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1. Introduction

Experimental methods based on magnetic resonance are among the most used techniques
for investigating molecular and electronic structure. Nuclear magnetic resonance (NMR) is
mostly applied to closed-shell molecules and can be used for structural research of matter in
solid, liquid and gaseous form. The computation of NMR parameters, which are of a great
interest not only in chemistry but also in biology and solid-state physics, presents severe
analytical and numerical difficulties [Dickson & Ziegler (1996); Ditchfield (1974); Fukui et al.
(2004); Helgaker et al. (1999); Ishida (2003); London (1937); Pople et al. (1968); Pyykkö (1988);
Schreckenbach & Ziegler (1995); Vaara (2007); Watson et al. (2004)]. The computation of NMR
parameters for any of the standard models of quantum chemistry constitute an important
challenge [Helgaker et al. (1999)]. Calculations involving a magnetic field should preserve
gauge invariance. This is conveniently accomplished by using a gauge including atomic
orbitals (GIAO) [London (1937)], which is based on atom-centered basis functions with an
explicit field dependence. Magnetic properties are sensitive to the quality of the basis sets
due to many contributing physical phenomena arising from both the vicinity of the nucleus
and from the valence region. A good atomic orbital basis should decay exponentially for
large distances [Agmon (1985)] and should also satisfy Kato’s conditions for exact solutions
of the appropriate Schrödinger equation [Kato (1957)]. Exponential type functions (ETFs)
are better suited than Gaussian functions (GTFs) [Boys (1950a;b)] to represent electron wave
functions near the nucleus and at long range. Among the ETFs, Slater type functions
(STFs) [Slater (1932)], have a dominating position due to their simple analytic expression,
but their multi-center integrals are extremely difficult to evaluate for polyatomic molecules,
particularly bi-electronic terms. We note that many researchers hope that the next generation
of ab initio programs will be based on the usage of ETFs. Indeed much effort is being made
to develop efficient molecular algorithms for integrals over conventional ETFs (STFs or B
functions) [Barnett (1990); Fernández et al. (2001); Kutzelnigg (1988); Niehaus et al. (2008);
Ozdogan & (Editors); Rico et al. (1998; 1999; 2001); Steinborn et al. (2000); Weatherford &
Jones (1982)].

Various studies focussed on the use of B functions. The use of B functions was proposed by
Shavitt [Shavitt (1963)], since reduced Bessel functions possess a representation in terms of a
remarkably simple Gauss transform. Detailed discussions of the mathematical properties of
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2 Will-be-set-by-IN-TECH

reduced Bessel functions and of their anisotropic generalizations can be found in [Weniger
(1982)]. Furthermore, B functions have much more appealing properties applicable to
multi-center integral problems, compared to other exponentially decaying functions [Filter &
Steinborn (1978a;b); Steinborn & Filter (1975); Weniger (2005); Weniger & Steinborn (1983a)].
The multi-center molecular integrals over B functions can be computed much more easily than
the corresponding integrals of other exponentially decaying functions. This can be explained
in terms of the Fourier transform of B functions, which is of exceptional simplicity among
exponentially decaying functions [Niukkanen (1984); Weniger (1982); Weniger & Steinborn
(1983b)]. Moreover, the Fourier transforms of STFs, of hydrogen eigenfunctions, or of other
functions based on the generalized Laguerre polynomials can all be expressed as finite linear
combinations of Fourier transforms of B functions [Weniger (1985); Weniger & Steinborn
(1983b)]. The basis set of B functions is well adapted to the Fourier transform method [Geller
(1962); Grotendorst & Steinborn (1988); Prosser & Blanchard (1962); Trivedi & Steinborn
(1983)], which allowed analytic expressions to be developed for molecular multi-center
integrals over B functions [Grotendorst & Steinborn (1988); Trivedi & Steinborn (1983)].

Of the NMR parameters, the nuclear shielding tensor is of a great importance. The
computation of the shielding tensor presents severe analytical and numerical difficulties
especially when using ETFs as a basis set of atomic orbitals. The main difficulty arises
from the operators associated with these parameters. An example of such operators

is 3 rjN,β

(

�rjN ·�σ(j)
)

/r5
jN , where β represents a cartesian coordinates, �rjN is the vector

separating the jth electron and the Nth nuclei and σ stands for Pauli spin matrix. These
operators lead to extremely complicated integrals. Analytic treatment of the NMR parameters
over GTFs was a subject of many articles (see for example [Ishida (2003)] and references
therein). Although, the interest of using ETFs in the computation of NMR parameters is
increasing [see the pioneer work by Dickson & Ziegler (1996); Schreckenbach & Ziegler (1995)]
and Watson et al. (2004)], no effort was dedicated to their analytic treatment over ETFs.
Straightforward numerical integration was used for the computation of integrals associated
with these parameters.

The analytical development of NMR integrals can be obtained using the Fourier transform
method combined with B functions as a basis set of atomic orbitals [Berlu & Safouhi (2008);
Safouhi (2010b); Slevinsky et al. (2010)]. The obtained analytic expressions turned out to be
similar to those obtained for the so-called three-center nuclear attraction integrals (zeroth
order integrals). The latter were the subject of significant research [Berlu & Safouhi (2003);
Duret & Safouhi (2007); Fernández et al. (2001); Grotendorst & Steinborn (1988); Homeier
& Steinborn (1993); Niehaus et al. (2008); Rico et al. (1998; 1999); Safouhi (2001b; 2004);
Slevinsky & Safouhi (2009)]. In our research, we used techniques based on extrapolation
methods combined with numerical quadratures to compute the analytic expressions of the
NMR integrals. Numerical tables are listed and we refer the interested reader to [Safouhi
(2010b); Slevinsky et al. (2010)] for an extensive list of numerical tables as well as detailed
numerical discussions.

2. Molecular integrals in the absence of magnetic fields

In the absence of magnetic fields, the molecular electronic Hamiltonian operator He

corresponding to total energy Ee for a molecule of N nuclei and ne electron is given by:
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He = −1

2

ne

∑
j=1

∇2
j −

ne

∑
j=1

N

∑
K=1

ZK

rjK
+

ne

∑
i=1

∑
j>i

1

rij
, (1)

where:

• ZK is the atomic number of the Kth nucleus whose mass is MK .

• rjK is the distance that separates the Kth nucleus from the jth electron.

• rij is the distance that separates the ith electron from the jth electron.

• ∇2
j is the Laplacian operators for the coordinates of electron j.

The stationary Schrödinger equation that needs to be solved is:

He Ψ(r,R) = Ee Ψ(r,R).

The above Schrödinger equation is solved only in the case of hydrogen-like atom. The
solutions are one-electron functions and are referred to as hydrogen-like atomic orbitals.
These atomic orbitals form a complete and orthonormal basis. The use of hydrogen-like
atomic orbitals was prevented due to the fact that their molecular multi-center integrals
are extremely difficult to evaluate analytically and numerically. Linear combinations of the
hydrogen-like atomic orbitals lead to STFs, which form the most popular basis set of atomic
orbitals. Unormalized STFs are given by [Slater (1932)]:

χm
n,l(ζ,�r) = rn−1 e−ζ r Ym

l (θ�r, ϕ�r), (2)

where Ym
l (θ, ϕ) is the surface spherical harmonic [Condon & Shortley (1951)] and where n

is the principal quantum number, l is the orbital angular momentum number and m is the
magnetic quantum number.

The B functions are given by [Filter & Steinborn (1978a); Steinborn & Filter (1975)]:

Bm
n,l(ζ,�r) =

(ζr)l

2n+l(n + l)!
k̂n− 1

2
(ζr)Ym

l (θ�r, ϕ�r), (3)

where k̂n− 1
2
(ζ r) stands for the reduced spherical Bessel function of the second kind [Shavitt

(1963); Steinborn & Filter (1975)]:

k̂n+ 1
2
(z) = zn e−z

n

∑
j=0

(n + j)!

j! (n − j)!

1

(2 z)j
. (4)

STFs can be expressed as finite linear combinations of B functions [Filter & Steinborn (1978a)]:

χm
n,l(ζ,�r) =

1

ζn−1

n−l

∑
p= p̃

(−1)n−l−p 22p+2l−n (l + p)!

(2p − n + l)! (n − l − p)!
Bm

p,l(ζ,�r), (5)

where p̃ =
n − l

2
if n − l is even or p̃ =

n − l + 1

2
if n − l is odd.
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2.1 Fourier transform in molecular multi-center integrals calculation

The Fourier transform of B functions, which is of exceptional simplicity among exponentially
decaying functions, is given by [Niukkanen (1984); Weniger (1982); Weniger & Steinborn
(1983b)]:

B̄m
n,l(ζ,�p) =

√

2

π
ζ2n+l−1 (−i |p|)l

(ζ2 + |p|2)n+l+1
Ym

l (θ�p, ϕ�p). (6)

In [Trivedi & Steinborn (1983)], the Fourier transform method is used in combination with
equation (6) to derive analytic expressions for the following integrals:

T =
∫

�r

[

Bm1

n1,l1
(ζ1,�r)

]∗
e−i�k ·�r Bm2

n2,l2
(ζ2,�r − �R2)d�r. (7)

The main idea of the Fourier integral transformation is given by:

∫

[ f (�r)]∗ e−i�x.�r g(�r − �R)d�r = (2π)−3/2
∫

[

∫

[

f̄ (�q)
]∗

e−i�q.�r e−i�x.�r g(�r − �R)d�q

]

d�r

= e−i�x.�R
∫

[

f̄ (�q)
]∗

e−i�q.�R (2π)−3/2

[

∫

e−i(�q+�x).(�r−�R) g(�r − �R)d�r

]

d�q

= e−i�x.�R
∫

f̄ ∗(�q) e−i�q.�R ḡ(�q +�x)d�q, (8)

where f̄ (�k) stands for the Fourier transform of f (�r). The function f (�r) and its Fourier

transform f̄ (�k) are connected by the symmetric relationships:

f̄ (�k) = (2π)−3/2
∫

�r
e−i�k·�r f (�r)d�r and f (�r) = (2π)−3/2

∫

�k
e i�k·�r f̄ (�k)d�k. (9)

Replacing f by Bm1

n1,l1
(ζ1,�r) and g by Bm2

n2,l2
(ζ2,�r − �R) we obtain:

∫

[

Bm1

n1,l1
(ζ1,�r)

]∗
e−i�x.�r Bm2

n2,l2
(ζ2,�r − �R)d�r = e−i�x.�R

∫

[

B̄m1

n1,l1
(ζ1,�q)

]∗
e−i�q.�R B̄m2

n2,l2
(ζ2,�q+�x)d�q.

(10)
Equations (10) and (6) led to an analytic expression for the integral T in equation (7). This
analytic expression is given by [Trivedi & Steinborn (1983)]:

T =
(4π)3 (2l1 + 1)!! (2l2 + 1)!! (n1 + l1 + n2 + l2 + 1)! ζ2n1+l1−1

1 ζ2n2+l2−1
2

(n1 + l1)! (n2 + l2)! 2n1+n2+l1+l2+1

×
l1

∑
l′1=0

(−i)l1+l′1
l′1

∑
m′

1=−l′1

〈

l1m1

∣

∣l′1m′
1

∣

∣ l1 − l′1m1 − m′
1

〉

(2l′1 + 1)!![2(l1 − l′1) + 1]!!

×
l2

∑
l′2=0

(−i)l2+l′2
l′2

∑
m′

2=−l′2

〈

l2m2

∣

∣l′2m′
2

∣

∣ l2 − l′2m2 − m′
2

〉

(2l′2 + 1)!![2(l2 − l′2) + 1]!!

×
l′1+l′2

∑
l′=l′min,2

(−1)l′1
〈

l′2m′
2

∣

∣l′1m′
1

∣

∣ l′m′
2 − m′

1

〉

Rl′
2 Y

m′
2−m′

1

l′ (θ #—

R 2
, ϕ #—

R 2
)

×
l1−l′1+l2−l′2

∑
l12=l12min ,2

〈

l2 − l′2m2 − m′
2

∣

∣l1 − l′1m1 − m′
1

∣

∣ l12m12

〉

Ym12

l12
(θ�k, ϕ�k)
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×
∆l

∑
j=0

(−2)j (∆l
j )

(n1 + n2 + l1 + l2 − j + 1)!

×
∫ 1

s=0
sn22 (1 − s)n11 kl1−l′1+l2−l′2

k̂ν [R2 γ(s, k)]

[γ(s, k)]nγ
e−i(1−s)�k· #—

R 2 ds, (11)

where:
nγ = 2(n1 + n2 + l1 + l2)− (l′1 + l′2 + l′) + 1

γ(s, k) =
√

(1 − s) ζ2
1 + s ζ2

2 + s (1 − s) k2

ν = n1 + n2 + l1 + l2 − l′ − j + 1
2

m12 = (m2 − m′
2)− (m1 − m′

1)

n11 = n1 + l1 + l2 − l′2
n22 = n2 + l2 + l1 − l′1

∆l =
l′1+l′2−l′

2 ,

(12)

Gaunt coefficients 〈l1m1|l2m2|l3m3〉 are defined by [Gaunt (1929)]:

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0
[Ym1

l1
(θ, ϕ)]∗ Ym2

l2
(θ, ϕ)Ym3

l3
(θ, ϕ) sin (θ) dθ dϕ. (13)

Equation (11) led to analytical expressions for all molecular multi-center integrals over B
functions or STFs [Grotendorst & Steinborn (1988); Safouhi (2001a); Trivedi & Steinborn
(1983)].

3. Relativistic formulation of NMR shielding tensor

In the presence of an external uniform magnetic field �B0, the electronic non-relativistic
Hamiltonian is given by:

H =
n

∑
i=1

⎡

⎣

1

2
�p 2

i + V(i) +
n

∑
i<j

1

rij

⎤

⎦ , (14)

where the electronic impulsion �pj is given by:

�pi =
[

−i �∇i + e �Ai

]

where �Ai =
1

2

(

�B0 ∧�ri0

)

+
µ0

4 π ∑
N

�µN ∧�riN

r3
iN

, (15)

where �Ai stands for the vector potential induced by the nuclear moments �µN and the external

uniform magnetic field �B0. µ0 stands for dielectric permittivity. rij is the modulus of the vector
�rij separating the electrons i and j.�riN is the vector separating the electron i and the nuclei N.

The relativistic effects are important for the fourth and fifth rows in the periodic table and
for transitions metals [Pyykkö (1988)]. In terms of perturbations with respect to µN,α and
B0,β where α and β stand for cartesian coordinates (α, β ∈ (x, y, z)), the electronic relativistic
Hamiltonian is given by:

H = H(0) +H(r) + µN,αH(0,1)
α + B0,βH(1,0)

β + µN,αB0,βH(1,1)
αβ + · · · , (16)
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where H(0) is the zeroth-order hamiltonian (1) and H(r) is the relativistic perturbation term,
which is independent of the magnetic perturbations and is given by [Fukui & Baba (1998)]:

H(r) =
n

∑
j<k

[

H(r)
1,j +H(r)

2,j +H(r)
3,j +H(r)

4,j +H(r)
5,j

]

, (17)

which include the contributions; H(r)
1,j : two-electron Darwin term, H(r)

2,j : two-electron

spin-orbit term, H(r)
3,j : the retarded orbit-orbit term, H(r)

4,j : spin-other-orbit term and

H(r)
5,j : spin-spin term.

The perturbations H(0,1)
α =

(

∂H
∂µN,α

)

{�µN=�0,�B0=�0}
, H(1,0)

β =
(

∂H
∂B0,β

)

{�µN=�0,�B0=�0}
and H(1,1)

αβ =
(

∂2H
∂µN,α∂B0,β

)

{�µN=�0,�B0=�0}
are given by [Fukui & Baba (1998)]:

H(0,1)
α =

µ0

2 π

n

∑
j=1

�ljN,β

r3
jN

+
µ0

4 π

n

∑
j=1

[

8 π

3
δ(�rjN)σβ(j)−

σβ(j)

r3
jN

+ 3 rjN,β

�rjN ·�σ(j)

r5
jN

]

(18)

H(1,0)
β =

1

2

n

∑
j=1

�lj,β +
1

2

n

∑
j=1

σβ(j) (19)

H(1,1)
αβ =

µ0

8π

n

∑
j=1

�rj ·�rjNδαβ − rjN,α rj,β

r3
jN

, (20)

where�ljX = −i
(

�rjX ∧ �∇j

)

,�lj = −i
(

�rj ∧ �∇j

)

and �σj stands for the Pauli spin matrix of the

electron j and its cartesian coordinates are given by:

σj,x =

(

0 1
1 0

)

, σj,y =

(

0 i
i 0

)

and σj,z =

(

1 0
0 −1

)

.

4. Fourier transformation for the analytic development of NMR integrals

The operators involved in equations (18), (19) and (20) lead to very complicated integrals.
The analytic development of the these NMR integrals is difficult due to the presence of the
operator involving 1/rn, which is not the case of the usual three-center molecular integrals
(zeroth order molecular integrals) where the Coulomb operator 1/r is involved.

In this review, we present the method based on Fourier transform that led to analytic
expressions for first and second order integrals of the shielding tensor. Among the operators

involved in integrals of the shielding tensors are
�rj ·�rjNδαβ − rjN,α rj,β

r3
jN

in equation (20) for the

second order terms and 3rjN,β

[

�rjN ·�σj

r5
jN

]

in equation (18) in the case of first order relativistic

terms.

The integrals induced by the above operators are given by:

I13 =
∫

�rj

[

χm1

n1,l1
(ζ1,�rjA)

]∗
3 rjN,β

�rjN ·�σj

r5
jN

χm2

n2,l2
(ζ2,�rjB)d�rj, (21)
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I23 =
∫

�rj

[

χm1

n1,l1
(ζ1,�rjA)

]∗ �rj ·�rjNδαβ − rjN,α rj,β

r3
jN

χm2

n2,l2
(ζ2,�rjB)d�rj, (22)

where�rjA =�rj −
#    —

OA,�rjB =�rj −
#   —

OB and�rjN =�rj −
#    —

ON. A, B and N are three arbitrary points
of the Euclidean space and 0 is the origin of the fixed coordinate system.

4.1 First order integrals

After expanding the operator in the integrals (21), we can write I13 as follows:

I13 = −∑
α

σj,α

∫

�rj

[

χm1

n1,l1
(ζ1,�rjA)

]∗
rjN,β

∂

∂rjN,α

(

1

r3
jN

)

χm2

n2,l2
(ζ2,�rjB)d�rj. (23)

Let I (α,β)
13 represent the integrals in summation of the RHS of the above equation. Using

equation (5), the integrals I (α,β)
13 are expressed as linear combinations of integrals BI (α,β)

13 over
B functions which are given by:

BI (α,β)
13 =

∫

�rj

[

Bm1

n1,l1
(ζ1,�rjA)

]∗
rjN,β

∂

∂rjN,α

(

1

r3
jN

)

Bm2

n2,l2
(ζ2,�rjB)d�rj. (24)

Using the Fourier transform method, we obtain:

BI (α,β)
13 = (2 π)−3/2

∫

�k
rjN,β

∂

∂rjN,α

(

1

r3
jN

)

[

∫

�rj

[

Bm1

n1,l1
(ζ1,�rjA)

]∗
e−i�k ·�rjN Bm2

n2,l2
(ζ2,�rjB)d�rj

]

d�k.

(25)
In the case where α and β represent two different cartesian coordinates, the Fourier transform
of the operator is given by [Safouhi (2010b)]:

rβ
∂

∂rα

(

1

r3

)

=

√

2

π

kα kβ

k2
. (26)

In the case where α and β represent the same cartesian coordinate, the calculations leads to
the potential 1/r3, which poses serious difficulties because of the singularity and its Fourier
transform does not exist in a sense of classical analysis. This case is a part of ongoing research
where the theory of generalized functions will be used in order to derive the Fourier transform
of the operator in the generalized function sense.

Using the analytic expression (11) obtained by Trivedi and Steinborn [Trivedi & Steinborn
(1983)] for the integrals over�rj involved in equation (25) and with the help of equation (26),

one can derive the following analytic expression for the integrals BI (α,β)
13 [Safouhi (2010b)]:

BI (α,β)
13 =

43 π (2l1 + 1)!! (2l2 + 1)!! (n1 + l1 + n2 + l2 + 1)! ζ2n1+l1−1
1 ζ2n2+l2−1

2

(n1 + l1)! (n2 + l2)! 2n1+n2+l1+l2+2

×
l1

∑
l′1=0

(−i)l1+l′1
l′1

∑
m′

1=−l′1

〈

l1m1

∣

∣l′1m′
1

∣

∣ l1 − l′1m1 − m′
1

〉

(2l′1 + 1)!![2(l1 − l′1) + 1]!!
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×
l2

∑
l′2=0

(−i)l2+l′2
l′2

∑
m′

2=−l′2

〈

l2m2

∣

∣l′2m′
2

∣

∣ l2 − l′2m2 − m′
2

〉

(2l′2 + 1)!![2(l2 − l′2) + 1]!!

×
l′1+l′2

∑
l′=l′min,2

(−1)l′1
〈

l′2m′
2

∣

∣l′1m′
1

∣

∣ l′m′
2 − m′

1

〉

Rl′
2 Y

m′
2−m′

1

l′ (θ�R2
, ϕ�R2

)

×
l1−l′1+l2−l′2

∑
l12=l12min ,2

〈

l2 − l′2m2 − m′
2

∣

∣l1 − l′1m1 − m′
1

∣

∣ l12m12

〉

×
1

∑
m3=−1

1

∑
m4=−1

(−1)m4 cα,m3 cβ,m4

2

∑
l′′=l′′min,2

〈

1 m4|1 m3|l′′ m4 − m3

〉

×
l′′+l12

∑
λ=λmin,2

(−i)λ
< l12m12|l′′m3 − m4|λ µ >

×
∆l

∑
j=0

(−2)j (∆l
j )

(n1 + n2 + l1 + l2 − j + 1)!

×
∫ 1

s=0
sn22 (1 − s)n11 Y

µ
λ (θ�v, ϕ�v)

×
[

∫ +∞

x=0
xnx

k̂ν [R2 γ(s, x)]

[γ(s, x)]nγ
jλ(v x)dx

]

ds, (27)

where:
�R1 =

#    —

AN, �R2 =
#   —

AB and �v = (1 − s) �R2 − �R1

γ(s, x) =
√

(1 − s) ζ2
1 + s ζ2

2 + s (1 − s) x2

nγ = 2(n1 + n2 + l1 + l2)− (l′1 + l′2 + l′) + 1

n11 = n1 + l1 + l2 − l′2, n22 = n2 + l2 + l1 − l′1
ν = n1 + n2 + l1 + l2 − l′ − j + 1

2

m12 = (m2 − m′
2)− (m1 − m′

1)

nk = l1 − l′1 + l2 − l′2 + 2

µ = m12 − m3 + m4

∆l =
l′1+l′2−l′

2 .

(28)

In the case of one- and two-center integrals BI (α,β)
11 and BI (α,β)

12 , corresponding to A = B = N
and A = B 	= N respectively, we derived analytical expressions in [Slevinsky et al. (2010)].

For the one-center integrals (A = B = N):

BI (α,β)
11 = − ζ l1

1 ζ l2
2 ζ2−l1−l2

s√
π 22 n1+l1+2 n2+l2+3 (n1 + l1)! (n2 + l2)!

×
1

∑
m3=−1

1

∑
m4=−1

(−1)m3 cα,m3 cβ,m4
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×
2

∑
l=lmin,2

2−l 〈1 m4|1 m3|l m4 − m3〉 〈l1m1|l2m2|lm1 − m2〉 δm1−m2,m4−m3

×
n1+n2

∑
τ=2

τ2

∑
ς=τ1

2τ ζ
ς−1
1 ζ

τ−ς−1
2

ζτ
s

(2n1 − ς − 1)! (2n2 − τ + ς − 1)! (τ + l1 + l2)l+1

(ς − 1)! (n1 − ς)! (τ − ς − 1)! (n2 − τ + ς)! Γ(l + 3
2 )

×
η′

∑
r=0

(
η
2 )r (

η+1
2 )r (−r − l+1

2 )l1+l2+τ−1

(l + 3
2 )r r!

, (29)

where:
τ1 = max(1, τ − n2)

τ2 = min(n1, τ − 1)

ζs = ζ1 + ζ2

η = l − τ − l1 − l2 + 1

η′ = − η
2 if η is even otherwise η′ = − η+1

2 .

(30)

For the two-center integrals (A = B 	= N):

BI (α,β)
12 =

√
π ζ l1

1 ζ l2
2 ζ l1+l2−1

s R2l1+2l2−3

4n1+l1+n2+l2 (n1 + l1)! (n2 + l2)!

l1+l2

∑
l=lmin ,2

2−l 〈l1m1|l2m2|lm1 − m2〉

×
1

∑
m3=−1

1

∑
m4=−1

(−1)m3 cα,m3 cβ,m4

2

∑
l′=l′min,2

〈

1 m4|1 m3|l′ m4 − m3

〉

×
l+l′

∑
λ=λmin,2

(R ζs)
−λ

〈

l′m4 − m3|lm1 − m2|λm4 − m3 − m1 + m2

〉

Ym4−m3−m1+m2

λ (θ�R, ϕ�R
)

×
n1+n2

∑
τ=2

τ2

∑
ς=τ1

R2τ (2n1 − ς − 1)! (2n2 − τ + ς − 1)! ζ
ς−1
1 ζ

τ−ς−1
2 ζτ

s (τ + l1 + l2)l+1

(ς − 1)! (n1 − ς)! (τ − ς − 1)! (n2 − τ + ς)! Γ(l + 3
2 )

×
η′

∑
r=0

(
η
2 )r (

η+1
2 )r

(l + 3
2 )r r!

r+ l−λ
2

∑
s=0

(

r + l−λ
2

s

)

2s (1 − l1 − l2 − τ)s

(R ζs)2s
k̂λ−l1−l2−τ+s+ 3

2
(R ζs). (31)

4.2 Second order integrals

The second order integrals I23 are given by (22). For simplicity and without loss of generality,
we assume A = O in equation (25).

The operator involved in (22) is given by:

�rj ·�rjNδαβ − rjN,α rj,β

r3
jN

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−rjN,α rj,β

r3
jN

when α 	= β

rjN,u rj,u

r3
jN

+
rjN,v rj,v

r3
jN

when α = β and u, v 	= α ∈ {x, y, z}.
(32)

From the above equation, it is obvious that the integrals I23 can be expressed in terms of
integrals of the form:

Iαβ
23 =

∫

�rj

[

χm1

n1,l1
(ζ1,�rj)

]∗ rjN,α rj,β

r3
jN

χm2

n2,l2
(ζ2,�rjB)d�rj. (33)
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The cartesian coordinate rjN,α and rj,β can be expressed in terms of spherical harmonics and
rjN and rj respectively as follows:

rjN,α = rjN

1

∑
µ1=−1

cα,µ1 Y
µ1

1 (θ�rjN
, φ�rjN

) and rj,β = rj

1

∑
µ2=−1

cβ,µ2
Y

µ2

1 (θ�rj
, φ�rj

), (34)

where the coefficients cα,µ are given as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cx,−1 =
√

2π
3 , cy,−1 = i

√

2π
3 and cz,−1 = 0

cx,0 = 0, cy,0 = 0 and cz,0 =
√

4π
3

cx,1 = −
√

2π
3 , cy,1 = i

√

2π
3 and cz,1 = 0.

(35)

Using the analytic expression of the Unormalized STFs (2), one can obtain:

rj,β

[

χm1

n1,l1
(ζ1,�rj)

]∗
=

[

rj

1

∑
µ2=−1

cβ,µ2
Y

µ2

1 (θ�rj
, φ�rj

)

]

rn1−1
j e−ζ1 rj

[

Ym1

l1
(θ�rj

, ϕ�rj
)
]∗

=
1

∑
µ2=−1

cβ,µ2
rn1

j e−ζ1 rj

[

Ym1

l1
(θ�rj

, ϕ�rj
)
]∗

Y
µ2

1 (θ�rj
, φ�rj

). (36)

The product of two spherical harmonics can be linearized by Gaunt coefficients as follows:

[

Ym1

l1
(θ, ϕ)

]∗
Ym2

l2
(θ, ϕ) =

l1+l2

∑
l=lmin,2

〈l2 m2|l1 m1|l m2 − m1〉Ym2−m1

l (θ, ϕ), (37)

where the summation index l runs in steps of 2 from lmin to l1 + l2. The constant lmin is given
by [Weniger & Steinborn (1982)]:

lmin =

⎧

⎨

⎩

max(|l1 − l2|, |m2 − m1|) if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is even

max(|l1 − l2|, |m2 − m1|) + 1 if l1 + l2 + max(|l1 − l2|, |m2 − m1|) is odd.
(38)

From equation (37), it follows that:

rj,β

[

χm1

n1,l1
(ζ1,�rj)

]∗
=

1

∑
µ2=−1

cβ,µ2
rn

j e−ζ rj

l1+1

∑
l=lmin,2

〈1 µ2|l1 m1|l µ2 − m1〉Y
µ2−m1

l (θ�rj
, ϕ�rj

)

=
1

∑
µ2=−1

l1+1

∑
l=lmin,2

cβ,µ2
〈1 µ2|l1 m1|l µ2 − m1〉 (−1)µ2−m1

[

χ
m1−µ2

n1+1,l (ζ1,�rj)
]∗

. (39)

Using equations (34) and (39), we obtain the following relation:

Iαβ
23 =

1

∑
µ2=−1

l1+1

∑
l=lmin,2

1

∑
µ1=−1

(−1)µ2−m1 cβ,µ2
cα,µ1 〈1 µ2|l1 m1|l µ2 − m1〉

×
∫

�rj

[

χ
m1−µ2

n1+1,l (ζ1,�rj)
]∗ Y

µ1

1 (θ�rjN
, φ�rjN

)

r2
jN

χm2

n2,l2
(ζ2,�rjB)d�rj. (40)
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Let Ĩαβ
23 represent the integrals involved in the above equation. Using equation (5), these

integrals can be expressed as linear combinations of integrals BÎαβ
23 over B functions of the

form:

BÎαβ
23 =

∫

�rj

[

Bm̃1

ñ1,l(ζ1,�rj)
]∗ Y

µ1

1 (θ�rjN
, φ�rjN

)

r2
jN

Bm2

n2,l2
(ζ2,�rjB)d�rj, (41)

where m̃1 = m1 − µ2 and ñ1 = n1 + 1.

Using the Fourier transform method, we obtain:

BÎαβ
23 = (2 π)−3/2

∫

�k

Y
µ1

1 (θ�rjN
, φ�rjN

)

r2
jN

[

∫

�rj

[

Bm̃1

ñ1,l(ζ1,�rj)
]∗

e−i�k ·�rjN Bm2

n2,l2
(ζ2,�rjB)d�rj

]

d�k. (42)

The Fourier transform of the operator involved in the above integrals is given by [Berlu &
Safouhi (2008)]:

(

Y
µ
1 (θ�rjN

, φ�rjN
)

r2
jN

)

(�k) = −i

√

2

π

Y
µ
1 (θ�k, φ�k)

k
. (43)

Using the analytic expression (11) obtained by Trivedi and Steinborn [Trivedi & Steinborn
(1983)] for the integrals over�rj involved in equation (42) and equation (43), one can derive the

following analytic expression for the integrals BÎαβ
23 [Berlu & Safouhi (2008)]:

BÎαβ
23 = 8 (4π)2 (2l1 + 1)!! (2l2 + 1)!!

(ñ1 + n2 + l1 + l2 + 1)!

(ñ1 + l1)! (n2 + l2)!

ζ2ñ1+l1−1
1 ζ2n2+l2−1

2

2ñ1+n2+l1+l2+1

×
l1

∑
l′1=0

l′1

∑
m′

1=−l′1

(−i)l1+l′1

〈

l1, m̃1

∣

∣l′1, m′
1

∣

∣ l1 − l′1, m̃1 − m′
1

〉

(2l′1 + 1)!![2(l1 − l′1) + 1]!!

×
l2

∑
l′2=0

l′2

∑
m′

2=−l′2

(−i)l2+l′2

〈

l2, m2

∣

∣l′2, m′
2

∣

∣ l2 − l′2, m2 − m′
2

〉

(2l′2 + 1)!![2(l2 − l′2) + 1]!!

×
l′1+l′2

∑
l′=l′min,2

(−1)l′1
〈

l′2, m′
2

∣

∣l′1, m′
1

∣

∣ l′m′
2, −m′

1

〉

Rl′
2 Y

m′
2−m′

1

l′
(

θ # —

OB, ϕ # —

OB

)

×
l1−l′1+l2−l′2

∑
l12=l12 min,2

〈

l2 − l′2, m2 − m′
2

∣

∣l1 − l′1, m̃1 − m′
1

∣

∣ l12, m12

〉

×
1+l12

∑
λ=λmin,2

(−i)λ+1 〈λ, µ |l12, m12| 1, µ1〉

×
∆l

∑
j=0

(

∆l

j

)

(−2)j

(ñ1 + n2 + l1 + l2 − j + 1)!

×
∫ 1

s=0
sn2+l2+l1−l′1 (1 − s)ñ1+l1+l2−l′2 Y

µ
λ (θ−→v , ϕ−→v )

×
[

∫ +∞

x=0
xnx

k̂ν[γ(s, x) R2]

γ(s, x)nγ
jλ(vx)dx

]

ds, (44)
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where:

m12 = (m2 − m′
2)− (m̃1 − m′

1) and µ = µ1 + m12

nγ = 2(ñ1 + n2 + l1 + l2)− (l′1 + l′2 + l′) + 1

γ(s, x) =
√

sζ2
2 + (1 − s)ζ2

1 + s(1 − s)x2

−→v = (1 − s)
#   —

OB − #    —

ON and and v = |�v| (45)

ν = ñ1 + n2 + l1 + l2 − l′ − j +
1

2

nx = l1 − l′1 + l2 − l′2 + 1

∆l = (l′1 + l′2 − l′)/2.

n1 l1 m1 ζ1 n2 l2 m2 ζ2 BI (x,y)
2

2 1 -1 2.0 2 1 -1 1.5 .844938515752529(-3)
2 1 0 2.0 2 1 0 1.5 .197895122059999(-3)
3 2 -1 2.0 2 1 -1 1.5 -.183961338177373(-4)
3 2 1 2.0 3 2 1 1.5 .314124180426832(-4)
3 2 2 2.0 3 2 2 1.5 .132485365811557(-3)
4 2 1 2.0 2 1 1 1.5 -.361569492726092(-4)
4 2 1 2.0 3 2 1 1.5 .764186724377223(-4)
4 2 2 2.0 3 2 2 1.5 .331525812542680(-3)
4 2 0 2.0 4 2 0 1.5 -.297315128733290(-4)
4 2 1 2.0 4 2 1 1.5 .215564810358993(-3)
4 2 2 2.0 4 2 2 1.5 .951453780055960(-3)

Table 1. Evaluation of BI (x,y)
1 (29).

n1 l1 m1 ζ1 n2 l2 m2 ζ2 BI (y,z)
2

2 1 1 1.0 2 1 -1 1.5 -.980852389239356(-3)
3 2 1 1.0 2 1 -1 1.5 -.319537014904337(-1)
3 2 1 1.0 2 1 1 1.5 .858668805557491(-2)
3 2 1 1.0 3 2 -1 1.5 -.219369423462985(-1)
3 2 2 1.0 3 2 -2 1.5 .391684472826858(-4)
3 2 2 1.0 3 2 -1 1.5 -.204743121872522(-1)
3 2 2 1.0 3 2 1 1.5 .163009587528461( 2)
4 2 1 1.0 2 1 -1 1.5 -.414819029773496(-1)
4 2 2 1.0 3 2 -2 1.5 .441086792217064(-4)
4 2 2 1.0 3 2 -1 1.5 -.298416140021138(-1)
4 2 2 1.0 3 2 1 1.5 .291083584089616( 2)

Table 2. Evaluation of BI (y,z)
2 (31). �R = (1.5, 75o, 0o) in spherical coordinates.
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n1 l1 m1 ζ1 n2 l2 m2 ζ2 BI (x,z)
3

2 1 -1 2.0 2 1 1 1.0 .769304745002408(-4)
2 1 1 2.0 2 1 1 1.0 -.620498371396534(-4)
3 2 1 2.0 2 1 0 1.0 -.146444907098019(-5)
3 2 1 2.0 2 1 1 1.0 -.576608712417475(-5)
3 2 1 2.0 3 2 1 1.0 .137450124735083(-6)
3 2 1 2.0 3 2 -1 1.0 -.117106174581176(-6)
3 2 2 2.0 3 2 -2 1.0 .287818321676003(-6)
3 2 2 2.0 3 2 1 1.0 .143900856736229(-6)
3 2 2 2.0 3 2 2 1.0 -.121032718682770(-5)
4 2 -1 2.0 3 2 1 1.0 -.359169492307861(-6)
4 2 1 2.0 3 2 1 1.0 .343245699707943(-6)

Table 3. Evaluation of I (x,z)
3 (27). �R1 = (12.0, 90o, 0o) and �R2 = (2.0, 90o, 0o) in spherical

coordinates.

5. Conclusion

In the present review, we showed how the Fourier transformation method allowed the
derivation of compact formulae for one of the most challenging integrals, namely molecular
multi-center integrals and NMR multi-center integrals.

Analytic expressions are obtained for integrals of the paramagnetic contribution in the
relativistic calculation of the shielding tensor as well as integrals of second order in the
non-relativistic calculation of the shielding tensor. The basis set of ETFs is used and it is well
known that these functions are better suited than GTFs.

The obtained analytic expressions for the one- and two-center integrals can be computed
easily and no quadrature rule is required. In the case of the three-center integrals, we need
to compute semi-infinite integrals involving oscillatory functions. These oscillatory integrals
can be computed to a high pre-determined accuracy using existing methods and algorithms
based on extrapolation methods and numerical quadrature [Berlu & Safouhi (2003); Duret &
Safouhi (2007); Safouhi (2001b; 2004; 2010a); Slevinsky & Safouhi (2009)].

Numerical tables for the NMR integrals of interest can be found in [Safouhi (2010b); Slevinsky
et al. (2010)].
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