
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

3

Patterns for Agent-Based Information
Systems: A Case Study in Transport

Vincent Couturier, Marc-Philippe Huget and David Telisson
LISTIC – Polytech Annecy-Chambéry, Université de Savoie

France

1. Introduction

Designing information systems is a complex task especially when these systems use agents

to allow adaptability, cooperation and negotiation, and automatic behaviours. Difficulties

arise due to the absence of understandable documentation associated with agent-based

methodologies. These methodologies consider concepts defined implicitly and not explicitly

requiring from engineers a good understanding of agent theory. This has as consequence an

important learning curve for engineers trying to use agents for their information systems.

This chapter proposes a collection of agent patterns to reduce time required to develop

agent-based information systems.

We propose, in this chapter, to develop software patterns and to reuse them to design

complex information systems such as the ones based on agents. According to Alexander

(Alexander et al., 1977; Alexander, 1979), a pattern describes a problem, which occurs

frequently in an environment as well as a solution that can be adapted for the specific

situation. A software pattern (Beck & Cunningham, 1987) follows the same principle and

offers a solution to developers when building software in a specific context.

Different categories of software patterns exist as mentioned in Section 2 and here, we

present in this chapter, examples of agent patterns for analysis, design and implementation.

They are illustrated on our case study in transport: enriched traveller information. These

patterns are completed with reuse support patterns that help designing and building such

agent-based information systems by guiding them among our collection of patterns.

The chapter is structured as follows. Section 2 presents the concept of pattern. Section 3
describes the categories of patterns dedicated to engineering Agent-based Information
Systems (AIS) and the reuse process. Section 4 describes examples of such patterns. Section 5
illustrates these patterns on a transport information system example. Section 6 compares
with previous works in literature. Finally, Section 7 concludes the chapter and draws
perspectives.

2. The concept of pattern

Alexander introduced the concept of pattern in 1977 for the design and construction of
homes and offices (Alexander et al., 1977; Alexander, 1979). This concept was adapted to

Innovative Information Systems Modelling Techniques 50

software engineering and mainly to object-oriented programming by Beck and Cunningham
in 1987 (Beck & Cunningham, 1987). These patterns are called software patterns.

In Alexander’s proposition, a pattern describes a problem, which occurs over and over again
in an environment as well as a solution that can be used differently several times. A software
pattern follows the same principle and can be seen as abstractions used by design or code
experts that provide solutions in different phases of software engineering. A pattern can also
be considered as a mean to capitalize, preserve and reuse knowledge and know-how.

Patterns can be divided into five categories: analysis patterns (Coad, 1996; Fowler, 1997),
architectural patterns (Buschmann et al., 1996), design patterns (Gamma et al., 1995),
idioms--also known as implementation patterns--(Coplien, 1992), and process patterns
(Ambler, 1998).

Analysis patterns are used to describe solutions related to problems that arise during both the
requirement analysis and the conceptual data modeling phases. Among them, we can
distinguish generic analysis patterns (Coad, 1992), which represent generic elements that
can be reused whatever the application domain is. There exist as well analysis patterns for
specific domains (Hay, 1996; Fowler, 1997) called domain-specific patterns or domain patterns.
These patterns (Fowler, 1997) represent conceptual domain structures denoting the model of
a business system domain rather than the design of computer programs. Fowler associates
to domain patterns support patterns that show how domain patterns fit into information
system architecture and how conceptual models turn into software. These patterns describe
how to use domain patterns and to apply them to a concrete problem.

Architectural and design patterns are both related to the design process. Though, they differ in
the level of abstraction where each one is applied. Architectural patterns express a
fundamental structural organization schema for software systems and can be considered as
templates for concrete software architectures (Buschmann et al., 1996). Design patterns
(Gamma et al., 1995) provide scheme to refine the subsystems or components of a software
system and thus are more abstract (and of smaller granularity) than architectural patterns.

Idioms are used at code level and deal with the implementation of particular design issues.

Finally, some patterns, called process patterns (Ambler, 1998) describe a collection of general
techniques, actions, and/or tasks for developing object-oriented software. Actions or tasks
can themselves be software patterns.

We present in next section categories of patterns dedicated to develop Agent-based
Information Systems and their reuse process.

3. Categories of patterns dedicated to agent-based information system
engineering

3.1 Pattern categories

The first patterns applied for engineering Agent-based Information Systems are Agent
Analysis Patterns. They define agent structure and design multiagent systems at a high level
of abstraction. They can be applied to design agents with or without decision behaviours.
Thus, the designer will be able to reuse these patterns to design agents for his/her IS at a
high level of abstraction.

Patterns for Agent-Based Information Systems: A Case Study in Transport 51

Patterns dedicated to architectural representation and design of AIS are Agent Architectural
Patterns and Agent Design Patterns.

The former has to be applied at the beginning of the design process and help defining the IS
structural organization. They represent the different architectural styles for agent-based
information systems which are means of capturing families of architectures and can be seen as
a set of design rules that guide and constrain the development of IS architecture (levels,
internal elements, collaborations between elements, etc.). Architectural styles depend on which
architecture we choose: Market-based one, Subcontract-based one or Peer-to-Peer-based one.

Agent Design Patterns describe technical elements required to develop agent-based
Information Systems. Analysis and conceptual models obtained by applying Agent Analysis
Patterns are refined with behaviour, collaboration and software entities. Thus, the IS design
model is obtained by adapting software elements specified in the design patterns solutions.

Finally, we have specified two kinds of support patterns: Model Transformation Patterns and
Reuse Support Patterns.

Model Transformation Patterns help developers to build applications from design patterns
and can be applied at the end of the design phase. They specify transformation rules to map
design models to models specific to agent development frameworks such as JADE
(Bellifemine et al., 2007) or Madkit (Gutknecht & Ferber, 2000).

Reuse Support Patterns (RSP) are process patterns, which help developers navigating into a
collection of patterns and reusing them. They describe, by using activity diagrams, a
sequence of patterns to apply to resolve a problem. There exists RSP for every category of
patterns (analysis, architectural, design and model transformation).

The different patterns described here regarding the development cycle of an agent-based
information system are shown on Figure 1.

Fig. 1. The use of the different proposed patterns in the development cycle of an agent-based IS.

Innovative Information Systems Modelling Techniques 52

The description of our software patterns is composed of four parts:

 The Interface part contains the following fields: Name and Classification (used to
categorize the pattern: Analysis pattern, Design pattern, etc.), Context (defines the
conditions under which the pattern could be applied), Rationale (gives which problems
this pattern addresses) and Applicability (gives the scope of this pattern: Information
Systems in our case).

 The Solution part when proposed as a model-based solution is composed of the
following fields: Model (an agent pattern presents a solution as a UML class diagram
and/or a UML sequence diagram), Participants (explanation of the different elements
defined on the diagram) and Consequences (advantages and drawbacks of this pattern to
help developers deciding whether this pattern is the correct one). When the Solution
part is proposed as a process-based solution (for instance for Reuse Support patterns),
the Solution part is composed of a unique field entitled Process defined as a UML
activity diagram.

 The Example part describes one or more illustrations on how to use this pattern.

 The Relationship part is composed of the following fields: Uses (describes the
relationship: “the pattern X is using the pattern Y in its solution”), Requires (“the
pattern X requires the pattern Y to be applied before”), Refines (“the pattern X refines
the pattern Y if and only if the pattern Y solves the same issues than the pattern X”) and
Looks like (“the pattern X is a variant of the pattern Y”).

Note: The different patterns presented here are reduced versions. We only describe the most important
parts and fields required to understand what a pattern means. As a consequence, we remove the
Example part, which is presented in Section 5.

3.2 Pattern reuse

The reuse of patterns dedicated to develop Agent-based IS consists in applying them during

analysis, design and implementation phases.

First, developers analyze context and problem and should have to answer questions to

decide which patterns have to be applied and in which order. This activity can be favoured

by using Reuse Support Patterns which represent sequences of patterns that can be applied to

develop Agent-based IS (See Table 1 for an example of RSP suited for navigating in our

Analysis Pattern collection). They help to navigate into the pattern collection and to reuse

them. Thus, developers adapt analysis, architectural or design pattern solution elements

(instantiation) to represent the system they want to develop. Finally, the third activity aims

at using Model Transformation Patterns to generate skeleton application from pattern

instances.

It is worth mentioning that, here, reuse is realised by adaptation. Designers do not directly

reuse the patterns but adapt the different solutions (instantiation) to their specific

applications by modifying the level of abstraction given by the patterns. Moreover, as briefly

depicted in the “Service Integration” RSP below, designers should have to answer questions

to decide which patterns have to be applied. Another example is given in Table 1 where the

“Restrict access to resources” pattern is used if and only if some policies are in use on

resources.

Patterns for Agent-Based Information Systems: A Case Study in Transport 53

Interface

Name

Base Agent Design
Classification

Reuse Support Pattern
Rationale

This pattern presents Agent Analysis Patterns that can be applied to develop a base agent.
Here, a base agent is an agent that plays roles within organisations, lives in an
environment and reacts to events in the environment, and optionally acts on resources
(perception and action) if it has the associated permission.

Applicability

Agent Analysis Pattern Collection ^ Base Agent

Solution

Process

Designers first have to apply the pattern “Define system architecture”, then the patterns
“Define environment”, “Define event”, “Add behaviour” and “Create plan”. After
applying the “Create plan” pattern, it is possible either to terminate the process or to
continue with the “Restrict access to resources” pattern depending on the necessity to
have policies on resource access (a resource is for instance digital documents such as
contracts, proposals, enterprise database, etc.). This decision is fuelled by considering the
place of agents in the environment: do all agents access resources? Do some resources
need to be kept private? Based on the answers, designers may decide to apply the
“Restrict access to resources” pattern.

Note : only the “Define System Architecture” Analysis Pattern in this RSP is presented in Section 4.

Relationships

Uses

“Define System Architecture”, “Define Environment”, “Define Event”, “Add Behaviour”,
“Create Plan”, “Restrict Access to Resources” Agent Analysis Patterns.

Table 1. Reuse Support Pattern “Base Agent Design”

Several other reuse support patterns (RSP) are proposed in our approach to address specific

needs. Amongst them, we can quote the “Service Integration” RSP. The “Service

Integration” RSP helps designers integrating the notion of services and service-oriented

architectures within the information system. In this particular RSP, the process is not limited

Innovative Information Systems Modelling Techniques 54

to a set of patterns to apply in a given order but obliges designers to think about the overall

enterprise Information Systems:

 Do we need to agentify the services from the Information System?

 Do we consider agents as a wrapper of services?

 Do we need to present agent behaviours as services to Information Systems?

 Do we need to provide access to external Information Systems and partners then

requiring interoperability and the definition of ontologies?

Based on designer’s answers, a specific process will appear from the complete activity

diagram in the “Service Integration” RSP.

Moreover, we have developed a toolkit, which is based on our software patterns. It takes as

input a Reuse Support Pattern, guides the developer--by asking questions--through the

different patterns to be used, and finally generates code skeleton. The process is then not

fully automated due to interactions with developer. Thus, s/he can complete and refine the

generated code and run his/her agents on a target platform.

We present, in next section, Agent Patterns we designed to develop Agent-based IS.

4. Patterns for engineering agent-based information systems

4.1 Patterns for the analysis phase

In following sections, we present patterns for the analysis phase of information systems
engineering, which are Agent Analysis Patterns.

4.1.1 Agent analysis patterns

The analysis patterns described below are generic ones used for building agent-based
information systems at a high level of abstraction. Due to space restriction, we only
present two among twelve analysis patterns for building agents used in Information
Systems.

4.1.1.1 Agent analysis pattern “define system architecture”

Interface

Name

Define System Architecture
Classification

Agent Analysis Pattern
Rationale

The aim of this pattern is to define the organisation and sub-organisations, their relations,
and the roles played by agents in these organisations.

Applicability

Designing agents ^ Information systems

Solution

Model

Patterns for Agent-Based Information Systems: A Case Study in Transport 55

Participants

This pattern describes the overall structure of the multiagent system underlying the IS. A
multiagent system is here an Organisation possibly composed of sub-organisations. Each
(sub-) organisation is related to other (sub-) organisations by some OrganisationRelation.
Agents play Role in these organisations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An agent is uniquely identified within the system.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played within the system.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organisational structure used in the system. There
could be a flat organisation or an organisation composed of sub-organisations.

Table 2. Agent Analysis Pattern “Define System Architecture”

4.1.1.2 Agent analysis pattern “define protocol”

Interface

Name

Define Protocol
Classification

Agent Analysis Pattern
Context

Innovative Information Systems Modelling Techniques 56

This pattern requires applying the “Define Communication between Roles” pattern before.
Rationale

This pattern defines the protocol with the messages between roles.
Applicability

Designing agents ^ Information systems

Solution

Model

Participants

The different roles present in the Protocol are denoted by Lifeline. Lifeline specifies when a
Role enters the conversation and when it leaves it.

Message are exchanged between Lifeline and are gathered within InteractionOperand. These
InteractionOperand correspond to sequence of messages. Some InteractionConstraint may
alter how InteractionOperand can be used.

Finally, InteractionOperand are gathered within CombinedFragment and the semantics of
these fragments is given by InteractionOperatorKind. These InteractionOperatorKind are alt
(one InteractionOperand is selected based on InteractionConstraint), opt (an
InteractionOperand is applied if the corresponding InteractionConstraint are satisfied else
nothing is done) and loop (a CombinedFragment is applied over and over again as long as
the InteractionConstraint are satisfied).

Some ProtocolAttribute may be defined for the Protocol, they correspond to parameters for
the protocol.

Relationship

Requires

Agent Analysis Pattern “Define Communication between Roles”.

Table 3. Agent analysis pattern “Define Protocol”

Patterns for Agent-Based Information Systems: A Case Study in Transport 57

4.2 Patterns for the design phase

In this section, we present Agent Architectural and Design Patterns for the architectural and

detailed design of AIS. These patterns have to be applied after analysis patterns described

above.

4.2.1 Agent architectural patterns

We develop three architectural patterns related to the different architectures an AIS could

have:

 Pattern “Market-based AIS”: a marketplace is defined with this pattern. A marketplace
is composed of several proposers and several task managers. Task managers try to find
the best proposal for a service. Two approaches are possible to retrieve this best
proposal: (1) A descending price auction or (2) A call for proposals.

 Pattern “Subcontract-based AIS”: An AIS with subcontracts is a restricted version of
the previous pattern “Market-based AIS”. In this particular case, there is only one
task manager and several proposers. The best proposal is found after a call for
proposals.

 Pattern “Peer-to-Peer-based AIS”: previous patterns impose to use a central server so
as to store the address of the different task managers and proposers. This approach
does not resist to the scalability problem and the bottleneck is located on querying the
central server to retrieve the different task managers and proposers. In this pattern
here, there is no central server and the different task managers and proposers know
each other via social networks. This kind of architecture copes with the scalability
problem.

Below, we only present the pattern “Subcontract-based Agent-based Information System”.

Note: The different design and model transformation patterns described below are those required for
building a Subcontract-based AIS.

Interface

Name

Subcontract-based Agent-based Information System

Classification

Agent Architectural Pattern

Rationale

This pattern gives the structure of a subcontract-based information system with a unique

Task Manager and several Proposers.

Applicability

Designing agents ^ Information systems

Solution

Model

Innovative Information Systems Modelling Techniques 58

Participants

This kind of AIS architecture considers three layers: the Task Manager layer, the Platform
layer and the Proposer layer.

The Task Manager layer contains one unique Task Manager playing the role of task
manager in AIS. It is the one that requests services from Proposer.

The Proposer layer contains one or more Proposer playing the role of proposers who
provide services.

The Platform layer contains two services proposed to the different task manager and
proposers, that is the white pages and the yellow pages. White pages give the address of
the different entities within the system and yellow pages return the service proposed by
proposers.

Collaborations and communications within the architecture:

1. Proposers register their services within the yellow pages with the performative
subscribe.

2. A task manager looks for proposers providing a specific service (here the service A)
within the yellow pages with the performative search. It then retrieves their address
within the white pages so as to contact them.

3. A Contract Net protocol (Davis & Smith, 1983) is then used between proposers and
task manager so as to find the best proposal for a specific requested service (here the
service A).

Table 4. Agent Architectural Pattern “Subcontract-based Agent-based Information System”.

4.2.2 Agent design patterns

The following patterns describe the different concepts needed for designing an Agent-based
IS. We only present here two examples of such patterns.

Patterns for Agent-Based Information Systems: A Case Study in Transport 59

4.2.2.1 Agent design pattern “platform-based system architecture”

Interface

Name

Platform-based System Architecture
Classification

Agent Design Pattern
Rationale

This pattern describes the overall structure of the system taking count of the platform.
Applicability

Designing agents ^ Information systems

Solution

Model

Participants

This pattern describes the overall structure of the multiagent system underlying the IS
from the design point of view. A multiagent system is here an Organisation possibly
composed of sub-organisations. Each (sub-) organization is related to other (sub-)
organizations by some OrganisationRelation. Agents play Role in these organizations.

The Agent concept corresponds to the notion of agent defined in the agent theory
(Wooldridge, 2002). An agent is an autonomous and active entity, which asynchronously
interacts with other agents and cooperates with others so as to solve a global problem. An
agent is seen as an aggregation of Role. An Agent is defined as an abstract class from object

Innovative Information Systems Modelling Techniques 60

theory since three operations mentioned below are abstract. An agent is uniquely
identified in the system via the attribute id. Getter and setter operations are defined for the
attribute id. Three other operations are defined abstract and have to be instantiated in the
instance of this Agent. Activate() contains behaviours for initialising the agent. Run() is
executed every time it is the turn of the agent to be executed. Finally, terminate() describes
behaviours executed when ending the agent execution.

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played within the system. The Role concept defines an attribute name and its
corresponding getter and setter operations.

An association entitled plays links the Agent concept to the Role concept. This association
has the following cardinalities: an Agent may have 1 or more roles, and a Role may be
played by an agent.

The Organisation concept defines the organizational structure used in the system. There
could be a flat organization or an organization composed of sub-organisations. An
attribute name and its corresponding getter and setter operations are associated to the
Organisation concept.

An association belongsTo links the Organisation concept to the Agent concept. It expresses
the fact that an agent may belong to several organizations and an organization has zero or
more agents whatever their roles are.

The OrganisationRelation concept describes the relation between two organizations.

Finally, the Platform concept defines the platform and the different services provided by
this one. These services are present by the operations available on the Platform concept:
connection to the platform, disconnection from the platform, send a message, receive a
message saved on the platform, perceive for sensing traces in the environment, and leave
for adding traces in the environment.

Relationships

Requires

Agent Analysis Pattern “Define System Architecture”.

Table 5. Agent Design Pattern “Platform-based System Architecture”

4.2.2.2 Agent design pattern “FIPA-based interaction with protocol”

Interface

Name

FIPA-based Interaction with Protocol
Classification

Agent Design Pattern
Rationale

This design pattern describes the notion of cognitive interaction in terms of protocols
within roles. This interaction is FIPA-compliant.

Applicability

Designing agents ^ Information systems

Patterns for Agent-Based Information Systems: A Case Study in Transport 61

Solution

Model

Participants

Interactions between roles are either based on pheromones left in the environment (we
speak about reactive interactions) or based on communicative acts as humans do (we
speak then about cognitive interactions). In this design pattern, we consider cognitive
interactions through protocols. Protocols help directing the conversations between roles
since only messages from the protocol are granted when agents interact with this protocol.

This design pattern is FIPA-compliant (FIPA, 2002) and is based on the UML 2.x sequence
diagram specifications. We just remove some classes that are nonsense for agents.

The following concepts are present in this design pattern:

The Role concept describes a role that the agent will play. It defines a catalogue of
behaviours played within the system. The Role concept defines an attribute name and its

Innovative Information Systems Modelling Techniques 62

corresponding getter and setter operations.

The Protocol concept defines a protocol. It contains all the sequences of messages allowed
for this protocol. The Protocol concept defines an attribute name and its corresponding
getter and setter operations.

A protocol may contain some ProtocolAttribute. These attributes correspond to local
attributes required during the execution of the protocol. It could be for instance the set of
recipients of a specific message. The ProtocolAttribute concept defines an attribute as a name
and a value. The corresponding getter and setter operations are defined too.

The different roles are denoted by the Lifeline concept in the protocol.

Since this protocol definition is based on UML 2.x sequence diagram specification, a
protocol is decomposed into CombinedFragment. Each CombinedFragment has an associated
InteractionOperatorKind from the following list: alt, opt and loop. Alt denotes an alternative
between several InteractionOperand. One and only one alternative will be chosen. Opt
denotes an option on an InteractionOperand. This InteractionOperand is executed if and only
if the conditions-represented by InteractionConstraint- are satisfied. Finally, loop denotes the
execution of a set of messages as long as the conditions are satisfied.

The Message concept is the concept following the FIPA definition. It contains a set of
attributes and their getter and setter operations. Sender, recipient, performative and content
denote from whom the message is sent to whom. A message is composed of two parts: a
performative depicting the verb of the communicative act (inform, request, etc.) and a content
on which this performative is applied. The other attributes are for administrative duties:
replywith and inreplyto correspond to identifier respectively for the sender and the
recipient. Language denotes the language in which the content parameter is expressed.
Ontology defines which ontology is used for this message. Finally, encoding denotes the
specific encoding of the content language expression.

Relationships

Requires

Agent Analysis Pattern “Define Protocol”

Table 6. Agent Design Pattern “FIPA-based Interaction with Protocol”.

4.3 Patterns for the implementation phase: Model transformation patterns

We define several Model Transformation Patterns for developing AIS for different

architectures (subcontract-based architectures, market-based ones and peer-to-peer-based

ones) and for different execution platforms (JADE and Madkit). We only present here in

Table 7, a short version---without method transformations---of a Model Transformation

Pattern for Madkit implementation of a subcontract-based AIS.

Interface

Name

Madkit Implementation of a subcontract-based Agent-based Information System
Classification

Model Transformation Pattern

Patterns for Agent-Based Information Systems: A Case Study in Transport 63

Rationale

This pattern performs the model transformation from a design model of a subcontract-
based Agent-based Information System to the Madkit platform.

Applicability

Implementing agents ^ Subcontract-based Information Systems

Solution

Model

Note: In this pattern and due to space restriction, we do not consider the OrganisationRelation
concept since it is not mandatory for a subcontract-based AIS.

Participants

This pattern ensures the transformation from a design model of an AIS to a set of classes
for the Madkit platform. Agents on the Madkit platform are defined as a specialization of
the AbstractAgent class provided by the Madkit platform. The AbstractAgent class from the
Madkit platform provides the different methods required for the Agent lifecycle (creation,
invocation, execution and deletion). These methods correspond to the ones proposed in
the Agent concept. The set of attributes and methods from the Role concept is added to the

Innovative Information Systems Modelling Techniques 64

Task manager and Proposer classes. The Task manager and Proposer are the two unique roles
in a subcontract-based AIS according to the “Subcontract-based Agent-based Information
System” architectural pattern (see Table 4).

Two rules are added for model transformation. Rule 1 expresses that organizations are
created within agents in the activate() operation. Agents are responsible to create the
organizations. Rule 2 specifies that roles agents have, are taken within the activate()
operation of the corresponding agent.

Relationships

Uses

Agent Design Pattern “Platform-based System Architecture”.

Table 7. Model Transformation Pattern “Madkit Implementation of a Subcontract-based
Agent-based Information System”

5. A case study

The objectives of our case study are to provide enriched traveller information. This enriched

traveller information is in fact the collaboration of two different tools: (1) A route planner

considering usual travel means such as buses and undergrounds but also taxis, personal

vehicles, rent bicycles and walking, and (2) An adorned travel with points of interests

related to traveller preferences (cultural interests, food preferences, etc.). The process of

proposing a route to traveller is as followed. After entering origin and destination, the

information system composed of all the different operators (bus, underground, taxi, and

rent bicycle) cooperate to find the best route proposals based on the preferences (cost,

duration, number of connections, etc.) and requirements (no stairs, disabled access, ease of

use, etc.) of the traveller. Then, the system prunes all the proposed routes based on traveller

requirements. Finally, points of interest providers adorn the routes with contextual

information such as restaurants matching the traveller’s food preferences if the route is

during meal hours, shops or monuments, etc.

This information system exhibits some specific features that are compatible with an agent-

based system. First of all, route planning is not realised according a client/server approach.

Every operator is responsible of its data and is the only one to know how to deal with

scheduled and/or unexpected events (delays, traffic jam, disruptions, etc.). As mentioned

above, operators collaborate to find routes from origin to destination.

A second reason is the openness of the system. The list of operators (especially taxis) and

points of interest providers is subject to evolve, especially during execution. The system

should be able to take account of appearing and disappearing providers.

Finally, a third reason is the necessity for the information system to present some

adaptability mechanisms. A route may change due to unexpected events or after traveller

requests. The system should be able to modify the proposals during execution.

For all these reasons, an agent-based system is well-adapted since adaptability, openness,

and context-aware are part of the intrinsic features of agents. We invite the reader to consult

(Wooldridge, 2002) for details on agent-based systems and their characteristics.

Patterns for Agent-Based Information Systems: A Case Study in Transport 65

We focus in this chapter on how designing and building the transport information system
responsible to provide enriched traveller information.

Figures 2 and 3 give the instantiation for our case study of the two analysis patterns
presented in Section 4.1.

Fig. 2. Instantiation of the “Define System Architecture” Agent Analysis Pattern

Figure 2 describes the complete system architecture with one organisation Traveller
Information Organisation, one sub-organisation Transport Operator Organisation, five roles
Traveller Information, Travel Planning, Customisation, POI Integration and Collaborative Travel
Proposal, and four agents User Agent, Travel Planning Agent, POI Agent, and Transport
Operator Agent.

Each agent Transport Operator Agent represents a means to travel inside a city: underground
if available, bus, taxi, rent bicycle, personal vehicle or by foot. These agents play the role
Collaborative Travel Proposal since they try to collaborate so as to complete the travel from
origin to destination. All these agents are part of the Transport Operator Organisation.

The Transport Operator Organisation is part of the Traveller Information Organisation, which
carries information to travellers.

User Agent represents the traveller requesting the system. Travel Planning Agent is
responsible to ask for a list of journeys to Transport Operator Agent. Travel Planning Agent has
two roles: (1) Travel Planning to request journeys and (2) Customisation to prune the journeys
based on user preferences and requirements. This role sends journeys back to the User
Agent.

POI Agent represents point of interests within the city. These agents intervene when a
journey is completed and add some points of interest based on user preferences. Points of
interest might be restaurants, monuments, shops to name a few.

Innovative Information Systems Modelling Techniques 66

Fig. 3. Instantiation of the “Define Protocol” Agent Analysis Pattern

Figure 3 presents the protocol (instantiation of the “Define Protocol“ analysis pattern) that
initiates the search for a trip between the Traveller Information role acting for the user and the
Travel Planning. The message sent is the Search message.

Figures 4 and 5 give the instantiation for our case study of the two design patterns
presented in Section 4.2. The developer of a transport information system has to apply the
agent analysis and architectural--not presented here--patterns before.

Figure 4 corresponds to Figure 2 after refining analysis model, i.e. inserting some attributes
and operations. All the operations (except for the Platform concept) are getter and setter
operations. We define below the different attributes for the concepts on this pattern:

UserAgent has attributes corresponding to the travel: there are an origin, a destination, a
maximum amount s/he would like to pay and a maximum duration for the travel.
Preferences and Requirements contain a description attribute describing the preferences or the
requirements the user has.

TravelPlanningAgent has three attributes: queries containing the different user queries the
enriched travel planning system has to satisfy, plannedTravels containing the raw travel
planning answering user queries and finally enrichedTravels contain the list of enriched
travels with points of interest to send to users.

POIAgent has a unique attribute description describing the point of interest (position,
description, etc.) for inclusion in travel plans.

Patterns for Agent-Based Information Systems: A Case Study in Transport 67

TransportOperatorAgent has an attribute TransportOperatorDB corresponding to the database
of all the details about the journeys proposed by the operator. When the operator is a rent
bicycle one, the database contains the different locations of rent and where bicycles are.

Fig. 4. Instantiation of the “Platform-based System Architecture” Agent Design Pattern

Figure 5 presents the sequence diagram corresponding to the situation where a user asks for

a travel from an origin to a destination. This figure is the instantiation of the “FIPA-based

Interaction with Protocol” Agent Design Pattern. His/her UserAgent leaves the query in the

environment. This insertion generates an event, a TravelPlanningAgent can perceive. If this

UserAgent is a newcomer in the system, the TravelPlanningAgent asks the UserAgent about its

user’s preferences and requirements.

TravelPlanningAgent then leaves in the environment a travel from origin to destination but

without schedule. This empty travel is perceived by TransportOperatorAgent that tries to

complete it. Every TransportOperatorAgent tries to update this travel or to propose an

alternative. When this travel was considered by all TransportOperatorAgent, it turns into a

planned travel. The TravelPlanningAgent perceives it and turns it into an enriched travel to

let POIAgent to perceive it.

POIAgent tries to update it with points of interest and leaves the enriched travel plans in the

environment. Finally, Customisation prunes the different proposals based on user’s

preferences and requirements and informs UserAgent of the best proposals.

Innovative Information Systems Modelling Techniques 68

Fig. 5. Instantiation of the “FIPA-based Interaction with Protocol” Agent Design Pattern

6. Related work

We can find two kinds of patterns related to Information Systems and agent-based systems
engineering in literature:

 Agent-based patterns

 Patterns for Information Systems engineering

Patterns for Information Systems engineering (for instance, patterns for cooperative IS
(Couturier, 2004) (Saidane, 2005), e-bidding applications (Jureta et al., 2005; Couturier et al.,
2010), distributed IS (Renzel & Keller, 1997), enterprise application architecture (Fowler,
2002), etc.) are generally domain-dependent and/or do not deal with advanced information
systems requiring adaptability, cooperation or negotiation such as agent-based ones.

On the other hand, the concepts of agent technology, which include, among others,
autonomy, proactivity, reactivity, social behaviours, adaptability and agents, differ from
those of traditional software development paradigms. The various concepts and the
relationships among them generate different agent-oriented software engineering problems
for which agent-oriented patterns have been written.

Patterns for Agent-Based Information Systems: A Case Study in Transport 69

According to Oluyomi et al. (Oluyomi et al., 2007), numerous efforts have been made by
agent software practitioners to document agent-oriented software engineering experiences
as patterns and they establish a listing of ninety-seven agent-oriented patterns gathered
from literature.

Oluyomi et al. classify agent-oriented patterns based on the definition of the software
tasks/concepts of agent technology and the stages of development.

According to this first point of view, numerous works such as (Kendall et al., 1998) (Aridor
& Lange, 1998) feature agent-oriented concepts as object-oriented ones and adapt existing
object-oriented patterns to their needs. This is not suited for agent-based system engineering
due to the differences between agent technology concepts and object ones and their
implementation languages.

According to the second point of view, existing agent patterns are not designed to capture

all the different phases and processes of agent-oriented software engineering. Indeed,

proposals ((Hung and Pasquale, 1999), (Tahara et al., 1999), (Sauvage, 2003), (Schelfthout et

al., 2002) to name a few) focus either only on the implementation phase of development or

only on some aspects of the design phase but scarcely to analysis. Other works are based on

implementation of only a particular application of agent technology, for example, mobile

agents (Aridor and Lange, 1998), or reactive or cognitive ones (Meira et al., 2001) for

instance. It is worth mentioning that it is difficult to reuse these proposals to realise a

complete agent-based information system: either the proposals only deal with a specific

agent type, or the collection of patterns is partial and not homogeneous enough.

We add a third classification: proposals specifying patterns with or without providing tools

or a methodology to help reusing these patterns. Some patterns underlie methodologies

such as Tropos (Do et al., 2003) or PASSI (Cossentino et al., 2004). These methodologies aim

at guiding developers when using patterns to develop agent-based systems. However,

Tropos only proposes patterns for detailed design. These patterns focus on social and

intentional aspects frequently present in agent-based systems. Patterns in PASSI

methodology deal with detailed design and implementation. One hurdle in PASSI is this is

not trivial selecting the appropriate patterns especially for new agent developers. Most of

works do not propose a methodology or a guide to reuse patterns.

Thus, it becomes difficult for a developer to reuse these proposals to design and implement

an agent-based information system:

 Proposed patterns are too generic and do not match with information systems issues.

 It is very difficult for non-agent software practitioners to easy understand the different
aspects of agent based systems development.

 Users do not have adequate criteria to search for suitable patterns to solve their
problems (lack of methodology).

 All stages of software development are not covered and combination of agent-oriented
patterns written by different authors, into a well-defined pattern collection is nearly
impracticable.

Our proposal, which covers all the phases of agent-based information systems engineering,
is suitable for each kind of agent (agents with or without decision behaviours) and

Innovative Information Systems Modelling Techniques 70

addresses information systems issues such as business rules, legacy systems, services and
enterprise resources, for instance. We also propose a methodology based on our Reuse
Support Patterns.

7. Conclusion

This chapter describes our work about specifying and reusing patterns so as to engineer
Agent-based Information Systems. The different patterns presented here represent the
building blocks which, after adaptation, can be used to develop analysis and design models
for a new IS, define the architecture and ease implementation. The patterns cover all the
phases of IS engineering and a methodology, based on our Reuse Support Patterns, is
provided to favour their reuse. We have also developed a toolkit so as to ease engineering
Information System applications and specifically, intelligent transport systems. This toolkit
is based on our software patterns. It takes as input a Reuse Support Pattern, guides the
developer through the different patterns to be used, and finally generates code skeleton.

Our approach and the different patterns are experimentally validated on a specific IS for
transportation. Reusing the patterns help eliciting the business entities (analysis model),
architecting the system (the architecture is a subcontract-based one since there is a unique
task manager and several proposers), defining the design model and generating code
skeleton for the Madkit platform.

Future work aims at reusing the different patterns presented here so as to develop other
Enterprise Information Systems (schedule management for instance).

8. References

Alexander, C.; Shikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I., & Angel, S.
(1977). A pattern language: towns, buildings, construction, Oxford University Press,
ISBN 0195019199, New York

Alexander, C. (1979). The timeless way of building, Oxford University Press, ISBN 0195022483,
New York

Ambler S.W. (1998). Process patterns: building large scale systems using object technology, ISBN
0521645689, Cambridge University Press

Aridor, Y. & Lange, D.B. (1998). Agent Design Patterns: Elements of Agent Application
Design, Proceedings of the second international conference on autonomous agents, ISBN
0897919831

Beck, K. & Cunningham, W. (1987). Using pattern languages for object-oriented programs,
technical report CR-87-43, Computer Research Laboratory, Tektronix

Bellifemine, F.L.; Caire, G. & Greenwood, D. (2007). Developing Multi-Agent Systems with
JADE, Wiley, ISBN 0470057475, New York

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P. & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns, John Wiley & Son, ISBN 0471958697,
Chichester, UK

Coad, P. (1992). Object-Oriented Patterns. Communications of the ACM, 35(9), 152-159.
Coad, P. (1996). Object Models: Strategies, Patterns and Applications, Prentice Hall, ISBN

0138401179

Patterns for Agent-Based Information Systems: A Case Study in Transport 71

Coplien, J. O. (1992). Advanced C++ Programming Styles and Idioms, Addison-Wesley, ISBN
9780201548556

Cossentino, M.; Sabatucci, L. & Chella, A. (2004). Patterns Reuse in the PASSI Methodology.
In Engineering Societies in the Agents World, Springer, LNCS, Vol. 3071/2004, 520,
ISBN 978-3-540-22231-6

Couturier, V. (2004). L’ingénierie des systèmes d’information coopératifs : une approche à base de
patterns. Unpublished doctoral dissertation, Université Jean-Moulin Lyon 3, France
(in French).

Couturier, V.; Huget, M.-P. & Telisson, D. (2010). Engineering agent-based information
systems: a case study of automatic contract net systems, Proceedings of the 12th
International Conference on Enterprise Information Systems (ISAS - ICEIS 2010),
Portugal, Volume 3, pp. 242-248

Davis, R. & Smith, R. G. (1983). Negotiation as a Metaphor for Distributed Problem Solving,
Artificial Intelligence, 20(1), pp. 63-109.

Do, T.T.; Kolp, M.; Hang Hoang, T.T. & Pirotte, A. (2003). A Framework for Design Patterns
for Tropos, Proceedings of the 17th Brazilian Symposium on Software Engineering, Brazil

FIPA (2002). FIPA ACL Message Structure Specification, 2002.
Fowler, M. (1997). Analysis Patterns: Reusable Object Models, Addison-Wesley, ISBN

0201895420
Fowler, M. (2002). Patterns of enterprise application architecture, Addison Wesley, ISBN 978-

0321127426
Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995). Design patterns: Elements of reusable

object-oriented software, Addison Wesley, ISBN 0201633612
Gutknecht, O. & Ferber, J. (2000). The MADKIT agent platform architecture. In T. Wagner

(Ed.), LNCS : vol. 1887. International Workshop on Infrastructure for Multi-Agent
Systems, London, Springer-Verlag, pp. 48-55

Hay, D. C. (1996). Data Model Patterns: Conventions of Thought, Dorset House, ISBN
0932633293, New York

Hung, E. & Pasquale, J. (1999). Agent Usage Patterns: Bridging the Gap Between Agent-Based
Application and Middleware, technical report CS1999-0638, Department of Computer
Science and Engineering, University of California

Jureta, I.; Kolp, M.; Faulkner, S. & Do, T.T. (2005). Patterns for agent oriented e-bidding
practices, Knowledge-Based Intelligent Information and Engineering Systems (KES'05),
Lecture Notes in Computer Sciences 3682, Springer, pp. 814 – 820

Kendall, E. A.; Murali Krishna, P.V.; Pathak, C.V. & Suresh, C.V. (1998). Patterns of
intelligent and mobile agents. In Proceedings of the Second International Conference
on Autonomous Agents, Minneapolis, Minnesota, USA, pp. 92–99

Meira, N. ; Silva, I.C. & Silva, A. (2001). An Agent Pattern for a More Expressive Approach,
Proceedings of the EuroPLOP’2000, Germany

Oluyomi, A.; Karunasekera, S. & Sterling, L. (2007). A comprehensive view of agent-
oriented patterns, Autonomous Agents And Multi-agent Systems, Volume 15, Number
3, pp. 337-377, DOI: 10.1007/s10458-007-9014-9

Renzel, K. & Keller W. (1997). Client/Server Architectures for Business Information Systems
- A Pattern Language, Pattern Languages of Program (PLOP’97), September 3-5,
Monticello, Illinois, USA

Innovative Information Systems Modelling Techniques 72

Risi, W.A. & Rossi, G. (2004). An architectural pattern catalogue for mobile web information
systems, International journal of mobile communications, vol. 2, no3, pp. 235-247, ISSN
1470-949X

Saidane, M. (2005). Formalisation de Familles d'Architectures Logicielles Coopératives : Démarches,
Modèles et Outils. Unpublished doctoral dissertation, Université Joseph-Fourier -
Grenoble I, France (in French).

Sauvage, S. (2003). Conception de systèmes multi-agents: un thésaurus de motifs orientés agent.
Unpublished doctoral dissertation, Université de Caen, France (in French).

Schelfthout, K.; Coninx, T.; Helleboogh, A.; Steegmans, E. & Weyns, D. (2002). Agent
Implementation Patterns. Proceedings of workshop on Agent-Oriented Methodologies,
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications

Tahara, Y.; Ohsuga, A. & Honiden, S. (1999). Agent system development method based on
agent patterns. In Proceedings of the Fourth International Symposium on Autonomous
Decentralized Systems.

Wooldridge, M. (2002). An introduction to Multi-Agent Systems, John Wiley & Sons, ISBN
0470519460

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

