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1. Introduction 

Most of the injuries suffered by motorcyclists and cyclists on Spanish highways are due to 
collision with guardrails, particularly with the posts that support these protective devices. 

In order to lessen the effect of such accidents, the research group "New Technologies 
applied on Vehicles and Road Safety" (VEHIVIAL) of the University of Zaragoza is carrying 
out a series of studies, in collaboration with the company Taexpa S. A. 

These studies are developing an innovative a system that will protect motorcyclists and 
cyclists from crashes against guardrails.  

The material chosen for the development of this absorption system is commercial isotactic 
polypropylene copolymer, due to its great capacity to transform the kinetic energy of the 
shock into strain energy.  

The developed system can be installed on the posts of the highways guardrails, where the 
polypropylene is affected by the environment, modifying the material mechanical properties.  

The isotactic polypropylene is found in almost all of the polypropylene market. It is a 
crystalline thermoplastic material, so mechanical properties mainly depend on their 
molecular structure, their crystal structure and the macro-structure induced by the 
transformation process (Monasse & Haudin, 1995; Rodriguez et al, 2004; Varga, 1992; 
Fujiyama et al, 2002). 

The chapter shows the analysis of the mechanical properties variation of an isotactic 
polypropylene copolymer, when this material is subjected to artificial aging according to the 
standard UNE 4892.  

The selected material is polypropylene because it is the polymer that has a better impact 
resistance-price ratio.  

2. Materials and experimental techniques 

In order to obtain the variation of the mechanical behaviour of polypropylene copolymer 
under study, experimental and virtual testing techniques have been used. 
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In the first phase of the developed process a series of samples was subjected to artificial 
aging in a climatic chamber. The mechanical properties of the original material used and the 
aged polypropylene were obtained by tensile tests. 

Once the mechanical properties of both materials were obtained, a series of numerical 
calculations by means of the Finite Elements Method (FEM) were made. The results of the 
numerical tests allow for obtaining the variation of the mechanical behaviour of the material 
subjected to artificial aging with respect to the original polypropylene. 

2.1 Materials 

The material used in the study is an isotactic polypropylene copolymer, because it is the 
polymer that has a better impact resistance-price ratio. To carry out the experimental tests 10 
dumbbell-shaped samples of type 1B were mechanized from a square sheet of side 1000 mm 
and a thickness of 3 mm of this material .These samples were manufactured according to the 
standard UNE-EN-ISO 527-2. 

2.2 Artificial aging of isotactic polypropylene copolymer 

The aim of this test is to reproduce the effects that occur when materials are exposed to the 
environment. 

Artificial aging tests of materials were carried out in laboratory under more controlled 
conditions than in the natural processes of aging. These tests were designed to accelerate the 
degradation of the polymer and the material failures.  

For this, 5 samples were subjected to cyclical periods of UV exposure, followed by periods 
without radiation. During these cycles, changes in temperature and humidity were carried 
out according to the standard UNE 4892. This standard is the one governing the artificial 
aging tests and it was used as a guide in the investigation developed. 

The artificial aging cycle applied consists in two hours of UV exposure at a temperature of 
30ºC and a relative humidity of 62%, followed by one hour of condensation without 
radiation at a temperature of 40°C and a relative humidity of 90%. The duration of artificial 
aging process developed had been 78 hours, which corresponds to 26 cycles. 

The equipment used in carrying out the artificial aging process is a climatic chamber Ineltec 
CC-150, which is located in the premises of the Department of Science and Technology of 
Materials and Fluids of the University of Zaragoza. The climatic chamber capacity is 125l 
and the maximum and minimum working temperatures of the machine are 150ºC and 10°C 
respectively. 

Figure 1 shows the inside of the climatic chamber with the samples subjected to artificial aging. 
Figure 2 shows the position of the samples in the climatic chamber, which were positioned in 
the irradiation zone of the lamp. This lamp is represented in the figure 2 by an X. 

2.3 Tensile test of mechanized samples 

Once the samples of isotactic polypropylene copolymer were subjected to the artificial aging 
process, the next phase in the development process was to obtain and compare the mechanical 
properties of the aged material and the mechanical properties of the original material. 
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Fig. 1. Inside the climate chamber with 5 samples 

 

Fig. 2. Position of the samples in the climate chamber 

The tensile test is the testing to obtain information of the mechanical properties of materials. 

The aim of this test is to obtain the elastic modulus, stress-strain curve, yield strength, 

tensile strength and elongation of a material. 

In order to obtain these values, 5 samples with artificial aging (A1-5) and 5 samples without 

aging process (N1-5) had been tested according to the standard UNE-EN ISO 527 - 1996. 

Tensile tests were carried out in an Instron 8032 testing machine at the Department of 

Mechanical Engineering at the University of Zaragoza. This testing machine has a load 

capacity of 100kN. 
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2.4 Numerical analysis by means of the Finite Elements Method (FEM) 

The last phase of the study was to obtain the variation of the mechanical behaviour of the 
material subjected to artificial aging with respect to the original polypropylene in an impact. 

The impact analysis in polymers has a number of difficulties (Kalthoff, 1993; Richardson & 
Wisheart, 1996; Moyre et al, 2000; Read et al, 2001; Tarim et al, 2001; Dean & Wright; 2003; 
Trudel-Boucher et al, 2003; Jimenez et al, 2004; Aretxabaleta et al, 2004; Aretxabaleta et al, 
2004; Aretxabaleta et al, 2005; Davies et al, 2005; Alcock, 2006; Martinez et al, 2008; 
Aurrekoetxea et al, 2011), which complicate the analysis of such situations. The causes of 
this complexity have been summarized in the following points: 

 The dynamic nature of the problem, including the phenomena of wave propagation 
Justify, single space (Aita et al, 1992; Bigi,1998) 

 The three-dimensionality of the problem, often asymmetric and two-dimensional 
simplifications being insufficient (Wierzbicki, 1989) 

 The behaviour of materials at extreme loads caused by an impacts is almost always non-
linear (Krieg & Key, 1976) 

 The simulation of material behaviour must be representative of the entire range of 
strains rates that develop in the impact (Hull, 1985) 

The numerical analysis by means of the FEM is a tool to provide solutions to the problems 
described. This numerical technique has been used and validated in previous studies (Martin 
et al, 2007). In these previous studies, reliable results were obtained in polypropylene impact. 

2.4.1 Application of the FEM 

The test to reproduce numerically, by means of the FEM, is the freefall impact of a steel 
semisphere of diameter 25mm against a square sheet of side 110mm and a thickness of 3mm 
of polypropylene. This model was validated in previous studies to analyze impact 
polypropylene sheets. The sheet has been discretized with shell elements of 4 nodes (S4R) 
and the semi-sphere has been discretized with volumetric elements of 6 or 8 nodes (C3D6 o 
C3D8R). Figure 3 shows the sheet in green and the semisphere in red. The model consists of 
5352 elements and 5568 nodes. 

The mechanical properties used in the definition of polypropylene were the averages of the 
results obtained in tensile tests carried out on the samples subjected to artificial aging and 
the initial polypropylene samples. The material of the semi-sphere was defined as a linear 

steel with a Young modulus E = 210GPa, density  = 7850 kg/m3 and Poison ratio υ = 0.3. 

The methodology applied in the virtual test development has been based on the application 
of numerical techniques by means of the Finite Element Method (FEM) with the explicit 
integration of a dynamic equilibrium equation. 

Changes in Kinetic energy and strain energy, as well as the displacements in the sheet, are 
obtained from the simulations for the material with and without artificial aging. 

These results provide important information in the optimization process of the developed 
protection system, because they indicate how the material behaviour changes with the 
environment, and how it affects the functionality of the energy absorption system 
developed. 
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Fig. 3. Finite elements model 

2.4.2 Load cases and boundary conditions 

The load cases analyzed corresponds to the freefall impact of a steel semi -sphere of 25 mm 

diameter against a polypropylene sheet of a thickness of 3mm. 

In order to obtain greater reliability in the results, three load cases have been analyzed. The 

difference in load cases is the difference of the height at which the semi-sphere drops. 

In order to reduce the computational cost (computation time) of the simulations, the 

simulation was not carried out on the total trajectory of the semi sphere. Instead, the 

speed of the semi sphere in the instant previous to the impact was calculated. With this 

speed and in that position of the semi sphere, the numerical simulation test was initiated. 

This technique allows for saving the computation time in which the semi-sphere covers 

the distance from the initial height of the test to the instant previous to the impact with 

the sheet. 

The speed at the instant previous to the impact was obtained by an energy balance, in which 

at the initial instant of the test, the kinetic energy of the semi sphere is zero (v1 = 0) and at 

the instant previous to the impact, the potential energy of the semi sphere is zero (h2 = 0). 

Therefore the potential energy of the sphere at the initial instant of the test is transformed 

into kinetic energy of the semi sphere in the instant previous to the impact. The following 

equations show the process developed in order to obtain the speed of the semi sphere at the 

instant previous to the impact against to the polypropylene sheet. 

 継系怠 + 継鶏怠 = 継系態 + 継鶏態  (1) 

www.intechopen.com



 
Polypropylene 54

 
怠態 ∗ 兼怠 ∗ 懸怠態 +兼怠 ∗ 訣 ∗ ℎ怠 = 怠態 ∗ 兼態 ∗ 懸態態 +兼態 ∗ 訣 ∗ ℎ態 (2) 

  
怠態 ∗ 兼怠 ∗ 0 + 兼怠 ∗ 訣 ∗ ℎ怠 = 怠態 ∗ 兼態 ∗ 懸態態 +兼態 ∗ 訣 ∗ 0 (3) 

 兼怠 ∗ 訣 ∗ ℎ怠 = 怠態 ∗ 兼態 ∗ 懸態態  (4) 

 懸態 = 紐2 ∗ 訣 ∗ ℎ怠 (5) 

Figure 4 shows a diagram of the starting position and the instant previous to the impact 

 

Fig. 4. Diagram of the starting position and the instant previous to the impact 

The load cases analyzed are shown in Table 1. The table shows the initial height in the test 
and the velocity of the semi sphere at the previous instant of the impact. 

 

Load case 
Initial height

(mm)
Impact velocity (m/s) 

1 1,575 5.56

2 790 3.94

3 527 3.21

Table 1. Initial height and impact velocity of the load cases 

The imposed boundary conditions reproduce those of a freefall impact test, in which the 
contour of the sheet is fastened. In virtual testing, rotations and displacements were 
constrained in nodes located less than 10mm from the edge of the sheet, which are shown in 
red in Figure 5. 

3. Results 

Tensile tests carried out on samples of original polypropylene and polypropylene subjected 
to artificial aging had provided force-displacement curves of the materials, which are shown 
in figures 6 and 7. 

Real situation considered Actual analysis carried out

h1

v2 h2=0

v1=0

Real situation considered Actual analysis carried out

h1

v2 h2=0

v1=0
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Fig. 5. Nodes with displacements and rotation constrained by the boundary conditions 

 

 
 

Fig. 6. Stress-displacements curves of the original polypropylene samples 
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Fig. 7. Stress-displacements curves of the polypropylene subjected to artificial aging samples  

The results of tensile tests recorded allow for obtaining the mechanical properties of the 
materials studied. The Young's modulus of both materials was calculated from σ1 (stress at a 
strain of 0.0005) and σ2 (stress at a strain of 0.0025) according to the standard UNE-EN ISO 
527-1. Tables 2 and 3 shown the Young's modulus and the tensile strength obtained of the 
tensile tests. The other mechanical properties used were density  = 7850 kg/m3 and Poison 
ratio υ = 0.3. 
 

Non-aged samples Et [MPa] Rm [MPa]

N1 671,160 41,732
N2 718,130 41,177
N3 841,690 44,369

N4 744,030 46,011
N5 746,610 43,563

Mean 744,324 43,370

Standard deviation 55,72 1,77

Table 2. Mechanical properties of non-aged polypropylene 

 

Aged samples Et [MPa] Rm [MPa]

A1 717,650 38,338

A2 724,760 36,001

A3 652,320 36,472

A4 688,720 37,025

A5 805,950 37,714

Mean 717,880 37,110

Standard deviation 50,89 0,839

Table 3. Mechanical properties of aged polypropylene 
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Once the virtual tests through the MEF had been run, the analysis of the mechanical 

behaviour variation of the polypropylene subjected to artificial aging with respect to the 

original material began. First, the maximum vertical displacements in the sheet were 

compared for each of the three load cases analyzed. In all cases the maximum vertical 

displacement and permanent deformation were higher in samples subjected to artificial 

aging. The difference of vertical displacement and permanent deformation between sheets 

of material subjected to artificial aging and sheets of original material was greater on 

increasing initial height of the test. These results are shown in figure 8. 

 
 

 
 
 

Fig. 8. Maximum vertical displacement on the sheet 

The second parameter analyzed is the kinetic energy of the semi sphere, figure 9. The results 

obtained show that the kinetic energy of the semi sphere after the impact against the sheets 

of polypropylene subjected to artificial aging is lower than in the impact against the original 

material sheets for the three load cases analyzed. This greater reduction of the kinetic energy 

implies a lower speed of the semi sphere in the simulations with polypropylene subjected to 

artificial aging with respect to the simulation with original material. 

The third parameter analyzed is the strain energy, figure 10. This parameter represents 

the energy used in the deformation of the Polypropylene sheet on the impact. The results 

obtained show that the energy used in the deformation of the polypropylene sheet 

subjected to artificial aging is higher than in the original material for the three load cases 

analyzed.  
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Fig. 9. Kinetic energy of the semi-sphere 

 

 
 

Fig. 10. Strain energy in the sheet 
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Table 4 summarizes the results of maximum displacements and strain energy in the sheet 

and the kinetic energy of the semi sphere obtained of the virtual simulations by means of the 

MEF. 

 

Load case 
Non-aged 

Polypropylene 
Aged Polypropylene 

1 

Initial Kinetic Energy (J) 59,85 59,85 

Final Kinetic Energy(J) 14,44 12,12 

Reduction of Kinetic energy (%) 75,87 79,75 

Reduction of Kinetic energy (J) 45,41 47,73 

Final Strain Energy (J) 45,34 47,72 

2 

Initial Kinetic Energy (J) 30,05 30,05 

Final Kinetic Energy(J) 8,32 7,63 

Reduction of Kinetic energy (%) 72,31 74,61 

Reduction of Kinetic energy (J) 21,73 22,42 

Final Strain Energy (J) 21,21 22,35 

3 

Initial Kinetic Energy (J) 19,95 19,95 

Final Kinetic Energy(J) 6,02 5,39 

Reduction of Kinetic energy (%) 69,82 72,98 

Reduction of Kinetic energy (J) 13,93 14,56 

Final Strain Energy (J) 13,86 14,25 

 

Table 4. Results obtained of the virtual simulations by means of the FEM 

4. Conclusions 

The research process developed allows for obtaining the mechanical properties variation of 

isotactic polypropylene copolymer subjected to artificial aging. 

For this, 10 samples were machined from a sheet of polypropylene copolymer.  Five samples 

were subjected to artificial aging in a climatic chamber. 

Subsequently, 10 samples (5 of material subjected to artificial aging and 5 samples of 

original polypropylene) were subjected to tensile tests in order to obtain the mechanical 

properties of the original polypropylene and the material subjected to artificial aging. 
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After obtaining the mechanical properties, numerical analysis by Means of the Finite 

Element Method (FEM) with explicit integration of dynamic equilibrium equation was 

carried out. These numerical techniques allow for obtaining reliable results of impacts 

against polypropylene sheets. Virtual simulations allow for obtaining the maximum 

displacements in the sheets, the kinetic energy reduction of the semisphere and the energy 

absorbed by the sheet in the load cases analyzed. 

The results show a mechanical behaviour similar to the material subjected to artificial 

aging with respect to original polypropylene in all the load cases analyzed. Moreover, in 

all the load cases analyzed the sheets of the material subjected to artificial aging reduce 

the kinetic energy by a greater amount with respect to the sheets of the original 

polypropylene. Thus, artificial aging improves the behaviour of the material for use in 

energy absorption systems. 

The minimal variations obtained of the mechanical properties of polypropylene subjected 

to artificial aging with respect to the original material show that the polypropylene is a 

suitable material for the design of systems to protect motorists and cyclists. These 

protection systems are continually exposed to environmental effects, and therefore a 

continuous aging process. 
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