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1. Introduction 

As widely known, reversible phosphorylation of proteins, or the addition of a phosphate 
(PO43-) molecule to a polar R group of an amino acid residue, is an important regulatory 
mechanism that switches many enzymes and receptors "on" or "off" and therefore controls a 
range of cellular functions. Regulatory roles of phosphorylation include biological 
thermodynamics of energy-requiring reactions, enzyme and receptors’ activation or inhibition, 
protein-protein interaction via recognition domains, protein degradation. 

Kinases and phosphatases are involved in this process and these enzymes induce 

phosphorylation and dephosphorylation, respectively, of target proteins. Phosphorylation 

usually occurs on serine, threonine, and tyrosine (O-linked), or histidine (N-linked) residues 

of proteins, although arginine and lysine residues can also be phosphorylated. 

O-GlcNAcylation, or glycosylation with O-linked ┚-N-acetylglucosamine, is similar to 
protein phosphorylation in that both modifications occur on serine and threonine residues, 
both are dynamically added and removed in response to cellular signals, and both alter the 
function and associations of the modified protein. O-GlcNAcylation also modulates many 
cellular functions by mechanisms that include protein targeting to specific substrates, 
transient complex formation with other proteins, subcellular compartmentalization upon 
glycosylation of specific proteins and a complex interplay with protein O-phosphorylation, 
the main topic of this chapter. Accordingly, in this chapter we will discuss the biology of the 
O-GlcNAc modification, the interplay between O-GlcNAcylation and O-phosphorylation, 
signaling pathways modified by O-GlcNAcylation, and the physiological implications of 
alternating O-GlcNAcylation and O-phosphorylation. 

2. The biology of the O-GlcNAc  

Glycosylation is the site-specific enzymatic addition of saccharides [from the Greek word 
sákkharon (meaning sugar); also known in biochemistry as carbohydrates or hydrates of 
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carbon due to the chemical empirical formula Cm(H2O)n] to proteins and lipids. 
Glycosylation has many functions in a cell: it allows correct folding of proteins (some 
proteins do not fold correctly unless they are glycosylated first); confers stability (some 
unglycosylated proteins are more rapidly degraded); allows cell-cell adhesion (e.g. surface 
glycoproteins are directly involved in the biological functions of lymphocytes); and 
modulates intracellular signaling pathways (glycosylation of proteins may enhance or 
inhibit enzymes’ activities) (Spiro, 2002; Taylor & Drickamer, 2006; Varki et al., 2009). 

There are many types of glycosylation: N-linked, where the carbohydrate is attached to a 
nitrogen of asparagine or arginine side-chains; O-linked, where glycans are attached to the 
hydroxy oxygen of serine, threonine, tyrosine, hydroxylysine, or hydroxyproline side-
chains; phospho-linked, where the sugar is attached via the phosphate of a phospho-serine; 
C-linked, where the carbohydrate is added to a carbon on a tryptophan side-chain; the 
formation of a glycosylphosphatidylinositol (GPI) anchor (glypiation), where the sugar is 
linked to phosphoethanolamine, which in turn is attached to the terminal carboxyl group of 
the protein (Spiro, 2002; Taylor & Drickamer, 2006; Varki et al., 2009). However, great 
interest has been directed to O-GlcNAcylation, or glycosylation of proteins with O-linked ┚-
N-acetylglucosamine.  

Cellular glycoproteins were initially thought to be targeted, after their synthesis, only to 
luminal or extracellular compartments. However, in 1984, Torres and Hart, who were 
interested in characterizing the role of cell-surface saccharides in the development and 
functions of lymphocytes, described a novel carbohydrate (N-acetylglucosamine, GlcNAc)-
peptide linkage, which was present on proteins localized in the cytosol and the cyto- and 
nucleoplasmic faces of membranous organelles (Torres & Hart, 1984). In 1989, Kelly and 
Hart described that Drosophila polytene chromosomes (i.e., polytene chromosome spreads 
prepared from the salivary glands of third instar stage Drosophila melanogaster larvae) 
contained a surprisingly large amount of terminal GlcNAc residues along their lengths. 
Nearly all of the chromatin-associated GlcNAc moieties existed as single monosaccharide 
residues attached to protein by an O-linkage (O-GlcNAc) (Kelly & Hart, 1989). Also in the 
late 80’s, the glycosyltransferase responsible for the addition of GlcNAc to proteins was 
found to be oriented with its active site in the cytoplasm and the first proteins modified with 
O-GlcNAc were described (Hart et al., 1988, 1989; Hart, 1997). These initial observations, 
which indicated a functional or biological significance for the O-linkage of GlcNAc to 
proteins, led to the term O-GlcNAcylation. Accordingly, O-GlcNAcylation is currently 
defined as an unusual form of protein glycosylation, where a single-sugar [N-
acetylglucosamine (O-GlcNAc)] is added (┚-attachment) to the hydroxyl moiety of serine 
(Ser) and threonine (Thr) residues of nuclear and cytoplasmic proteins.  

It is unusual in that it is found in nuclear and cytoplasmic proteins, representing the first 
reported example of glycosylated proteins found outside of the secretory channels. Unlike 
other peptide-linked monosaccharides, the ┚-linked GlcNAc-Ser/Thr does not become 
further substituted by other sugars, remaining a single monosaccharide modification of the 
protein to which it is attached. O-GlcNAcylation is widely dispersed among eukaryotes, 
from protozoa to higher mammals. The amino acid consensus sequence or glycosylation 
motifs for the formation of O-GlcNAc bonds have not yet been found. However, 
information relating to the polypeptide domains that favors O-GlcNAc attachment has been 
obtained and seems to involve PEST [proline (P), glutamic acid (E), serine (S), and threonine 
(T)] sequences (Haltiwanger et al., 1997; Rogers et al., 1986). 
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Results from recent proteomic studies, from different laboratories, suggest that more than 
1500 proteins in the cell are modified by O-GlcNAc. These proteins belong to almost every 
functional class of proteins including transcription or translation factors, cytoskeletal 
proteins, nuclear pore proteins, RNA polymerase II, tumor suppressors, hormone receptors, 
phosphatases, and kinases (Khidekel et al., 2007; Nandi et al., 2006; Wang et al., 2008; 
Vosseller et al., 2006). A database of O-GlcNAcylated proteins and sites, dbOGAP, was 
recently created and is primarily based on literature published since O-GlcNAcylation was 
first described in 1984. The database currently contains ~800 proteins with experimental O-
GlcNAcylation information. The O-GlcNAcylated proteins are primarily nucleocytoplasmic, 
and include membrane- and non-membrane bounded organelle-associated proteins (Wang 
et al., 2011). An O-GlcNAcylation site prediction system (O-GlcNAcScan) based on nearly 
400 O-GlcNAcylation sites was also developed (Hu, 2010). Both the database and the 
prediction system are publicly available at http://cbsb.lombardi.georgetown.edu/OGAP.html and 
http://cbsb.lombardi.georgetown.edu/filedown.php, respectively. 

The attachment of the single-sugar ß-N-acetylglucosamine via an O-linkage to Ser/Thr 
residues is controlled by two highly conserved enzymes, O-GlcNAc transferase (OGT or 
uridine diphospho-N-acetyl glucosamine; polypeptide ┚-N-acetylglucosaminyl transferase; 
UDP-NAc transferase) and ┚-N-acetylglucosaminidase (OGA or O-GlcNAcase). Whereas 
OGT catalyses the addition of O-GlcNAc to the hydroxyl group of Ser and Thr residues of a 
target protein using UDP-GlcNAc as the obligatory substrate, OGA catalyses the hydrolytic 
cleavage of O-GlcNAc from post-translationally-modified proteins (Hart et a;, 2007; Zachara 
& Hart, 2006) (Figure 1). 

A single OGT gene is located on the X chromosome in humans and mice (Kreppel et al., 
1997; Nolte & Muller, 2002). In some tissues, such as skeletal muscle, kidney, and liver, three 
distinct isoforms of OGT have been identified, including two 110-kDa subunits and one 78-
kDa subunit, which can assemble into multimers, and smaller mitochondrial isoforms 
(Kreppel & Hart, 1999, Lazarus et al., 2006; Lubas & Hanover, 2000). Each variant contains a 
C-terminal catalytic domain, but differs in the number of tetratricopeptide repeats (TPRs) 
within its N-terminal domain. The TPRs serve as protein-protein interaction modules that 
appear to target OGT to accessory proteins and potential substrates, such as the related O-
GlcNAc transferase interacting protein (OIP106) and protein phosphatase-1 (PP1) (Wells et 
al., 2004). Phylogenetic analysis of eukaryotic OGTs indicate that plants have two distinct 
OGTs, SEC (secret agent)- and SPY (spindly)-like, that originated in prokaryotes and that are 
involved in diverse plant processes, including response to hormones and environmental 
signals, circadian rhythms, development, intercellular transport and virus infection 
(Olszewski et al., 2009; Swain et al, 2001). Animals and some fungi have a SEC-like enzyme 
while plants have both. Green algae and some members of the Apicomplexa and amoebozoa 
have the SPY-like enzyme (Olszewski et al., 2009). 

The donor substrate for OGT activity, UDP-GlcNAc or uridine-diphosphate-N-
acetylglucosamine, is a terminal product of the hexosamine biosynthesis pathway (HBP – 
Figure 1). Flux through the HBP and UDP-GlcNAc levels changes rapidly in response to 
many different nutrients, such as glucose, fatty acids, and amino acids (Hanover et al., 2009) 
altering the extent of O-GlcNAcylation of many proteins. It is estimated that 2–5% of total 
cellular glucose is funneled into the HBP, although the glucose flux is potentially different in 
various cell types (Hart et al., 2007, Hanover et al., 2009). Free fatty acids can increase HBP 
flux by inhibiting glycolysis, resulting in elevated fructose-6-phosphate levels. Acetyl-CoA, 
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produced by fatty acid metabolism, serves as the donor for the acetylation of glucosamine in 
the formation of UDP-GlcNAc (Wang et al., 1998). Exogenously, small amounts of 
glucosamine can dramatically increase UDP-GlcNAc pools in cells (Zou et al., 2009).  

The HBP shares its first two steps with glycolysis. First, hexokinase phosphorylates glucose 
to produce glucose 6-phosphate, which is then converted into fructose 6-phosphate. At this 
point the pathways diverge, fructose 6-phosphate is converted by the HBP rate-limiting 
enzyme glutamine fructose-6-phosphate transferase (GFAT) into glucosamine 6-phosphate 
(Slawson et al., 2010). Because OGT activity is exquisitely sensitive to UDP-GlcNAc 
concentrations (Haltiwanger et al., 1992) (Figure 1), O-GlcNAcylation may act as a sensor for 
the general metabolic state of the cell. 

 

Fig. 1. The hexosamine biosynthesis pathway. After entering the cell via a glucose transporter 
and being converted to glucose-6-phosphate (glucose-6P) by a hexokinase and to fructose-6-
phosphate (fructose-6P), glucose can either be used in the glycolytic or the hexosamine 
biosynthesis (HBP) pathways. The HBP uses fructose-6P to form glucosamine-6-phosphate 
(glucosamine-6P), with glutamine serving as the donor of the aminogroup. The reaction is 
catalyzed by the rate-limiting enzyme glutamine:fructose-6-phosphate transferase (GFAT). 
Glucosamine-6P is rapidly acetylated through the action of acetyl-CoA:d-glucosamine-6-
phosphate N-acetyltransferase (GAT), and isomerized to N-Acetylglucosamine-1-phosphate 
(GlcNAc-1-P) and activated, via the action of UDP-GlcNAc pyrophosphorylase (AGX), to 
UDP-N-acetylglucosamine (UDP-GlcNAc) that serves as the donor of O-GlcNAc for OGT 
activity. Glucosamine can also enter the cell through the glucose transporter and is rapidly 
phosphorylated by hexokinase yielding glucosamine-6P, thereby bypassing the rate-limiting 
first step of the HBP. S, serine; T, threonine, OGT, O-GlcNAc transferase; OGA, O-GlcNAcase. 
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O-GlcNAcase or OGA was initially identified as hexosaminidase C. However, OGA activity 

is specific for N-acetyl-┚-D-glucosaminides and, unlike hexosaminidase, has an optimum 

pH near neutral and mainly a cytosolic localization (Dong & Hart, 1994; Zachara & Hart, 

2006). OGA appears to use substrate catalysis involving the 2-acetamido group and contains 

an N-terminal glycosidase domain and a putative C-terminal histone acetyltransferase 

domain (Macauley et al., 2005; Toleman et a., 2004). To date, two distinct isoforms of OGA 

have been described, a 130-kDa and a 75-kDa variant, which differ in their C terminus. 

Whereas the 130-kDa or "long OGA" contains a distinct N-terminal glycosidase domain and 

the C-terminal histone acetyltransferase domain, the 75-kDa or "short OGA" lacks the C-

terminal domain. One important functional aspect in the existence of these two splices is 

their differential sensitivity to previously described potent OGA inhibitors. For example, the 

short OGA exhibits comparative resistance to PugNAc and NAG-thiazoline, but is very 

sensitive to alpha-GlcNAc thiolsulfonate (Zachara & Hart, 2006). Inhibition of OGT and 

OGA represents an area of great interest on O-GlcNAcylation research, which is evident 

from the increasing number of studies addressing the enzymes molecular mechanisms for 

the addition and removal of O-GlcNAc (Borodkin & van Aalten, 2010; Dorfmueller et al., 

2010, 2011; Dorfmueller & van Aalten, 2010; Gloster et al., 2011; Gloster & Vocadlo, 2010; 

Lameira et al., 2011; Lazarus et al., 2011; Li et al., 2011; Macauley & Vocadlo, 2010; Martinez-

Fleites et al., 2010).  

3. The interplay between O-GlcNAcylation and Protein O-Phosphorylation  

The dynamic addition of O-GlcNAc to proteins has been implicated in modulating protein 

behavior via one potential mechanism that includes a complex interplay between O-

GlcNAcylation and phosphorylation. Many phosphorylation sites are also known 

glycosylation sites, and this reciprocal occupancy may produce different activities or alter 

stability in the target protein (Hu et al., 2010; Zeidan & Hart, 2010) (Figure 2). In support of 

this model, an earlier report has shown that activation of PKC and PKA reduced 

glycosylation in a detergent insoluble cytoskeletal and cytoskeleton-associated protein 

fraction. Conversely, inhibition of PKC and PKA increased O-GlcNAc protein modification 

in this fraction (Griffith & Schmitz, 1999). The competition between O-GlcNAcylation and 

phosphorylation for the same or neighboring residues has been termed the “yin-yang” 

hypothesis and has been reported in a variety of proteins (Hart et al., 1995).  

However, it should be emphasized that the interplay between these two PTMs is not always 

reciprocal. For example, some proteins, such as p53 and vimentin, can be concomitantly 

phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-

GlcNAcylation can regulate the addition of either moiety (Wang et al., 2007; Yang et al., 

2006).  

In addition to the reciprocal crosstalk at same or proximal sites of the proteins, crosstalk 
between O-GlcNAcylation and phosphorylation also exists among distantly located sites, 
such as on the C-terminal domain of RNA polymerase II and on cytokeratins (Chou et al., 
1992; Comer & Hart, 2001). Furthermore, the crosstalk between phosphorylation and O-
GlcNAcylation also influences each other by regulating the activities or localization of other 
cycling enzymes. For example, OGT is directly activated by tyrosine phosphorylation and is 
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Fig. 2. The interplay between O-GlcNAcylation and O-phosphorylation of proteins. Both 
phosphorylation and O-GlcNAcylation occur on serine/threonine (Ser/Thr) residues of 
proteins. In specific proteins, there is a competitive relationship between O-GlcNAc and O-
phosphate for the same Ser/Thr residues, although there can be adjacent or multiple 
occupancy for phosphorylation and O-GlcNAcylation on the same protein. The interplay 
between phosphorylation and O-GlcNAcylation creates molecular diversity by altering 
specific protein sites that regulate protein functions and signaling events. OGT, O-GlcNAc 
transferase; OGA, O-GlcNAcase; Tyr, tyrosine. Reproduced with permission, from Lima et 
al., 2012, Clinical Science, vol__, pp__-__.  © the Biochemical Society. 

itself O-GlcNAc-modified [49]. OGT also forms a stable and active complex with protein 
phosphatase-1 (PP1┚ and PP1┛) in rat brain [50]. The association between OGT and PP1 is 
particularly intriguing, as it may provide a direct mechanism to couple O-GlcNAc to 
dephosphorylation of specific substrates. As with OGT, OGA has been shown to interact 
with specific proteins, including protein phosphatase-2┚ (Wells et al., 2002).  

A recent report showed that rat brain assembly protein AP180, which is involved in the 
assembly of clathrin-coated vesicles in synaptic vesicle endocytosis, contains a 
phosphorylated O-GlcNAc (O-GlcNAc-P) within a highly conserved sequence (O-GlcNAc 
or O-GlcNAc-P, but not phosphorylation alone, was found at Thr310) (Graham et al., 2011). 
O-GlcNAcylation was thought to be a terminal modification, i.e. the O-GlcNAc was not 
found to be additionally modified. The existence of protein glycosyl phosphorylation (O-
GlcNAc-P) adds further complexity to the phosphorylation-O-GlcNAcylation interplay.  

Lastly, the interplay between O-GlcNAc modification and phosphorylation may not be 
limited to Ser/Thr phosphorylation, but may also include tyrosine (Tyr) phosphorylation. 
Based on the higher prevalence of Tyr phosphorylation among O-GlcNAc-modified proteins 
(~68% vs. ~2% in non-O-GlcNAc-modified proteins), Mishra and colleagues suggested that 
Tyr phosphorylation plays a role in the interplay between O-GlcNAc modification and 
Ser/Thr phosphorylation in proteins (Mishra et al., 2011).  
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This clearly shows that the interplay between O-GlcNAcylation and phosphorylation is both 
complex and very extensive. As with any PTM, mapping the attachment sites is a 
prerequisite toward understanding the biological functions of O-GlcNAcylation. With the 
development of sample enrichment methods and new mass spectrometry fragmentation 
methods, such as electron capture dissociation and electron transfer dissociation, now 
hundreds of O-GlcNAc sites have been mapped, and some cellular stimuli were shown to 
increase both modifications. For further information on the complex interplay between O-
GlcNAcylation and phosphorylation, please refer to the following comprehensive and 
excellent reviews (Copeland et al., 2008; Hart et al., 2011; Hu et al., 2010; Wang et al., 2008; 
Zeidan & Hart 2010). 

4. Signaling pathways modified by O-GlcNAcylation  

Many proteins, mainly kinases, involved in signaling pathways that regulate cell growth, 
apoptosis, ion channel activities, and actin cytoskeleton are target for O-GlcNAc 
modification (Lima et al., 2009, 2011). In this section we will briefly comment general aspects 
of some of the signaling proteins that have been identified as targets for O-GlcNAcylation. 

The protein kinase C (PKC) family constitutes a group of multifunctional Ser/Thr protein 

kinases that are classified into three groups: the classic PKCs [PKCalpha(), PKCbeta(┚I), 
PKCbeta(┚II), PKCgamma(┛)], the novel PKCs [PKCdelta(├), PKCepsilon(┝), PKCeta(┟), 
PKCmu(┤), PKCtheta(┠)], and the atypical PKCs [PKCzeta(┞), PKCiota/lambda(┡/┣)] 
(Salamanca & Khalil, 2005). 

Functional studies have demonstrated that interaction of PKC with its protein substrate 
triggers activation of a cascade of kinases that ultimately stimulate many cellular functions, 
including contraction, hypertrophy, growth, proliferation and cell survival. As an example, 
PKC phosphorylates CPI-17, which in turn inhibits myosin light chain (MLC) phosphatase, 
increases MLC phosphorylation and enhances vascular smooth muscle contraction. PKC 
also phosphorylates the actin-binding protein calponin, and thereby reverses its inhibition 
of actin-activated myosin ATPase, allowing more actin to interact with myosin and increases 
vascular contraction (Budzyn et al., 2006; Salamanca & Khalil, 2005; Woodsome et al, 2001). 

Initial studies indicated that activation of PKC or cAMP-dependent protein kinase significantly 
decreased overall O-GlcNAcylation in neuronal cytoskeletal proteins. Conversely, inhibition 
of PKC, cAMP-dependent protein kinase, cyclin-dependent protein kinases, or S6 kinase 
increased overall O-GlcNAc levels in fractions from these cells (Griffith et al., 1995). 
Stimulation of the transactivation of Sp1, which is O-GlcNAcylation–dependent, can be 
blocked by molecular and pharmacological inhibition of PKC (Fantus et al., 2006). In 
cerebellar neurons from early postnatal mice, activation of cAMP-dependent protein kinase 
or PKC results in reduced levels of O-GlcNAc specifically in the fraction of cytoskeletal and 
cytoskeleton-associated proteins, whereas inhibition of the same kinases results in increased 
levels of O-GlcNAc (Griffith & Schmitz, 1999). 

In the reverse direction, all PKC isoforms expressed in rat hepatocytes are dynamically 
modified by O-GlcNAc. O-GlcNAcylation of PKC-┙ negatively correlates with enzyme 
activity (Robles-Flores et al., 2008). Increased O-GlcNAc modification in a human astroglial 
cell line, in response to glucosamine (which increases the production of glucosamine 6-
phosphate and stimulates O-GlcNAc modification of proteins) or PUGNAc (which blocks O-
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GlcNAcase activity, mimicking the enzyme-stabilized transition state), results in a decrease 
in membrane-associated PKC-┝ and PKC-┙, but not PKC-┡, indicating that increased levels of 
the O-GlcNAc modification regulates specific PKC isoforms (Matthews et al., 2005). 
Therefore, it is likely that O-GlcNAc modification of PKC isoforms, such as PKC-┙, PKC-┚, 
PKC-┛, PKC-┝, and PKC-┞ can interfere with cellular processes regulated by these enzymes. 

Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases which 
are classically associated with cell contraction, migration, adhesion, collagen deposition, cell 
growth, differentiation, and survival (Pearson et al., 2001). Of the major MAPKs, 
extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and stress-activated protein 
kinase/c-Jun N-terminal kinases (SAPK/JNK) are the best characterized. The complex 
signaling networks that underlie MAPK activation typically require phosphorylation by a 
MAPK kinase also known as MEK. The ERK1/2 phosphorylation cascade involves MEK1/2 
(MAP/ERK kinase) whereas the signaling processes leading to SAPK/JNK and p38 MAPK 
activation involve MEK4/7 and MEK3/6, respectively (Pearson et al., 2001). Activation of 
MAPKs has been reported to be primarily dependent on the nonreceptor tyrosine kinase c-
Src in different cell types. To date, at least 14 Src-related kinases have been identified, of 
which the 60 kDa c-Src is the most abundantly expressed isoform in vascular smooth muscle 
cells and rapidly activated by G protein-coupled receptors. Other proximal regulators of 
MEK include the Ras-Raf pathway, which may not necessarily involve c-Src (Kolch, 2005; 
Martin, 2001; Oda et al., 1999). 

The MAPKs p38 and ERK1/2 have been reported to be phosphorylated in response to 
increased O-GlcNAc levels (Laczy et al., 2009). A positive correlation between phosphorylation 
of the MAPK cascade (ERK1/2 and p38) and nuclear O-GlcNAcylation was observed in fetal 
human cardiac myocytes exposed to high glucose (Gross et al., 2005). In isolated rat hearts, 
perfusion with 5 mM glucosamine increases O-GlcNAc levels and confers cardioprotection 
after ischemia-reperfusion (Zou et al., 2009). Interestingly, although glucosamine does not 
alter the response of either ERK1/2 or Akt (protein kinase B) to ischemia-reperfusion, it 
significantly attenuates the ischemia-induced increase in p38 phosphorylation, as well as the 
increased p38 phosphorylation at the end of reperfusion, suggesting that glucosamine-
induced cardioprotection may be mediated via the p38 MAPK pathway (Jones et al., 2008). 

Augmented O-GlcNAc levels in mouse hippocampal synapses increases phosphorylation of 
synapsin I/II at Ser9 (cAMP-dependent protein kinase substrate site), Ser62/67 (ERK1/2 
[MAPK 1/2] substrate site), and Ser603 (calmodulin kinase II site). Activation-specific 
phosphorylation events on ERK1/2 and calmodulin kinase II are also increased in response 
to elevation of O-GlcNAc levels (Rexach et al., 2008). 

Advanced glycation end-products induce ROS accumulation, apoptosis, MAPK activation, 
and nuclear O-GlcNAcylation in human cardiac myocytes (Li et al., 2007). In addition, 
exposure of neutrophils to PUGNAc or glucosamine also stimulates the small GTPase Rac, 
which is an important upstream regulatory element in p38 and ERK1/2 MAPK signaling in 
neutrophils, and these MAPKs are implicated in chemotactic signal transduction. 

Conversely, alterations in MAPK pathways can also have effects on the enzymes responsible 
for the regulation of O-GlcNAc (Laczy et al., 2009, Lima et al., 2011). In neuro-2a 
neuroblastoma cells, increased OGT expression on glucose deprivation occurs in an AMP-
activated protein kinase–dependent manner, whereas OGT enzymatic activity is regulated 
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in a p38 MAPK-dependent manner. OGT is not phosphorylated by p38, but rather it 
interacts directly with p38 through its C terminus. The interaction with p38 does not change 
the catalytic activity of OGT, but p38 regulates OGT activity within the cell by recruiting it 
to specific targets (Cheung & Hart, 2008). 

Together, these data indicate that O-GlcNAcylation is an important signaling element and it 
modulates the activities of several critical signaling kinases (Kneass & Marchase, 2005). 
Thus, it is possible that signaling kinases, such as proteins from MAPK, PKC, and 
RhoA/Rho kinase pathways, are also regulated by O-GlcNAc modifications and that this 
post-translational modification not only modulates many cellular responses, but also may 
play a role in the abnormal function of kinases observed in various pathological conditions. 

Ca+2 sensitization in smooth muscle cells is a well known process mediated by the small 
GTPase Rho and its downstream target Rho-kinase. The exchange of bound guanosine 
diphosphate (GDP) for guanosine triphosphate (GTP) activates Rho and stimulates its 
translocation from the cytosol to the plasma membrane. Rho-GTP phosphorylates Rho-
kinase, which inhibits MLC phosphatase activity by phosphorylation of the MLC 
phosphatase target subunit (MYPT1). A decrease in MLC phosphatase activity increases 
phosphorylation of myosin and therefore contributes to smooth muscle contraction at low 
levels of intracellular Ca+2 (Somlyo & Somlyo, 2000). RhoA/Rho kinase signaling has been 
implicated in many cellular processes including contraction, reactive oxygen species 
generation, inflammation, and cell migration (Calo & Pessina, 2007).  

Rho-kinase activation also suppresses eNOS activity/expression, and decreased sensitivity 
of contractile proteins to Ca2+ is considered a key mechanism in NO-induced relaxation of 
vascular smooth muscle cells. Accordingly, NO also induces vasodilation through the 
inhibition of the RhoA/Rho-kinase signaling pathway. Accordingly, NO-mediated increases 
in cGMP and activation of cGMP-dependent protein kinase (cGK) lead to inhibition of RhoA 
(Chitaley & Webb, 2002; Sauzeau et al., 2001; Sawada et al., 2001).  

The small G-protein RhoA and its downstream target, Rho-kinase, play a direct role in the 
regulation of MLC phosphatase activity. In the active state, RhoA engages downstream 
effectors, such as Rho-kinase, which then phosphorylates the myosin binding subunit of 
MLC phosphatase (MYPT1 Thr853), inhibiting its activity, and thus promoting the 
phosphorylated state of MLC (Chitaley et al., 2001). Data from our laboratory and others 
indicate that increased O-GlcNAcylation augments vascular reactivity to constrictor stimuli 
via changes in the RhoA/Rho-kinase pathway (Lima et al, 2011; Kim et al, 2011). 

Since increased O-GlcNAcylation decreases eNOS/NO signaling (Musick et al., 2005) and 

NO inhibits RhoA/Rho-kinase signaling, increased RhoA/Rho-kinase activity observed in 

many pathological conditions may be associated with augmented O-GlcNAc levels.  

5. Physiological implications of alternating O-GlcNAcylation and O-
phosphorylation 

The physiological significance of the crosstalk between O-GlcNAcylation and O-
phosphorylation certainly warrants further investigation. However, data available so far 
indicate that the “on” or “off” state of many enzymes and receptors are not simply determined 
by the kinases- and phosphatases-driven phosphorylation of specific aminoacid residues. The 
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complex interplay between O-GlcNAcylation and O-phosphorylation, within reciprocal or 
proximal sites, makes the activation/deactivation or the “on”/”off” switch of enzymes and 
receptors a much more elaborated process. Since both post-translational modifications 
modulate many cellular functions via protein targeting to specific substrates, transient 
complex formation with other proteins, subcellular compartmentalization of specific proteins, 
activation/inhibition of many signaling pathways, the interplay between O-GlcNAcylation 
and O-phosphorylation adds great complexity to our knowledge of protein activity 
regulation. 

New techniques allowing the recognition of several O-GlcNAc sites will further clarify how 
different cellular stimuli interfere with these post-translational modifications. One big 
challenge in the field has been to map the sites where the attachments are simultaneously 
occurring. The development and improvement of some techniques such as electron capture 
dissociation and electron transfer dissociation has opened new possibilities to map O-
GlcNAcylation and O-phosphorylation sites. Please, refer to the following comprehensive 
and excellent reviews for further information regarding O-GlcNAc enrichment methods 
(Macauley & Vocadlo, 2009; 120. Peter-Katalinic, 2005; Wang et al, 2010; Zachara, 2009). 

6. Conclusions 

Our understanding of the O-GlcNAcylation process (enzymatic regulation, cellular targets 
and sites for O-GlcNAc addition, modulation by other pathways) as well as of its functional 
importance and its contribution to (dys)regulation of many cellular processes is rapidly 
increasing. It is also evident that the direct interactions between O-GlcNAcylation and O-
phosphorylation and the fact that both post-translational modifications can interfere with 
many signaling pathways and cellular processes, not only add great complexity to our 
knowledge of protein activity regulation, but warrant intense research in the field. 

Future investigations focusing on the characterization of specific O-GlcNAcylated and O-
phosphorylated sites/proteins, as well as studies addressing and identifying the factors 
involved in the regulation of OGT and OGA activity are needed. They will provide a greater 
understanding as to how O-GlcNAc modulates cellular function and potentially provide an 
avenue for targeted interventions and therapies. 
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