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1. Introduction

The next generation wireless Local Area Network (LAN) standard (IEEE802.11n) aims for high
rate data transmission such as 100Mbps to 600Mbps. In order to implement that rate, high
speed decoder for the convolutional code for the wireless LAN standard is necessary. From the
viewpoint of high speed decoder, sum-product algorithm is an attractive decoding method,
since decoding rule of sum-product algorithm is simple and sum-product algorithm is suit for
parallel implementation. Furthermore, sum-product decoding is a soft-in soft-out decoding.
The combined use of sum-product algorithm and another soft-in soft-out processing may
provide good performance such as turbo equalization (Douillard et al., 1995; Laot et al.,
2001). However, sum-product decoding for the convolutional code of the wireless LAN can
not provide good performance. To improve the performance, the sum-product decoding
method for the non-punctured convolutional code of the wireless LAN has been proposed
(Shohon et al., 2009b; 2010). In the wireless LAN, however, punctured convolutional codes are
also used. Therefore, this paper proposes sum-product decoding methods for the punctured
convolutional codes of the wireless LAN.

A sum-product decoding method for convolutional codes has been introduced in
(Kschischang et al., 2001). The sum-product algorithm uses a Wiberg-type graph that
represents a code trellis with hidden variables as code states and visible variables as code
bits. In this case, the Wiberg-type graph is equivalent to the code trellis and the sum-product
algorithm becomes precisely identical to BCJR algorithm (Berrou, C. et al.;C; Kschischang
et al., 2001). This method only gives interpretation of BCJR algorithm as sum-product
algorithm. To avoid confusion, the method of (Kschischang et al., 2001) is referred to as
BCJR. This paper deals with sum-product algorithm that uses a Tanner graph that represents
a parity check matrix of the code. This sum-product algorithm is the same as that for
Low-Density Parity-Check code (Gallager, 1963; MacKay, 1999). The sum-product decoding
method for recursive systematic convolutional codes has been proposed in (Shohon et al.,
2009a). In the wireless LAN, the non-systematic convolutional code is used. For the
non-punctured convolutional code of the wireless LAN, the sum-product decoding method
has been proposed in (Shohon et al., 2009b; 2010). In this paper, for punctured codes of the
wireless LAN, sum-product decoding methods are proposed.

This paper is constructed as follows. In section 2, the convolutional codes used in the
wireless LAN are explained. In section 3, the sum-product algorithm for convolutional
codes is explained. In section 4, the sum-product decoding method for non-punctured
convolutional code of the wireless LAN is explained and decoding performance of that
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method for punctured codes are shown. In section 5 and section 6, the sum-product decoding
methods for punctured codes of the wireless LAN are proposed. In section 7, the decoding
complexity is discussed.

2. Convolutional code for wireless LAN

2.1 Non-punctured code

The convolutional code for the wireless LAN is a non-systematic code with rate 1/2 (IEEE Std
802.11, 2007). Let a sequence of information bits be denoted by x0, x1, · · · , xN−1, a sequence
of parity bits 1 be denoted by p1,0, p1,1, · · · , p1,N−1, and a sequence of parity bits 2 be denoted
by p2,0, p2,1, · · · , p2,N−1. Polynomial representation for each sequence is as follows.

X(D) =x0 + x1D + x2D2 + · · ·+ xN−1DN−1 (1)

P1(D) =p1,0 + p1,1D + p1,2D2 + · · ·+ p1,N−1DN−1 (2)

P2(D) =p2,0 + p2,1D + p2,2D2 + · · ·+ p2,N−1DN−1 (3)

Parity bit polynomials are given by

P1(D) =G1(D)X(D), (4)

P2(D) =G2(D)X(D). (5)

For the wireless LAN standard, G1(D) and G2(D) are given by

G1(D) =1 + D2 + D3 + D5 + D6, (6)

G2(D) =1 + D + D2 + D3 + D6. (7)

Polynomials X(D), P1(D), P2(D) are also represented by X, P1, P2 in this paper.

2.2 Punctured code

In this section, puncturing method for wireless LAN will be explained. Puncturing is a
procedure for omitting some of the encoded bits in the transmitter. The effect from puncturing
will reducing the number of transmitted bits and increasing the coding rate. Figure 1(a) to
Fig.1(b) shows the puncturing pattern for coding rate, r = 2/3, 3/4.

info bit X0

A1

B0

X1

A0

B1

A0 B0 A1

punctured bit

Parity 1

Parity 2

encoded data

(a) Puncturing pattern for code rate 2/3

punctured bit

info bit X0

A1

B0

X1

A0

B1

A0 B0 A1

Parity 1

Parity 2

encoded data

B2

X2

A2

B2

(b) Puncturing pattern for code rate 3/4

Fig. 1. Puncturing pattern
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Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN 3

3. Sum-product algorithm for convolutional codes

Sum-product algorithm is a message exchanging algorithm along with edge of the Tanner
graph of the code. Tanner graph is a bipartite graph that represents the parity check matrix
of the code. For convolutional code, it is easy to obtain tanner graph from parity check
polynomial. This section explains parity check polynomial for convolutional codes, tanner
graph and sum-product algorithm.

3.1 Parity check polynomial of convolutional code for wireless LAN

From Equation 4 ∼ Equation 5, we can obtain following equations.

G1(D)X + P1 = 0 (8)

G2(D)X + P2 = 0 (9)

Let left parts of Equation 8 and Equation 9 be defined as parity check polynomial.

Horg,1(X, P1) = G1(D)X + P1 (10)

Horg,2(X, P2) = G2(D)X + P2 (11)

A tuple of polynomials (X, P1, P2) is a code word if following equations are satisfied.

Horg,1(X, P1) = 0 (12)

Horg,2(X, P2) = 0 (13)

The degree of a parity check polynomial is denoted by ν, that is the maximum degree of
coefficients of the polynomial. For example, since coefficients of Horg,1(X, P1) are {G1(D), 1},

the maximum degree is ν = 6 that is the maximum degree of G1(D).

3.2 Tanner graph of convolutional code

From Equation 12, parity check equations at k and k + 1 time slots are given by

Ck : xk−6 + xk−5 + xk−3 + xk−2 + xk + p1,k = 0, (14)

Ck+1 : xk−5 + xk−4 + xk−2 + xk−1 + xk+1 + p1,k+1 = 0. (15)

Those equations are corresponding to check nodes Ck and Ck+1, of the tanner graph. The part
of tanner graph corresponding to those parity check equations is as shown in Fig.2.

3.3 Algorithm

For convenience, bit node is denoted by un such that

⎧

⎨

⎩

u3n = xn

u3n+1 = p1,n
u3n+2 = p2,n

(16)

where information bit is xn and parity bits are p1,n, p2,n. Message from bit node, un, to check
node Cm, is denoted by Vm,n. Message from check node, Cm, to bit node un, is denoted by
Um,n. Sum-Product algorithm is described as follows.

3Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN
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Ck Ck+1

xk−6 xk−5 xk−4 xk−3 xk−2 xk−1 xk p1,k xk+1 p1,k+1

Fig. 2. Part of Tanner graph

Step1. Initialization

Each message Vm,n is set to the initial value as follows.

Vm,n = λn =
2rn

σ2
(17)

where, rn denotes received signal, σ2 denotes variance of additive white Gaussian noise and
λn is channel value.

Step2. Message from check node to bit node

Each check node Cm updates the message on bit node un by gathering all incoming messages
from other bit nodes that connected to check node Cm. Message Um,n is calculated by
following equation (Gallager, 1963; Hagenauer, 1996; Richardson et al., 2001).

Um,n = 2 fs tanh −1

⎧

⎨

⎩

∏
n′∈N (m)\n

tanh

(

Vm,n′

2

)

⎫

⎬

⎭

(18)

where, N (m) denotes the set of bit node numbers that connect to the check node Cm and fs

is a scaling factor. This factor is used in the proposed method described later. When fs is not
specified, fs = 1.

Step3. Message from bit node to check node

Each bit node n propagates its message to all check nodes that connect to it.

Vm,n = λn + ∑
m′∈M(n)\m

Um′,n (19)

where M(n) denotes the set of check node numbers that connect to the bit node, un.

Step4. Tentative estimated code word computation

By summing up all the messages from all check nodes connected to a bit node, the a posteriori
value Λn can be obtained by

Λn = λn + ∑
m∈M(n)

Um,n. (20)

4 Advanced Wireless LAN
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Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN 5

The extrinsic value, Le(un), of bit node un can be obtained by

Le(un) = ∑
m∈M(n)

Um,n. (21)

The tentative estimated bit u′
n can be obtained by

u′
n =

{

0 i f sign(Λn) = +1

1 i f sign(Λn) = −1
(22)

Step5. Stop criterion

Tentative estimated code word u
′ obtained in Step 4 is checked against the parity check matrix

H. If H multiplied by Tentative estimated code word u
′T equal to zero vector, the decoder stop

and outputs u
′, if not, it repeats Steps 2-5.

Hu
′T = 0 (23)

If maximum iteration number of decoding is set, the tentative estimated code word u
′ outputs

after decoding procedure repeat the process until the maximum iteration is reached.

4. Sum-product decoding for wireless LAN (conventional method)

This section will give summary of (Shohon et al., 2009b; 2010). Sum-product decoding can be
performed by using Equation 10 and Equation 11 as parity check polynomials. However, the
decoding provides bad performance. Since the code under consideration is a non-systematic
code, there are no received signals corresponding to information bits and channel values for
information bits are zero. It can be seen from Equation 10, Equation 11 that each check node
has more than one information bit connections. Therefore reliability increment at check node
cannot be obtained. Consequently, conventional sum-product algorithm cannot realize good
performance. To improve the sum-product decoding performance, I have proposed the 2-step
decoding method (Shohon et al., 2009b; 2010).

4.1 2-Step decoding

The 2-step decoding method is as follows. (1) Only parity bits are decoded by sum-product
algorithm. (2) With decoded parity bits, information bits are regenerated.

4.1.1 Decoding parity bits

The parity check equation is derived from Equation 4 ∼ Equation 5 as follows.

G2(D)P1(D) + G1(D)P2(D) = 0 (24)

The left part of the equation is defined as parity check polynomial H(P1, P2).

H(P1, P2) = G2(D)P1 + G1(D)P2 (25)

Parity bits P1 and P2 can be decoded by sum-product algorithm based on parity check
polynomial given by Equation 25. By using the decoded parity bits, information bits can
be regenerated.

5Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN
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4.1.2 Decoding information bits

Decoded information bit X̂ can be obtained by Equation 26 with decoded parity bits P̂1, P̂2.

X̂ = Gx,1(D)P̂1 + Gx,2(D)P̂2 (26)

where,

Gx,1(D) =D4 + D2 (27)

Gx,2(D) =D4 + D3 + D2 + D + 1 (28)

From Equation 26, Equation 27, and Equation 28, it can be seen that information bit can be

regenerated by using a non-recursive convolutional encoder with input P̂1, P̂2 and output X̂
as shown in Fig.3.

D D D D

D D D D

P1

P2

X̂

Fig. 3. Information bits regenerator

4.2 Higher degree parity check polynomial

I have proposed to use higher degree parity check polynomial to obtain further performance
improvement (Shohon et al., 2009b; 2010).

The method is a sum-product decoding with higher degree parity check polynomial than that
of the original parity check polynomial. In this section, the method is applied to improve
the sum-product decoding performance for parity bits. The higher degree parity check
polynomial is denoted by H′(P1, P2), that is given by

H′(P1, P2) =M(D)H(P1, P2) (29)

=M(D)G2(D)P1 + M(D)G1(D)P2 (30)

=G′
2(D)P1 + G′

1(D)P2 (31)

where M(D) is a non-zero polynomial. Among possible higher degree parity check
polynomials, we aim to select the optimum higher degree parity check polynomial by
experiments and to use it for sum-product decoding. However, the number of prospective
objects becomes too much when we include all possible higher degree parity check
polynomials in the experimental objects. Therefore, we limit the range of degree of higher
degree parity check polynomials (ν ≤ 16). For those higher degree parity check polynomials,
we further limit the prospective objects by using n f c, that is the number of four-cycles per one
check node (Shohon et al., 2009a). For every degree of higher degree parity check polynomial,
we select the higher degree parity check polynomial that has the minimum n f c among higher
degree parity check polynomials of object degree and include it in the experimental objects.
By this means, Table 1 was obtained.

6 Advanced Wireless LAN
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ν n f c G′
2(oct) G′

1(oct)

6 29 117 155

7 24 321 267

8 52 563 731

9 17 1067 1405

10 36 3131 2417

11 11 4015 6243

12 28 13103 16111

13 13 21003 30611

14 22 45203 65011

15 17 100001 145207

16 25 221001 322207

Table 1. Examined higher degree parity check polynomials for code rate 1/2

Experimental result shows that higher degree parity check polynomial of degree ν = 13
provides the best performance. The higher degree parity check polynomial is given by

H′(P1, P2) =G′
2(D)P1 + G′

1(D)P2 (32)

G′
1(D) =1 + D3 + D7 + D8 + D12 + D13 (33)

G′
2(D) =1 + D + D9 + D13 (34)

4.3 Simulation results for non-punctured code

Simulation condition is shown in Table 2. Hereafter, this condition was used, if simulation
condition is not specified. Figure 4 shows simulation results. The figure shows that
the performance for information bits of 2-Step Decoding with higher degree parity check
polynomial (denoted by conventional) is only 0.7[dB] inferior to that of BCJR at bit error rate

10−5.

Number of info bits per block 1024[bit]

Termination Zero-termination

Channel Additive white Gaussian noise
Maximum iterations 200

Table 2. Simulation condition

4.4 Simulation results for punctured codes

For non-punctured code, higher degree parity check polynomial with degree ν = 13 provides
the best performance. With that higher degree parity check polynomial, for punctured codes
with code rates 2/3 and 3/4, the sum-product decoding simulation were executed. The
simulation results are shown in Fig.5 and Fig.6.

From Fig.5 and Fig.6, it can be seen that the conventional method, that is sum-product
decoding with higher degree parity check polynomial with ν = 13, can not provide good
performance for punctured code with code rates 2/3 and 3/4.

7Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN
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Fig. 4. Bit error rate performance of conventional method for code rate 1/2
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Fig. 5. Bit error rate performance of conventional method for code rate 2/3
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Fig. 6. Bit error rate performance of conventional method for code rate 3/4

5. Single punctured bit method (Proposed decoding method (1))

I inferred that the bad sum-product decoding performance for punctured codes is caused by
more than one punctured bits included in the parity check equation at time slot k. The reason
is as follows. Since received signals are not available for punctured bits, the channel values
for punctured bits are zero. This causes that every messages from punctured bit node to check
node are zero. In this case, like stopping set (Di et al., 2002), messages from the check node to
bit nodes are zero. Therefore, sum-product algorithm does not work.

In order to improve the sum-product decoding performance, this paper proposes to use
parity check equation that includes single punctured bit. The condition to include single
punctured bit in parity check equation is referred to as single punctured bit condition. If
single punctured bit is included in a parity check equation at time slot k, the message to the
corresponding bit node can be obtained from the corresponding check node Ck. In this case,
sum-product algorithm can work. Therefore, we expect that using higher degree parity check
polynomial such that parity check equation includes single punctured bit, brings performance
improvement of sum-product decoding of punctured codes.

5.1 Higher degree parity check polynomial satisfying single puncture bit condition

In this section, single punctured bit condition is derived for higher degree parity check
polynomial. A higher degree parity check equation is given by

H′(P1, P2) = G′
2(D)P1 + G′

1(D)P2 (35)

9Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN
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Generally, polynomials G′
1(D) and G′

2(D) are given by

G′
1(D) =

d1

∑
i=1

Dαi (36)

G′
2(D) =

d2

∑
i=1

Dβi (37)

If (P1, P2) is code word, it satisfies

G′
2(D)P1 + G′

1(D)P2 = 0 (38)

From Equation 36, Equation 37 and Equation 38, parity check equation at time slot k is
represented by

d1

∑
i=1

p1,k−βi
+

d2

∑
i=1

p2,k−αi
= 0 (39)

5.1.1 Code rate 2/3

For code rate 2/3, punctured bits are

{

p2,2n+1 | n = 0, 1, 2, · · ·
}

(40)

From Equation 39 and Equation 40, it can be seen that punctured bits included in parity check
equation at time slot k satisfies

p2,k−αi
= p2,2n+1 (41)

Therefore, we obtain

k − αi = 2n + 1 (42)

αi = k − (2n + 1). (43)

For time slot k = 2l, l = 0, 1, 2, · · · ,

αi = 2l − (2n + 1) (44)

= 2(l − n)− 1 (45)

Therefore, the set {αi | (αi mod 2) = 1} in higher degree parity check polynomial corresponds
to punctured bits in the parity check equation at time slot k = 2l, l = 0, 1, 2, · · · . If Equation 46
is satisfied, the higher degree parity check polynomial satisfies single punctured bit condition
at time slot k = 2l, l = 0, 1, 2, · · · .

#{αi | (αi mod 2) = 1} = 1 (46)

where #{x} denotes the number of elements in the set {x}.

Similarly, if Equation 47 is satisfied, the higher degree parity check polynomial satisfies single
punctured bit condition at time slot k = 2l + 1, l = 0, 1, 2, · · · .

#{αi | (αi mod 2) = 0} = 1 (47)

10 Advanced Wireless LAN
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Therefore, if either Equation 46 or Equation 47 is satisfied, the higher degree parity check
polynomial satisfies single punctured bit condition.

5.1.2 Code rate 3/4

For code rate 3/4, punctured bits are

{

p1,3n+2 n = 0, 1, 2, · · ·
p2,3n+1 n = 0, 1, 2, · · ·

. (48)

From Equation 39 and Equation 48, it can be seen that punctured bits included in parity check
equation at time slot k satisfies

{

p1,k−βi
= p1,3n+2 n = 0, 1, 2, · · ·

p2,k−αi
= p2,3n+1 n = 0, 1, 2, · · ·

. (49)

Therefore, we obtain
{

k − βi = 3n + 2
k − αi = 3n + 1

. (50)

For time slot k = 3l, l = 0, 1, 2, · · · ,

3l − βi = 3n + 2 (51)

βi = 3(l − n)− 2 (52)

3l − αi = 3n + 1 (53)

αi = 3(l − n)− 1 (54)

From Equation 52, it can be seen that the set {βi | (βi mod 3) = 1} in higher degree parity
check polynomial corresponds to punctured bits of parity bit P1 in the parity check equation at
time slot k = 3l, l = 0, 1, 2, · · · . From Equation 54, it can be seen that the set {αi | (αi mod 3) =
2} in higher degree parity check polynomial correspond to punctured bits of the parity bit P2

in the parity check equation at time slot k = 3l, l = 0, 1, 2, · · · .

Therefore, if either Equation 55 or Equation 56 is satisfied, the higher degree parity check
polynomial satisfies single punctured bit condition at time slot k = 3l, l = 0, 1, 2, · · · .

(#{βi | (βi mod 3) = 1} = 1)
∧(#{αi | (αi mod 3) = 2} = 0) (55)

(#{βi | (βi mod 3) = 1} = 0)
∧(#{αi | (αi mod 3) = 2} = 1) (56)

Similarly, if either Equation 57 or Equation 58 is satisfied, the higher degree parity check
polynomial satisfies single punctured bit condition at time slot k = 3l + 1, (l = 0, 1, 2, · · · ).

(#{βi | (βi mod 3) = 2} = 1)
∧(#{αi | (αi mod 3) = 0} = 0) (57)

11Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN
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(#{βi | (βi mod 3) = 2} = 0)
∧(#{αi | (αi mod 3) = 0} = 1) (58)

Similarly, if either Equation 59 or Equation 60 is satisfied, the higher degree parity check
polynomial satisfies single punctured bit condition at time slot k = 3l + 2, (l = 0, 1, 2, · · · ).

(#{βi | (βi mod 3) = 0} = 1)
∧(#{αi | (αi mod 3) = 1} = 0) (59)

(#{βi | (βi mod 3) = 0} = 0)
∧(#{αi | (αi mod 3) = 1} = 1) (60)

5.2 Search of higher degree parity check polynomial for decoding

In this paper, basically, the higher degree parity check polynomials for decoding are searched
as follows.

Step.1 Select higher degree parity check polynomials with degree ν ≤ 21 that satisfies single
punctured bit condition.

Step.2 Among those higher degree parity check polynomials, select the higher degree parity
check polynomial that provides the best sum-product decoding performance by using
computer simulation.

5.2.1 Code rate 2/3

In the Step.1, 208 higher degree parity check polynomials satisfy single punctured bit
condition. Since many higher degree parity check polynomials are selected, they are limited
by n f c. In this paper, among those higher degree parity check polynomials, 9 higher degree
parity check polynomials with lower n f c are selected. They are shown in Table 3.

No. ν n f c G′
2(oct) G′

1(oct)

1 8 29 755 403

2 9 17 1067 1405

3 11 38 6143 5251

4 14 26 62501 50107

5 16 26 364203 202011

6 16 33 203133 310001

7 16 43 310207 243025

8 17 16 624403 500211

9 17 42 445207 640025

Table 3. Examined higher degree parity check polynomials for code rate 2/3

The simulation results of Step.2 with higher degree parity check polynomials in Table 3 are
shown in Fig. 7. Simulation condition is shown in Table 2 and Eb/N0 = 5.0 [dB]. From Fig. 7,
it can be seen that higher degree parity check polynomial of No.5 with scaling factor fs = 0.9
provides the best performance.

12 Advanced Wireless LAN
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Fig. 7. Simulation results of Step.2 for code rate 2/3 at Eb/N0 =5[dB]

5.2.2 Code rate 3/4

5.2.2.1 Step.1

For code rate 3/4, there are both puncture bits of parity P1 and parity P2. Decodable punctured
parity bit by sum-product algorithm with certain parity check equation is either parity P1 or
parity bit P2. From the viewpoint of decodable parity bit, single punctured bit condition can
be arranged as follows.

1. If either Equation 55 or Equation 57, or Equation 59 is satisfied, the higher degree parity
check polynomial includes single punctured bit of parity P1. Therefore, with the higher
degree parity check polynomial, punctured bits of parity P1 can be decoded. That higher
degree parity check polynomial is referred to as higher degree parity check polynomial for
P1.

2. If either Equation 56 or Equation 58 or Equation 60 is satisfied, the higher degree parity
check polynomial includes single punctured bit of parity P2. Therefore, with the higher
degree parity check polynomial, punctured bits of parity P2 can be decoded. That higher
degree parity check polynomial is referred to as higher degree parity check polynomial for
P2.

Therefore, for code rate 3/4, both higher degree parity check polynomials for P1 and P2 are
necessary to decode.

For code rate 3/4, there are 16 higher degree parity check polynomials for P1 and 16 higher
degree parity check polynomials for P2. The number of combination of higher degree parity
check polynomial for P1 and that for P2 is many. Therefore, they are limited by n f c. Higher
degree parity check polynomials that have lower n f c are selected as shown in Table 4 and
Table 5.
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No. ν n f c G′
2(oct) G′

1(oct)

1 12 30 14453 12121

2 21 64 17010055 10212103

Table 4. Examined higher degree parity check polynomials for P1

No. ν n f c G′
2(oct) G′

1(oct)

3 7 24 321 267

4 12 29 11055 15103

5 21 38 10540055 14222103

Table 5. Examined higher degree parity check polynomials for P2

5.2.2.2 Step.2

A block diagram of the decoder for code rate 3/4 is shown in Fig. 8. It is similar to a turbo
decoder. In Fig.8, DEC1 is sum-product algorithm decoder with higher degree parity check
polynomial for P1 and DEC2 is sum-product algorithm decoder with higher degree parity
check polynomial for P2. Channel value is denoted by λn. Extrinsic values of DEC1 and DEC2
are denoted by Le1(un) and Le2(un), respectively. A posteriori value of DEC2 is denoted by
Λ2,n.

In DEC1, Le2(un) is added to λn as follows.

λ′
n =λn + Le2(un) (61)

The value λ′
n is used as initial value of λn in Equation 17.

Similarly, in DEC2, Le1(un) is added to λn and that value is used as initial value of λn. In
computer simulation, the number of iteration of sum-product algorithm at each decoder was
set to 1. The maximum number of iteration between two decoders was set to 200. Other
simulation conditions are the same as shown in Table 2.

Le1(un) Le2(un)

Λ2,nλn

DEC1 DEC2

Fig. 8. Block diagram of decoder of single punctured bit method for code rate 3/4

Figure 9 shows the simulation results of Step.2 for code rate 3/4 at Eb/N0 = 6[dB].

From Fig.9, it can be seen that the combination of higher degree parity check polynomials
No.2 and No.3 with scaling factor fs = 0.5 provides the best decoding performance.

14 Advanced Wireless LAN

www.intechopen.com



Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN 15

10
-4

10
-3

10
-2

10
-1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

No.1,No.3

No.1,No.4

No.1,No.5

No.2,No.3

No.2,No.4

No.2,No.5

Scaling factor fs

P
ar

it
y

b
it

er
ro

r
ra

te

Fig. 9. Simulation results of Step.2 for code rate 3/4 at Eb/N0 = 6[dB]

5.3 Simulation results

5.3.1 Code rate 2/3

Figure 10 shows bit error rate performance of the single punctured bit method for code rate
2/3.
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Fig. 10. BER performance of single punctured bit method for code rate 2/3
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From Fig.10 it can be seen that the parity bit error rate performance of the single punctured bit
method is 1.12[dB] superior to that of the conventional method (higher degree parity check

polynomial of ν = 13) at bit error rate 10−5. The parity bit error rate performance of the single
punctured bit method is only 0.83[dB] inferior to that of BCJR.

From Fig.10, information bit error performance of the single punctured bit method is 1.28[dB]

superior to that of the conventional method at bit error rate 10−5. The information bit error
rate performance of the single punctured bit method is only 0.98 [dB] inferior to that of BCJR.

5.3.2 Code rate 3/4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  1  2  3  4  5  6  7  8  9  10  11

Conventional

P
ar

it
y

b
it

er
ro

r
ra

te

Eb/N0[dB]

Single punctured bit
BCJR

Fig. 11. Parity bit error rate performance of single punctured bit method for code rate 3/4

Figure 11 shows parity bit error rate performance of the single punctured bit method for code
rate 3/4. From Fig.11 it can be seen that the parity bit error rate performance of the single
punctured bit method is 0.82[dB] superior to that of the conventional method (higher degree

parity check polynomial of ν = 13) at bit error rate 10−5. The parity bit error rate performance
of the single punctured bit method is 3.24[dB] inferior to that of BCJR.

Figure 12 shows information bit error rate performance of the single punctured bit method.
From Fig.12, it can be seen that the information bit error rate performance of the single

punctured bit method is 1.11[dB] superior to the conventional method at bit error rate 10−5.
The information bit error rate performance of the single punctured bit method is 4.11[dB]

inferior to that of BCJR at bit error rate 10−5.

6. Switching parity check method (proposed decoding method (2))

For code rate 3/4, the proposed method (1) can not provide good performance. Therefore,
this paper try to improve the sum-product decoding performance for code rate 3/4.

16 Advanced Wireless LAN

www.intechopen.com



Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN 17

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  1  2  3  4  5  6  7  8  9  10  11

Conventional

In
fo

rm
at

io
n

b
it

er
ro

r
ra

te

Eb/N0[dB]

Single punctured bit
BCJR

Fig. 12. Information bit error rate performance of single punctured bit method for code rate
3/4

I inferred that the bad decoding performance is caused by the four-cycles of higher degree
parity check polynomial, since n f c of higher degree parity check polynomial satisfying single
punctured bit condition tends to be larger than n f c of higher degree parity check polynomial
that does not satisfy single punctured bit condition. Therefore, this paper proposes following
method. Only at first iteration, the higher degree parity check polynomial satisfying single
punctured bit condition is used to decode and after first iteration, another higher degree parity
check polynomial without single punctured bit condition is used to decode. By decoding,
only at first iteration, with higher degree parity check polynomial satisfying single punctured
bit condition, the a posteriori values of punctured bits are obtained. After obtaining the a
posteriori values of punctured bit, the higher degree parity check polynomial with lower n f c
may provide good bit error rate performance.

Figure 13 shows a block diagram of decoder of the switching parity check method. In Fig. 13,
DEC1 is a sum-product algorithm decoder with higher degree parity check polynomial for P1,
DEC2 is a sum-product algorithm decoder with higher degree parity check polynomial for P2

and DEC3 is a sum-product algorithm decoder with higher degree parity check polynomial
with lower n f c for iteration. Chanel values for DEC1, DEC2 and DEC3 are λ1,n, λ2,n and
λ3,n, respectively. A posteriori values of DEC1, DEC2 and DEC3 are Λ1,n, Λ2,n and Λ3,n,
respectively. Decoders DEC2 and DEC3 use the a posteriori value of previous decoder as the
channel value.

6.1 Search of higher degree parity check polynomial for decoding

This paper searches higher degree parity check polynomials for DEC1, DEC2 and DEC3 by
computer simulation.
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1st Iteration After 1st iteration

Λ1,n Λ2,n Λ3,nλ1,n λ2,n λ3,nDEC1 DEC2 DEC3

Fig. 13. Block diagram of decoder of switching parity check method for code rate 3/4

In this paper, the higher degree parity check polynomials for DEC1, DEC2 and DEC3
were selected from Table 4, Table 5 and Table 1, respectively. There are many number of
combination of the higher degree parity check polynomials. Therefore, this paper searches
the higher degree parity check polynomials as follows.

Step.1 At first, the higher degree parity check polynomial for DEC3 is determined by
decoding simulation with only DEC3.

Step.2 With the determined higher degree parity check polynomial for DEC3, the higher
degree parity check polynomials for DEC1 and DEC2 are determined by decoding
simulation with DEC1, DEC2 and DEC3.

Figure 14 shows the simulation results of Step.1 at Eb/N0 = 6[dB]. From Fig.14, it can be seen
that the higher degree parity check polynomial with ν = 15 provides the best performance.
Therefore, that higher degree parity check polynomial is used.

Figure 15 shows the simulation results of Step.2 at Eb/N0=7[dB]. From Fig.15, it can be seen
that the combination of higher degree parity check polynomials No.2 and No.5 with scaling
factor fs = 0.1 provides the best performance, where scaling factor fs = 0.1 is used for DEC1
and DEC2, and DEC3 uses fixed scaling factor fs = 1.
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Fig. 14. Simulation results of step.1 in switching parity check method at Eb/N0 = 6[dB]

18 Advanced Wireless LAN

www.intechopen.com



Sum-Product Decoding of Punctured Convolutional Code for Wireless LAN 19

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

No.1,No.3
No.1,No.4
No.1,No.5
No.2,No.3
No.2,No.4
No.2,No.5

P
ar

it
y

B
it

E
rr

o
r

R
at

e

Scaling factor fs

Fig. 15. Simulation results of step.2 in switching parity check method at Eb/N0 = 7[dB]

6.2 Simulation results

Simulation results are shown in Fig.16 and 17. Figure 16 shows parity bit error rate
performance. From Fig.16, it can be seen that parity bit error rate performance of the switching
parity check method is 3.02[dB] superior to that of the conventional method and 2.2[dB]
superior to that of the single punctured bit method. Parity bit error rate performance of the
switching parity check method is only 1.04[dB] inferior to that of BCJR.

Figure 17 shows information bit error rate performance. From Fig.17, it can be seen that
information bit error rate performance of the switching parity check method is 4.16[dB]
superior to that of the conventional method and 3.05[dB] superior to that of the single
punctured bit method. Information bit error rate performance of the switching parity check
method is only 1.06 [dB] inferior to that of BCJR.

7. Decoding complexity

Table 6 and Table 7 show the numbers of operations per one bit decoding for sum-product
algorithm and BCJR, respectively. In both tables, Nadd denotes the number of additions, Nmult
denotes the number of multiplications and Ntotal denotes the total number of operations. For

sum-product algorithm, Nsp denotes the number of operations for tanh(·), tanh−1(·). For
BCJR, Nsp denotes the number of operations for exp(·), log(·). In Table 6, for information bits,
Nadd shows the number of XOR’s. In Table 6, Nitr denotes the average number of iterations,
where the number was counted at Eb/N0=6[dB] by using computer simulation. For code rate
2/3, complexity of the single punctured bit method is shown. For code rate 3/4, complexity
of the switching parity check method is shown. It is necessary to notice that iteration of
sum-product algorithm is required for parity bits decoding only. For the switching parity
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Fig. 16. Parity Bit Error Rate Performance of switching parity check method
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Fig. 17. Information Bit Error Rate Performance of switching parity check method
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check method, it is necessary to notice that higher degree parity check polynomials No.2
and No.5 are used at only first iteration and after first iteration, higher degree parity check
polynomials with degree ν = 15 is used.

From those tables, for code rate 2/3, it can be seen that the number of operations of the single
punctured bit method is 0.1 times of that of BCJR. For code rate 3/4, the number of operations
of the switching parity check method is 0.2 times of that of BCJR.

For the both code rates, it can be seen that the number of operations of the proposed method
is much less than that of BCJR.

Code rate Classification Nadd Nmult Nsp Nitr Ntotal

2/3
Parity 10 23 24 3.04

175
Info 1 0 0 1

3/4

No.2 14 31 32 1

336
No.5 14 31 32 1

ν = 15 8 19 20 3.85
Info 1 0 0 1

Table 6. Complexity of sum-product algorithm

Code rate Nadd Nmult Nsp Ntotal

2/3, 3/4 640 1044 7 1691

Table 7. Complexity of BCJR

8. Conclusion

This paper proposes sum-product decoding methods for the punctured convolutional codes
of wireless LAN. The wireless LAN standard include the punctured convolutional codes with
code rate 2/3 and 3/4. This paper proposes to decode with the higher degree parity check
polynomial that satisfies single punctured bit condition as the single punctured bit method.
Single punctured bit condition is the condition to include single punctured bit in parity check
equation. For code rate 2/3, the performance of the single punctured bit method is 1.28[dB]
superior to that of the conventional method and only 0.98[dB] inferior to that of BCJR at

bit error rate 10−5. For code rate 3/4, the single punctured bit method can not provide
good performance. To improve the performance, this paper proposes following method as
the switching parity check method. Only at first iteration, the higher degree parity check
polynomial satisfying single punctured bit condition is used to decode and after first iteration,
another higher degree parity check polynomial with lower n f c without single punctured bit
condition is used to decode. For code rate 3/4, the performance of the switching parity check
method is 4.16[dB] superior to that of the conventional method, 3.05[dB] superior to that of
the single punctured bit method and only 1.06[dB] inferior to that of BCJR. Complexity of the
single punctured bit method is 0.1 times of that of BCJR for code rate 2/3. For code rate 3/4,
complexity of the switching parity check method is 0.2 times of that of BCJR. For the both code
rates, complexity of the proposed method is much less than that of BCJR.
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