 and NF-κB. The activity of these 
transcription factors is crucial for an effective antiviral innate immune response, given that 
they control the expression of interferon-stimulated genes (ISGs) and type I interferons. 
Hepatitis C virus (HCV) has evolved to disrupt RLRs signaling by impairing RIG-I pathway, 
through NS3/4A-mediated cleavage of IPS-1 (Malmgaard, 2004). NS3/4A is formed by a 
complex of the NS3 and NS4A HCV proteins and has been shown to be an essential viral 
protein with serine protease activity (Brass et al., 2008). In HCV infection, cleavage of IPS-1 
by NS3/4A impairs downstream activation of IRF-3 and NF-κB, blocking the production of 
IFN-┚, as well as the expression of ISGs (Li et al., 2005). This results in a strongly compromised 
innate immune response, potentiating the propagation of chronic HCV infection. 

4. Conclusions 

Millenary host–microbe co-evolution has resulted in the development of ingenious 
strategies by pathogens in order to successfully evade host immune response. Besides the 
manipulation of host-cell cytoskeleton to gain entry and/or to gain motility in the cell, 
immune-cell signaling pathways are frequent targets of invading pathogens. Within the past 
decades, remarkable progress has been made in our understanding on how immune cells 
sense microorganisms and how microbial effectors counteract innate immune responses. 
Recognition of conserved microorganism patterns by PRRs activates, in immune cells, an 
intricate signaling network that culminates in the expression of effector molecules, such as 
cytokines, chemokines and reactive oxygen species, crucial elements to mount an adequate 
immune response. A common strategy of pathogens is to disrupt these signaling cascades, 
by promoting contradictory signals through engagement of distinct PRRs and/or by directly 
target intermediate components of these signaling pathways. Therefore, understanding the 
molecular mechanisms used by pathogens to exploit the host signaling networks is of 
crucial importance for the development of rational interventions in which host response will 
be redirect to achieve protective immunity. 
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