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Application of Hankel Transform for  
Solving a Fracture Problem of a Cracked 

Piezoelectric Strip Under Thermal Loading 

Sei Ueda 
Osaka Institute of Technology 

Japan 

1. Introduction 

In this chapter, an example of the application of Hankel transform for solving a fracture 

problem will be explained. In discussing axisymmetric problems, it is advantageous to use 

polar coordinates, and the Hankel transform method is powerful to solve the general 

equations in polar coordinates. A brief account of the Hankel transform will be given. Here 

f  is a function of r , its transform is indicated by a capital F , Jν  is the ν th order Bessel 

function of the first kind, and the nature of the transformation either by a suffix or by a 

characteristic new variable s . It will be assumed without comment that the integrals in 

question exist, and that, if necessary, the functions and their derivatives tend to zero as the 

variable tends to infinity. The Hankel transform of order 1 / 2ν > − , [ ( )]H f rν  or ( )F sν , of a 

function ( )f r  is defined as  

0
[ ( )] ( ) ( ) ( )H f r F s rJ sr f r drν ν ν

∞
≡ = ∫  

and its inversion formula is  

0
( ) ( ) ( )f r sJ sr F s dsν ν

∞
= ∫  

Also, integrating by parts twice gives 

2 2
2

2 2

1
( )

d f df
H f s F s

r drdr r
ν ν

ν⎡ ⎤
+ − = −⎢ ⎥

⎢ ⎥⎣ ⎦
 

provided that ( )rf r  and ( ) /rdf r dr  tend to zero as 0r →  and as r →∞ .  

The piezoelectric materials have attracted considerable attention recently. Owing to the 

coupling effect between the thermo-elastic and electric fields in piezoelectric materials, 

thermo-mechanical disturbances can be determined form measurement of the induced 

electric potential, and the ensuing response can be controlled through application of an 

appropriate electric field (Rao & Sunar, 1994). For successful and efficient utilization of 
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piezoelectric as sensors and actuators in intelligent systems, several researches on piezo-

thermo-elastic behavior have been reported (Tauchert, 1992).  

Moreover a better understanding of the mechanics of fracture in piezoelectric materials 
under thermal load conditions is needed for the requirements of reliability and lifetime of 
these systems. Using the Fourier transform, the present author studied the thermally 
induced fracture of a piezoelectric strip with a two-dimensional crack (Ueda, 2006a, 2006b).  

Here the mixed-mode thermo-electro-mechanical fracture problem for a piezoelectric 
material strip with a penny-shaped crack is considered. It is assumed that the strip is under 
the thermal loading. The crack faces are supposed to be insulated thermally and electrically. 
By using the Hankel transform (Sneddon & Lowengrub, 1969), the thermal and electro-
mechanical problems are reduced to a singular integral equation and a system of singular 
integral equations (Erdogan & Wu, 1996), respectively, which are solved numerically (Sih, 
1972). Numerical calculations are carried out, and detailed results are presented to illustrate 
the influence of the crack size and the crack location on the stress and electric displacement 
intensity factors. The temperature, stress and electric displacement distributions are also 
presented. 

2. Formulation of the problem 

 

Fig. 1. Penny-shaped crack in a piezoelectric strip 

A penny-shaped crack of radius c  is embedded in an infinite long piezoelectric strip of 
thickness 1 2h h h= +  as shown in Figure 1. The crack is located parallel to the boundaries 
and at an arbitrary position in the strip, and the crack faces are supposed to be insulated 
thermally and electrically. The cylindrical coordinate system is denoted by ( )r zθ, ,  with its 
origin at the center of the crack face and the plane r θ−  along the crack plane, where z  is 
the poling axis. It is assumed that uniform temperatures 10T  and 20T  are maintained over 
the stress-free boundaries. In the following, the subscripts r zθ, ,  will be used to refer to the 
direction of coordinates. The material properties, such as the elastic stiffness constants, the 
piezoelectric constants, the dielectric constants, the stress-temperature coefficients, the 
coefficients of heat conduction, and the pyroelectric constant, are denoted by klc , kle , kkε , 

( 1 2 3)kk k lλ , = , , , rκ , zκ , and zp , respectively. 

The constitutive equations for the elastic field are  
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ri ri zi i
rri i

ri ri zi i
i i

ri ri zi i
zzi i

zi ri i
zri

u u u
c c c e T

r r z z
u u u

c c c e T
r r z z

i
u u u

c c c e T
r r z z

u u
c e

r z r

θθ

φσ λ

φ
σ λ

φσ λ

φ
σ

∂ ∂ ∂ ⎫= + + + − ⎪∂ ∂ ∂ ⎪
∂ ∂ ∂ ⎪= + + + − ⎪∂ ∂ ∂ ⎪ = ,⎬∂ ∂ ∂ ⎪= + + + −
∂ ∂ ∂ ⎪

⎪∂ ∂ ∂⎛ ⎞ ⎪= + +⎜ ⎟∂ ∂ ∂ ⎪⎝ ⎠ ⎭

 (1)  

where ( )iT r z,  is the temperature, ( )i r zφ ,  is the electric potential, ( )riu r z, , ( )ziu r z,  are the 
displacement components, ( )rri r zσ , , ( )i r zθθσ , , ( )zzi r zσ , , ( ) ( 1 2)zri r z iσ , = ,  are the stress 
components. The subscript 1 2i = ,  denotes the thermo-electro-elastic fields in 10 z h≤ ≤  and 

2 0h z− ≤ ≤ , respectively. For the electric field, the constitutive relations are 

 

15 11

31 31 33 33

,

( 1 2)

zi ri i
ri

ri ri zi i
zi z i

u u
D e

r z r

i

u u u
D e e e p T

r r z z

φε

φε

⎫∂ ∂ ∂⎛ ⎞= + −⎜ ⎟ ⎪∂ ∂ ∂⎝ ⎠ ⎪⎪ = ,⎬
⎪∂ ∂ ∂ ⎪= + + − +
⎪∂ ∂ ∂ ⎭

 (2)  

where ( )riD r z, , ( ) ( 1 2)ziD r z i, = ,  are the electric displacement components.  

The governing equations for the thermo-electro-elastic fields of the medium may be 
expressed as follows:  

 
2 2

2
2 2

1
0 ( 1 2)i i iT T T

i
r rr z

κ
⎛ ⎞∂ ∂ ∂

+ + = = ,⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠
 (3)  

 

( ) ( )

( )

2 2 2 2

11 44 13 44 31 15 112 2 2

2 2 2 2 2

44 33 13 44 15 332 2 2

1
,

1 1 1

ri ri ri ri zi i i

zi zi zi ri ri i i i

u u u u u T
c c c c e e

r r r z r z rr r z

u u u u u
c c c c e e

r r r z r z r rr z r

φ λ

φ φ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( )

332

2 2 2 2 2

15 33 15 31 11 332 2 2 2

,
( 1 2)

1 1 1

i

zi zi zi ri ri i i i i
z

T

izz

u u u u u T
e e e e p

r r r z r z r r zr z r z

λ

φ φ φε ε

⎫
⎪
⎪
⎪
⎪
⎪∂ ⎪= ⎪ = ,∂ ⎬
⎪
⎪
⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪+ + + + + − + − =−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎪∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪
⎪⎭

 (4)  

where 2
r zκ κ κ= / .  

The boundary conditions can be written as  

 1

1 2

( 0) 0 (0 )

( 0) ( 0) ( )

T r r c
z

T r T r c r

∂ ⎫, = ≤ < ⎪
∂ ⎬

⎪, = , ≤ < ∞ ⎭

 (5)  
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1 1 10

1 2

2 2 20

( ) ,

( 0) ( 0), (0 )

( )

T r h T

T r T r r
z z

T r h T

, = ⎫
⎪∂ ∂ ⎪, = , ≤ < ∞⎬

∂ ∂ ⎪
,− = ⎪⎭

 (6)  

for thermal loading conditions and  

 1

1 2

( 0) 0 (0 )

( 0) ( 0) ( )
zz

z z

r r c

u r u r c r

σ , = ≤ < ⎫
⎬, = , ≤ < ∞ ⎭

 (7)  

 1

1 2

( 0) 0 (0 )

( 0) ( 0) ( )
zr

r r

r r c

u r u r c r

σ , = ≤ < ⎫
⎬, = , ≤ < ∞ ⎭

 (8)  

 1

1 2

( 0) 0 (0 )

( 0) ( 0) ( )
zD r r c

r r c rφ φ
, = ≤ < ⎫

⎬, = , ≤ < ∞ ⎭
 (9)  

 
1 2 1 1 2 2

1 2 1 1 2 2

1 2 1 1 2 2

( 0) ( 0), ( ) 0, ( ) 0,

( 0) ( 0), ( ) 0, ( ) 0, (0 )

( 0) ( 0), ( ) 0, ( ) 0

zz zz zz zz

zr zr zr zr

z z z z

r r r h r h

r r r h r h r

D r D r D r h D r h

σ σ σ σ
σ σ σ σ

, = , , = ,− = ⎫
⎪, = , , = ,− = ≤ < ∞⎬
⎪, = , , = ,− = ⎭

 (10)  

for the electromechanical conditions.  

3. Temperature field 

For the problem considered here, it is convenient to represent the temperature as the sum of 
two functions.  

 (2)(1)( ) ( ) ( ) ( 1 2)i iT r z T z T r z i, = + , = ,  (11)  

where (1)( )T z  satisfies the following equation and boundary conditions:  

 
(1)2

2
0

d T

dz
=  (12)  

 
(1)

1 10

(1)
2 20

( ) ,

( )

T h T

T h T

⎫
⎪
⎬
⎪
⎭

=

− =
 (13)  

and (2)( ) ( 1 2)iT r z i, = ,  is subjected to the relations:  

 
(2) (2) (2)2 2

2
2 2

1
0 ( 1 2)i i iT T T

i
r rr z

κ
⎛ ⎞∂ ∂ ∂

+ + = = ,⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠
 (14)  

 
(2) (1)
1

(2) (2)
1 2

( 0) (0) (0 )

( 0) ( 0) ( )

d
T r T r c

z dz

T r T r c r

∂ ⎫, = − ≤ < ⎪∂ ⎬
⎪, = , ≤ < ∞ ⎭

 (15)  
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(2)
11

(2) (2)
1 2

(2)
22

( ) 0,

( 0) ( 0), (0 )

( ) 0

T r h

T r T r r
z z

T r h

⎫, =
⎪

∂ ∂ ⎪, = , ≤ < ∞⎬
∂ ∂ ⎪

⎪,− = ⎭

 (16)  

It is easy to find from Eqs.(12) and (13) that  

 ( ){ }(1)
10 20 10 2 20 1

1 2

1
( )T z T T z T h T h

h h
= − + +

+
 (17)  

By applying the Hankel transform to Eq.(14) (Sneddon & Lowengrub, 1969), we have  

 
2

(2)
00

1

( ) ( ) ( )exp( ) ( 1 2)ij iji
j

T r z D s J sr s z ds iτ
∞

=
, = = ,∑∫  (18)  

where ( ) ( 1 2)ijD s i j, = ,  are unknown functions to be solved and ( 1 2)ij i jτ , = ,  are given by  

 11 22

12 21

,τ τ κ
τ τ κ

= = − ⎫
⎬= = ⎭

 (19)  

Taking the second boundary condition (15) into consideration, the problem may be reduced 
to a singular integral equation by defining the following new unknown function 0( )G r  
(Erdogan & Wu, 1996):  

 { }(2) (2)
1 2

0

( 0) ( 0) (0 )
( )

0 ( )

T r T r r c
G r r

c r

∂⎧ ⎫, − , ≤ <⎪ ⎪= ∂⎨ ⎬
⎪ ⎪≤ < ∞⎩ ⎭

 (20)  

Making use of the first boundary condition (15) with Eqs.(16), we have the following 
singular integral equation for the determination of the unknown function 0( )G t : 

 { }(1) (2) 10 20
00 00

1 2

2
( ) ( ) ( ) (0 )

c T T
t M t r M t r G t dt r c

h hκ
−

, + , = − ≤ <
+∫  (21)  

In Eq.(21), the kernel functions (1)
0 ( )M t r,  and (2)

0 ( )M t r,  are given by  

 
2 2

(1)
0

2 2

2 1
( ),

( )
2 1

( )
( )

r
E r t

tt r
M t r

r t t
E K r t

r rt rt t r

π

π

⎧ ⎫⎛ ⎞ <⎜ ⎟⎪ ⎪− ⎝ ⎠⎪ ⎪, = ⎨ ⎬⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪+ >⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪− ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎩ ⎭

 (22)  

 (2) 1 2
0 10 0

0

2 ( ) ( )
( ) 1 ( ) ( )

( )

s s
M t r s J sr J st ds

s

ρ ρ
κρ

∞ ⎧ ⎫⎪ ⎪, = − +⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (23)  

where K  and E  are complete elliptic integrals of the first and second kind, and 
( ) ( 0 1 2)k s kρ = , ,  are given by  
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{ } { }0 2 1 1 2

1 2

( ) ( ) 1 exp( 2 ) ( ) 1 exp( 2 ) ,

( ) exp( 2 ) ( 1 2)i i i i

s s s h s s h

s s h i

ρ ρ κ ρ κ

ρ τ τ κ

⎫= − − − − −
⎪
⎬
⎪= − − = , ⎭

 (24)  

Once 0( )G t  is obtained from Eq.(21), the temperature field can be easily calculated as 
follows: 

 
2

(2) (2)

1

( ) ( ) ( 1 2)i ij
j

T r z T r z i
=

, = , = ,∑  (25)  

where  

 (2)
0 00

( ) ( ) ( ) ( )exp( ) ( 1 2)ij ijijT r z R s R s J sr s z ds i jτ
∞

, = , = ,∫  (26)  

with  

 

0 0 10

2 2
11 12 1

0 0

1 1
21 22 2

0 0

( ) ( ) ( ) ,

( ) ( )
( ) , ( ) exp( 2 ),

( ) ( )

( ) ( )
( ) , ( ) exp( 2 )

( ) ( )

c
R s tG t J st dt

s s
R s R s s h

s s

s s
R s R s s h

s s

ρ ρ κ
ρ ρ
ρ ρ κ
ρ ρ

⎫
⎪=
⎪
⎪⎪= − = − ⎬
⎪
⎪

= − = − ⎪
⎪⎭

∫
 (27)  

On the plane 0z = , the temperatures (2)( 0) ( 1 2)iT r i, = ,  are reduced to  

 
2

(2)
0 0 00

1

( 1) ( 1)
( 0) ( ) ( ) ( ) ( ) ( 1 2)

2 2

i i
c

iji r
j

T r G t dt R s R s J sr ds i
∞

=

⎧ ⎫− −⎪ ⎪, = + − = ,⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫ ∫  (28)  

4. Thermally induced elastic and electric fields 

The non-disturbed temperature filed (1)( )T z  given by Eq.(17) does not induce the stress and 
electric displacement components, which affect the singular field. Thus, we consider the 
elastic and electric fields due to the disturbed temperature distribution (2)( ) ( 1 2)iT r z i, = ,  
only. It is convenient to represent the solutions ( )ziu r z, , ( )riu r z,  and ( ) ( 1 2)i r z iφ , = ,  as the 
sum of two functions, respectively.  

 

(1) (2)

(1) (2)

(1) (2)

( ) ( ) ( ),

( 1 2)( ) ( ) ( ),

( ) ( ) ( )

zi zi zi

ri ri ri

i i i

u r z u r z u r z

iu r z u r z u r z

r z r z r zφ φ φ

⎫, = , + ,
⎪
⎪
⎪ = ,, = , + , ⎬
⎪
⎪
⎪, = , + , ⎭

 (29)  

where (1)( )ziu r z, , (1)( )riu r z, , (1)( ) ( 1 2)i r z iφ , = ,  are the particular solutions of Eqs.(4) replaced 

iT  by (2)
iT , and (2)( )ziu r z, , (2)( )riu r z, , (2)( ) ( 1 2)i r z iφ , = ,  are the general solutions of 
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homogeneous equations obtained by setting 0 ( 1 2)iT i= = ,  in Eqs.(4). In the following, the 
superscripts (1)  and (2)  indicate the particular and general solutions of Eqs.(4). 
Substituting Eqs.(29) into Eqs.(1) and (2), one obtains stress ( )rri r zσ , , ( )i r zθθσ , , ( )zzi r zσ , , 

( )zri r zσ ,  and electric displacement ( )riD r z, , ( ) ( 1 2)ziD r z i, = ,  expressions.  

Using the displacement potential function method (Ueda, 2006a), the particular solutions 
can be obtained as follows:  

 

2
(1) (1)

0 010
1

2
(1) (1)

0 120
1

2
(1) (1)

0 030
1

2
(1) (

40
1
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τ

∞
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∞

=

∞

=

∞

=

, =

, =

, =

, =

∑ ∫

∑ ∫

∑ ∫

∑ ∫ 1)
0 0

2
(1) (1)

0 150
1

2
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0 060
1

( 1 2)

( ) ( ) ( )exp( ) ,

1
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1
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ij ij

ij ijri ij
j

ij iji ij
j

i

R s R s J sr s z ds

u r z p R s R s J sr s z ds
s

r z p R s R s J sr s z ds
s

τ
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∞

=

∞

=

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ = ,⎬
⎪
⎪
⎪
⎪

, = ⎪
⎪
⎪
⎪, = − ⎪
⎭

∑ ∫

∑ ∫

 (30)  

where the constants (1) ( 1 2 1 2 6)kijp i j k, = , , = , ,...,  are given in Appendix A. The general 
solutions are obtained by using the Hankel transform technique (Sneddon & Lowengrub, 
1969):  
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∞
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1

6
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1
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ij

ij ijri ij
j

ij iji ij
j

i

s z ds

u r z p A s J sr s z ds

r z p A s J sr s z ds

γ

γ
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∞

=

∞

=

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ = ,⎬
⎪
⎪
⎪
⎪

, = ⎪
⎪
⎪
⎪, = − ⎪
⎭

∑ ∫

∑ ∫

 (31)  

where ( ) ( 1 2 1 2 6)ijA s i j= , , = , ,...,  are the unknown functions to be solved, and the constants 

ijγ  and (2) ( 1 2 1 2 6)kijp i j k= , , , = , ,...,  are given in Appendix B.  
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Similar to the temperature analysis, the problem may be reduced to a system of singular 
integral equations by taking the second boundary conditions (7)-(9) into consideration and 
by defining the following new unknown functions ( ) ( 1 2 3)lG r l = , , :  

 { }(2) (2)
1 2

1

( 0) ( 0) (0 )
( )

0 ( )

z zu r u r r c
G r r

c r

∂⎧ ⎫, − , ≤ <⎪ ⎪= ∂⎨ ⎬
⎪ ⎪≤ < ∞⎩ ⎭

 (32)  

 { }(2) (2)
1 2

2

1
( 0) ( 0) (0 )

( )

0 ( )

r rr u r u r r c
G r r r

c r

⎧ ⎫∂ ⎡ ⎤, − , ≤ <⎪ ⎪⎢ ⎥= ∂ ⎣ ⎦⎨ ⎬
⎪ ⎪≤ < ∞⎩ ⎭

 (33)  

 { }(2) (2)
1 2

3

( 0) ( 0) (0 )
( )

0 ( )

r r r c
G r r

c r

φ φ∂⎧ ⎫− , − , ≤ <⎪ ⎪= ∂⎨ ⎬
⎪ ⎪≤ < ∞⎩ ⎭

 (34)  

Making use of the first boundary conditions (7)-(9) with Eqs.(10), we have the following 
system of singular integral equations for the determination of the unknown functions 

( ) ( 1 2 3)lG t l = , , :  

 
{ }
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11 11 1 12 200
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∫  (35)  
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c
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where the kernel functions (1)
1 ( )M t r, , ( )klM t r,  and the constants ( 1 2 3)klZ k l∞ , = , ,  are given by  
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→∞=
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In Eq.(40), the functions 1 ( ) ( 1 2 6 1 2 3)jld s j l= , ,..., , = , ,  are given in Appendix C.  

The functions 0( )zz rσ , 0( )zr rσ  and 0( )zD r , which correspond to the stress and electric 
displacement components induced by the disturbed temperature field (2)( ) ( 1 2)iT r z i, = ,  on 
the r -axis in the plate without crack, are obtained as follows:  
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 (41)  

where the functions 1 ( )T
jd s  ( 1 2 6)j = , ,...,  are also given in Appendix C. These components 

are superficial quantities and have no physical meaning in this analysis. However, they are 
equivalent to the crack face tractions in solving the crack problem by a proper 
superposition. 

To solve the singular integral equations (21) and (35)- (37) by using the Gauss-Jacobi 
integration formula (Sih, 1972), we introduce the following functions ( ) ( 0 1 2 3)l t lΦ = , , , :  

 
1 2
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c t
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 (42)  

Then the stress intensity factors IK , IIK  and the electric displacement intensity factor DK  
may be defined and evaluated as:  
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 (43)  

5. Numerical results and discussion 

For the numerical calculations, the thermo-electro-elastic properties of the plate are assumed 
to be ones of cadmium selenide with the following properties (Ashida & Tauchert, 1998).  

The values of the coefficients of heat conduction for cadmium selenide could not be found in 
the literature. Since the values of them for orthotropic Alumina (Al2O3) are 

21.25[W/mK]rκ =  and 29.82[W/mK]zκ = (Dag, 2006), the value 2 1 1 5r zκ κ κ= / = / .  is 
assumed. To examine the effects of the normalized crack size c h/  and the normalized crack 
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location 1h h/  on the stress and electric displacement intensity factors, the solutions of the 
system of the singular integral equations have been computed numerically.  
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 (44)  

In the first set of calculations, we consider the temperature field and the electro-elastic fields 
without crack. Figure 2 shows the normalized temperature 20 0( ( ) ) ( 1 2)iT x T T i− / = ,  on the 
crack faces (0 0 )r c z ±≤ < , →  and the crack extended line ( 2 0)c r c z≤ ≤ , =  for 1 0 25h h/ = .  
and 0 5c h/ = . , where 0 10 20T T T= − . The maximum local temperature difference across the 
crack occurs at the center of the crack.  

Figure 3 exhibits the normalized stress components 0 0 33 0( ( ) ( ))zz zrr r Tσ σ λ, /  and the electric 
displacement component 0 0( )z zD r p T/  on the r -axis in the strip without crack due to the 
temperature shown in Figure 2. The maximum absolute values of 0( )zz rσ  and 0( )zD r  occur 
at the center of the crack ( 0 0)r c/ = . , whereas the maximum value of 0( )zr rσ  occurs at the 
crack tip ( / 1 0)r c = . .  
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Fig. 2. The temperature on the crack faces and the crack extended line for 0 5c h/ = .  and 

1 0 25h h/ = .  

In the second set of calculations, we study the influence of the crack size on the stress and 
electric displacement intensity factors. Figures 4(a)-(c) show the plots of the normalized 
stress and electric displacement intensity factors 1 2

I II 33 0( ) ( )K K T cλ π /, / , 1 2
D 0( )zK p T cπ //  

versus c h/  for 1 0 25h h/ = . , 0.5 and 0.75. Because of symmetry, the values of IK  and DK   
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Fig. 3. The stress components 0zzσ , 0zrσ and the electric displacement component 0zD on the 
r -axis without crack due to the temperature shown in Fig. 2 
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Fig. 4. (a) The effect of the crack size on the stress intensity factor IK . (b) The effect of the 
crack size on the stress intensity factor IIK . (c) The effect of the crack size on the electric 
displacement intensity factor DK  
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for 1 0 5h h/ = .  are zero, and [ ]
1

I / 0.25h h
K = [ ]

1
I / 0.75h h

K == − , [ ]
1

II / 0.25h h
K = [ ]

1
II / 0.75h h

K ==  

[ ]
1

D / 0.25h h
K = [ ]

1
D / 0.75h h

K == − . The absolute value of 1 2
I 33 0( )K T cλ π //  for 1 0 25h h/ = .  and 

0.75 monotonically increases with increasing c h/ , but the value of 1 2
II 33 0( )K T cλ π //  and the 

absolute value of 1 2
D 0( )zK p T cπ //  increase at first, reach maximum values and then decrease 

with increasing c h/ . The value of IK  for 1 0 75h h/ = .  becomes negative so that the contact 

of the crack faces would occur. The results presented here without considering this effect 
may not be exact but would be more conservative. Since the contact of the crack faces will 
increase the friction between the faces and make thermo-electrical transfer across the crack 
faces easier, the stress and electric displacement intensity factors would be lowered by these 
two factors.  

In the final set of calculations, we investigate the influence of the crack location on the 
intensity factors. Figure 5 indicates the effect of the crack location on IK , IIK  and DK  for 

0 5c h/ = . . As 1h h/  increases, the values of IK  and DK  tend to decrease or increase 
monotonically. The value of 1 2

II 33 0( )K T cλ π //  decreases if the crack approaches the free 
boundaries 1( 0.0 or 1.0)h h/ → , and the peak value of 1 2

II 33 0( )K T cλ π // =0.0277 occurs at 

1 0.5h h/ = .  
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Fig. 5 The effect of the crack location on the stress intensity factors IK , IIK  and the electric 
displacement intensity factor DK  

6. Conclusion 

An example of the application of Hankel transform for solving a mixed-mode thermo-
electro-elastic fracture problem of a piezoelectric material strip with a parallel penny-shaped 
crack is explained. The effects of the crack size ( )c h/  and the crack location 1( )h h/  on the 
fracture behavior are analyzed. The following facts can be found from the numerical results.  

1. The large shear stress occurs in the strip without crack due to the disturbed temperature 
field.  

2. The normalized intensity factors are under the great influence of the geometric 
parameters 1h h/  and c h/ . 
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3. For the case of 1 0.5h h/ > , mode I stress intensity factor becomes negative so that the 
contact of the crack faces would occur.  

4. The intensity factors of crack near the free surfaces due to the thermal load are not so 
large.  

Appendix A 

The constants (1) ( 1 2 1 2 6)kijp i j k, = , , = , ,...,  are  
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Appendix B 

The constants ( 1 2 1 2 6)ij i jγ = , , = , ,...,  are the roots of the following characteristic equations: 
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The functions (2)( ) ( 1 2 1 2 6)kijp s i j k= , , , = , ,...,  are  

 

( )
( )

( )

(2)
13 33 331

(2)
44 152

(2)
31 310 3303

(2)
4

(2)
5

(2)
6

,

1 ,

,
( 1 2 1 2 6)

1,

,

ij ij ijij

ij ij ijij

ij ij ijij

ij

ijij

ijij

p c a c e b

p c a e b

p e a e b
i j

p

p a

p b

γ

γ

γ ε

⎫= + −
⎪
⎪= − + ⎪
⎪= + + ⎪ = , , = , ,...,⎬
⎪=
⎪
⎪=
⎪
⎪= ⎭

 (B.4)  

where ija  and ( 1 2 1 2 6)ijb i j= , , = , ,...,  are given by 

 

2
2 0

4 2
4 2 0

2
44 11 13 44

15 31

,

( 1,2, 1 2 6)
( )

ij
ij

ij ij

ij ij
ij

g g
a

g g g
i j

c c a c c
b

e e

γ

γ γ

γ

⎫′ ′+
⎪=

+ + ⎪
= = , ,...,⎬

− − − ⎪
= − ⎪

+ ⎭

 (B.5)  

www.intechopen.com



Application of Hankel Transform for Solving a Fracture  
Problem of a Cracked Piezoelectric Strip Under Thermal Loading 

 

221 

Appendix C 

The functions ( ) ( 1 2 1 2 6 1 2 3)ijkd s i j k= , , = , ,..., , = , ,  are given by  
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where the functions ( ) ( 1 2 12)j kq s j k, , = , ,...,  are the elements of a square matrix 1Q −= Δ  of 
order 12. The elements ( ) ( 1 2 12)j k s j kδ , , = , ,...,  of the square matrix Δ  are given by  
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