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1. Introduction 

One of the most important problems in the physics and chemistry of the nanostructured 
materials consists in the local and the global structure determination by X-ray diffraction 
and X-ray absorption spectroscopy methods. This contribution is dedicated to the applications 
of the Fourier series and Fourier transform as important tools in the determination of the 
nanomaterials structure. The structure investigation of the nanostructured materials require 
the understanding of the mathematical concepts regarding the Fourier series and Fourier 
transform presented here without theirs proofs. The Fourier series is the traditional tool 
dedicated to the composition of the periodical signals and its decomposition in discreet 
harmonics as well as for the solving of the differential equations. Whereas the Fourier 
transform is more appropriate tool in the study of the non periodical signals and for the 
solving of the first kind integral equations. From physical point of view the Fourier series 
are used to describe the model of the global structure of nanostructured materials that 
consist in: average crystallite size, microstrain of the lattice and distribution functions of  
the crystallites and microstrain versus size. Whereas the model for the local structure of  
the nanomaterials involves the direct and inverse Fourier transform. The information 
obtained consist in the number of atoms from each coordination shell and their radial 
distances. 

2. Fourier series and theirs applications 

One of the most often model studied in physics is the one of oscillatory movement of a 
material point. The oscillation of the electrical charge into an electrical field, the vibration of 
a tuning fork that generated sound waves or the electronic vibration into atoms that 
generate light waves are studied in the same mode (Richard et al., 2005). The motion 
equations related to the above phenomena have similar form; therefore the phenomena 
treated are analogous. From mathematical point of view these are modeled by the ordinary 
differential equations, most of them with constant coefficients. Due to the particular form of 
the equation any linear combination of the solution it is also a solution and the mathematical 
substantiation is given by the superposition principle. It consists in, if u1, u2, …, uk are  
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solutions for the homogenous linear equations [ ] 0L u = , then the linear combination (or the 
superposition) is a solution of [ ] 0L u =  for any choice of the constants. The previous 
statement shows that the general solution of a linear equation is a superposition of its 
linearly independent particularly solution that compose a base in the finite dimension space 
of the solution. The superposition is true for any algebraic equations as well as any 
homogenous linear ordinary differential equations.  

2.1 Physical concept and mathematical background 

The analysis of the linear harmonic oscillatory motion for a material point of mass m round 
about equilibrium position due to an elastically force F=-Kx it is given by the harmonic 
equation that is a differential equations which appear very frequently in the analysis of 
physical phenomena (Tang, 2007)  

 
2

2 0
d x

m Kx
dt

+ =  (1) 

with the solution 0 0( ) cos(2 )x t A f tπ ϕ= −  where A, K, f0, 
K

m
ω = , 02 fω π= and φ0 represent 

the motion’s amplitude, elastic constant, fundamental frequency, angular speed and phase 
shift, respectively. Generalizing let consider the physical signal given by 

 

0 0 0 0

1 0 2 0 3 0 0

2 3

( ) sin(2 ) sin(4 ) sin(6 ) ... sin(2 )n

f line f line f line nf line

x t a f t a f t a f t a nf tπ π π π= + + + +���	��
 ���	��
 ���	��
 ���	��
  (2) 

that is periodic but non harmonic process, the physical signal being a synthesis of n spectral 
lines with the frequencies f0, 2f0, 3f0, …, nf0 and the amplitudes a1, a2, … , an, respectively. The 
practical problem that had lead to Fourier series was to solve the heat equation which is a 
parabolic partial differential equation. Before the Fourier contribution no solution for the 
general form of the heat equation was known. The Fourier idea was to consider the solution 
as a linear combination of sine or cosine waves in according with the superposition 
principle. The solution space for of the partial differential equation are infinite dimensional 
spaces thus there are needed an infinite number of independent solutions. Therefore is not 
possible to find all independent particular solutions of a linear partial differential equations. 
The key found by Joseph Fourier in his article “Théorie analitique de la chaleur”, published 
in 1811, was to form a series with the basic solutions. The ortonormality is the key concept of 
the Fourier analysis. The general representation of the Fourier series with coefficients a, bn 

and cn is given by: 

 [ ]
1

( ) cos( ) sin( )
2 n n

n

a
x t b nt c nt

∞

=
= + +∑  (3) 

The Fourier series are used in the study of periodical movements, acoustics, 
electrodynamics, optics, thermodynamics and especially in physical spectroscopy as well as 
in fingerprints recognition and many other technical domains. It was proved (Walker, 1996) 
that any physical signal of the period T=1/f0 can be represented as an harmonic function 
with the frequencies f0, 2f0, 3f0, … 
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 [ ]0 0
1

( ) cos(2 ) sin(2 )
2 n n

n

a
x t b nf t c nf tπ π

∞

=
= + +∑  (4) 

The Fourier coefficients are obtained in the following way: 

i. by integration of the previous relation between [ ]/ 2, / 2T T−  

 
/2

/2

2
( )

T

T

a x t dt
T −

= ∫  (5) 

ii. by multiplication of (4) with 0cos(2 )nf tπ  and integration 

 
/2

0
/2

2
( )cos(2 )

T

n

T

b x t nf t dt
T

π
−

= ∫  (6) 

iii. by multiplication of (4) with 0sin(2 )nf tπ  and integration 

 
/2

0
/2

2
( )sin(2 )

T

n

T

c x t nf t dt
T

π
−

= ∫  (7) 

Some observations about physical signal modeled by Fourier series are given below. 

i. Value / 2a  represents the mean value for the physical signal on [ ]/2, / 2T T− . 
ii. If ( / 2) ( )x t T x t+ = − then Fourier series of x has only amplitudes with odd index (Tang, 

2007) all the other terms will vanish: 

 [ ]2 1 0 0
0

( ) cos(2 ) sin(2 )n n
n

x t b nf t c nf tπ π
∞

+
=

= +∑  (8) 

iii. In practice the argument of the function x can be a scalar as time, frequency, length, 
angle, and so on, thus (4) is defined on period [0, T], spectral interval [0,f], spatial 
interval [0, ]L , wave length [0, λ ] or the whole trigonometric circle, respectively. 

iv. Using the Fourier coefficients the Parseval’s equality is given by 

 

[ ]

( )

/2 /2
2

0 0
1/2 /2

2
2 2

1

( ) ( ) cos(2 ) sin(2 )
2

2 2 n n

T T

n n
nT T

n

a
x t dt x t b nf t c nf t dt

T a
b c

π π
∞

=− −

∞

=

⎧ ⎫⎪ ⎪= + + =⎨ ⎬
⎪ ⎪⎩ ⎭

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦

∑∫ ∫

∑
 (9) 

The right term of the above equality represents the energy density of the signal x. Thus the 
Parseval equality shows that the whole density energy is contained in the squares of the all 
amplitudes of harmonic terms defined on the interval [ / 2, /2]T T− . The Parseval equality 
holds for any function whose square is integrable. The next problem is to analyze the 
convergence of the series. Because the aim of this chapter are the application of the Fourier 
series it will be only mentioned the basic principles of the Fourier analysis. If the interval 
[ /2, /2]T T− can be decomposed in a finite number of intervals on that the function f is 
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continuous and monotonic, then the function f has a Fourier series representation. The next 
consideration is connected with the 2[ , ]L A B  space defined below 

 2[ , ]L A B = 2: [ , ] ( )
B

A

x A B R x t dt
⎧ ⎫⎪ ⎪→ < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (10) 

The complete system for the 2[ , ]L A B  is given by 

 

2 22 2 2
, cos , sin , ,

2 22 2
            cos , sin ,

t t

B A B A B A B A B A

kt kt

B A B A B A B A

π π

π π
− − − − −

− − − −

"

…
 (11) 

then any function from 2[ , ]L A B  can be written as a linear combination of its complete 
system and the Fourier coefficients are  

 

2
( ) ,

2 22 2
( )cos , ( )sin .

B

A

B B

k k

A A

a x t dt
B A

kt kt
x t dt x t dt

B A B A B A B A

π π
β γ

=
−

= =
− − − −

∫

∫ ∫
 (12) 

2.2 Trigonometric polynomials and Fourier coefficients determination 

One of the useful mathematical tools in order to apply the Fourier series in data analysis is 
the trigonometric polynomial. From physical point of view the trigonometric polynomials 
are used to characterize the periodic signals. The general form of the real trigonometric 
polynomial of degree M is given by: 

 
1

2 2
( ) cos sin

2

M

k k
k

kt kt
P t

T T

π πα β γ
=

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (13) 

where ,α  kβ , kγ , T  being real constants. Let denote by S the square deviation of the 
function x from trigonometric polynomial P defined on interval of length T  

 ( )
/2

2
1 1

/2

( , , , , , , ) ( ) ( )
T

M M

T

S x t P t dtα β β γ γ
−

= −∫" "  (14) 

Let enumerate some properties of trigonometric polynomials that will be used in this 
chapter (Bachmann et al., 2002). 

i. Let x be a function in [ ]2 / 2, / 2L T T− , then from all polynomials of degree M the 
minimum of the square deviation is obtained for the trigonometric polynomial with the 
coefficient equal with the Fourier coefficients of function x; 

ii. If the physical signal is defined on an arbitrary interval [ ],A B  with period B-A then the 
trigonometric polynomial associated is given by 
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1

2 2
( ) cos sin ;

2

M

k k
k

kt kt
P t

B A B A

π πα β γ
=

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  (15) 

iii. The Fourier coefficients associated to polynomial P are obtained by the least square 
method and the linear system is  

 

[ ]

[ ]

[ ]

1

1

1

cos sin ( )
2

cos cos sin cos ( )cos
2

sin cos sin sin ( )sin
2

B B BM

k k k k
KA A A

B B BM

m k k k k m m
KA A A

B B BM

m k k k k m m
KA A A

dt C C dt Y t dt

C dt C C C dt Y t C dt

C dt C C C dt Y t C dt

α β γ

α β γ

α β γ

=

=

=

⎧ ⎧ ⎫⎪ ⎪⎪ + − =⎨ ⎬
⎪ ⎪ ⎪⎩ ⎭
⎪

⎧ ⎫⎪ ⎪ ⎪+ − =⎨ ⎨ ⎬
⎪ ⎪⎪ ⎩ ⎭

⎪ ⎧ ⎫⎪ ⎪⎪ + − =⎨ ⎬⎪
⎪ ⎪⎩ ⎭⎩

∑∫ ∫ ∫

∑∫ ∫ ∫

∑∫ ∫ ∫

 (16) 

where ,kC Ckt=  mC Cmt= , 2 /( )C B Aπ= − , Y is the approximated function by the 
trigonometric polynomial of degree M and m =1, …, M. The system (16) has 2M+1 equations 
and due to the orthogonality properties of the functions cos kC  and sin kC  the solution of 
system (16) is  

 
2

( ) ,
B

A

Y t dt
B A

α =
− ∫

2 2
( )cos

B

k

A

kt
Y t dt

B A B A

πβ =
− −∫  and 

2 2
( )sin ;

B

k

A

kt
Y t dt

B A B A

πγ =
− −∫  (17) 

iv. Previous considerations are often used in the process of global approximation of the 
discreet physical signals. Let consider the sequence of experimental values ( ) 1,

,k k k N
y P

=
, 

with discretization step defined by ( ) /( 1)t B A NΔ = − −  thus ( 1)kt A k tΔ= + − and then 
the approximate values of Fourier coefficients are given by  

 1 1

1

2 2 ( 1)2 2
cos

1 1 1

2 2 ( 1)2
sin , 1, ;

1 1

N N

k j k
k k

N

j k
k

jA j k
P P

N N B A N

jA j k
P j M

N B A N

π π
α β

π π
γ

= =

=

⎡ ⎤−⎛ ⎞≈ ≈ +⎢ ⎥⎜ ⎟− − − −⎝ ⎠⎣ ⎦
⎡ ⎤−⎛ ⎞≈ + =⎢ ⎥⎜ ⎟− − −⎝ ⎠⎣ ⎦

∑ ∑

∑
 (18) 

v. If the trigonometric polynomial pass through all the experimental points, that is 

 
( )

1

                                                 ( ) ( )  

cos sin , 1..
2

i i

M

k i k i i
k

P t Y t

Cky Cky Y i N
α β γ

=

= ⇔

+ + = =∑
 (19) 

The system (16) is equivalent with ( )2
1

( ) 0
N

i i
i

P t Y
=

− =∑  and represents the same condition 

find in the least squares method for the discreet case. The coefficients are given by (17) 
relations. In this case the degree of the trigonometric polynomial, M, has to satisfy the 
relation 2M+1=N where N represents the number of experimental points; 

vi. The degree of approximation is given by the residual index defined by 
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exp

exp
1

100
N ii

i i

y P
R

y=

−
= ∑  (20) 

where exp
iy represents the sequence of experimental values;  

vii. The first derivative of the physical signal approximated by the trigonometric polynomial 
is given by 

 
1

2 2( ) 2
sin cos

M

k k
i

kt ktdP t
k k

dt B A B A B A

π ππ β γ
=

⎛ ⎞≈ − −⎜ ⎟− − −⎝ ⎠
∑  (21) 

Previous relation can be useful only when the physical signal is less affected by the noise;  

viii. Other application of the trigonometric polynomials is the determination of the integral 
intensity, I, of the physical signal  

 ( ).
2

I B A
α

≈ −  (22) 

2.3 Application of the Fourier series in X-ray diffraction 

The spectrum for X-ray diffraction for the nickel foil is represented in Fig.1. It has been 
registered with the Huber goniometer that used an incident fascicle with synchrotron 
radiation with the wavelength 1.8276 Å. The experimental data was recorded with constant 
step 00.033Δθ = and its number of pairs is n=766. 
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Fig. 1. Experimental spectrum of the nickel foil  

The Miller indexes of the X-ray line profiles measurements are (111), (200), respectively 
(220). Data analysis of the experimental spectrum was realized by our package program 
(Aldea & Indrea, 1990). The Fig. 2 shows the square magnitude of Fourier coefficients versus 
the harmonic indexes. They are used in the Warren – Averbach model (Warren, 1990) for the 
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average crystallite size, microstrains of the lattice, total probability of the defaults and the 
distribution functions of the crystallites and the microstrains determination.  
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Fig. 2. The square magnitudes of the Fourier coefficients  

The broadening of X-ray line profiles can be determined from the first derivative of the 
experimental spectrum analysis. The first derivative of the nickel foil spectrum in Fig. 3 is 
given.  
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Fig. 3. The first derivative for the computed signal obtained through Fourier synthesis 

2.4 Application of the trigonometric polynomial in the integration of partial differential 
equations 

One of the most important roles of the trigonometric polynomial is that played in  
the solving of the partial differential equations. The first example of this procedure is 
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applied to the heat equation in one dimensional space in the conditions of the following 
problem: 

 

2
2

2

(0, ) ( , ) 0 (boundary condition)
( , ) ( ) (intial condition)

u u
a

t x
u t u L t

u x t g x

⎧∂ ∂
=⎪

∂ ∂⎪⎪ = =⎨
⎪ =⎪
⎪⎩

 (23) 

where a2 is the diffusion coefficient, it represents the heat conductibility of the material 
expressed in cm2/s. The solution of (23) is obtained using the separation of variables and the 
Fourier series technique. The solution has the form 

 
1

( , ) ( )sinn
n

n x
u t x B t

L

π∞

=
=∑  (24) 

where nB  are determined using the Fourier series technique.  

 
0

2
( ) ( , )sin

L

n

n x
B t u x t dx

L L

π
= ∫  (25) 

Replacing (24) in the heat equation is obtained  

 
2

' ( ) ( ) 0, 0,1, 2,n n

n a
B t B t n

L

π⎛ ⎞+ = =⎜ ⎟
⎝ ⎠

"  (26) 

From the initial condition is obtained  

 
0

2
(0) ( ,0)sin 0,1, 2,

L

n n

n x
b B u x dx n

L L

π
= = =∫ "  (27) 

The relation (27) shows that the right member represents the n Fourier coefficient for the 
function that gives initial temperature g. By solving the ordinary differential equation (26) is 
obtained 

 ( )( )2( ) exp / 0,1, 2,n nB t b n a L t nπ= − = "  (28) 

Replacing (28) in (24), the general solution of the problem (23) for the heat equation is  

 
2

1
( , ) exp sinn

n

n a n x
u t x b t

L L

π π∞

=

⎛ ⎞⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑  (29) 

where the gaussian part plays the role of damping factor. 

Let consider, as the second example, a vibrating string of length L fixed on both ended in the 
absence of any external force, 0 x L≤ ≤ and t>0, its motion is describes by the wave equation  
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2 2
2

2 2

(0, ) ( , ) 0     (boundary condition)
( ,0) ( )   (initial conditions)

( ,0) ( )

y y
c

t x

y t y L t

y x f x

y
x g t

t

⎧∂ ∂
=⎪

∂ ∂⎪
⎪⎪ = =
⎨

=⎪
⎪∂⎪ =
⎪ ∂⎩

 (30) 

The function y represents the position of each oscillating point versus Ox axis. The function f 
describes the initial string position and g describes the initial speed of the string. The 
constant c2 represents the ratio between straining force and the linear density of the string; 
the force has the same direction as the movement of the string element. The solution for the 
problem (30) is obtained using the same technique as in the case of the heat equation and it 
has the form 

 ( )
1

( , ) cos / sinc( / ) sinn n
n

n x
y x t a nc t L b t nct L

L

π
π

∞

=

⎡ ⎤= +⎣ ⎦∑  (31) 

where “sinc” represents the normalized sinc function, 
0

2
(0) ( )sin

L

n n

n x
a B f x dx

L L

π
= = ∫  and 

'

0

2
(0) ( )sin

L

n n

n x
b B g x dx

L L

π
= = ∫  for all 0,1,2,n = …  

Schrödinger equation is the other example presented that describes the quantum behavior in 
time and space of a particle with m mass inside the potential V and it is given by  

 
2 2

2 ( )
2

i V x
t m x

Ψ Ψ Ψ∂ ∂
= − +

∂ ∂
==  (32) 

where =  is Planck constant divided by 2π . If the potential energy is vanished the previous 
equation becomes the free particle equation and this case will be analyzed forward. 

 

2 2

22
(0, ) ( , ) 0
( ,0) ( )

i
t m x
t L t

x f x

Ψ Ψ

Ψ Ψ
Ψ

⎧ ∂ ∂
= −⎪

∂ ∂⎪⎪ = =⎨
⎪ =⎪
⎪⎩

==

 (33) 

From physical point of view Ψ represents a probability density generator and 2 *Ψ ΨΨ=  
describes the existence probability of a particle of mass m at position x and time t, thus  

 2 2

0

( , ) 1
L

x t dxΨ Ψ= =∫  (34) 

Analogous with the previous two examples the solution of the problem (33) is given by  
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2

1
( , ) exp sin .

2 n
n

i n nx
x t t c

m L L

π πΨ
∞

=

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ =  (35) 

where (0)n nC c= , 0, 1, 2,n = ± ± "  and  

 
0

2
 ( ) sin dx 

L

n

nx
C t Ψ(x,t)

L L

π
= ∫  (36) 

3. Generalization of the Fourier series for the function of infinite period 

In the physical and chemical signals analyzing it is often find a non periodical signals 
defined on the whole real axis. There are many examples in the physics spectroscopy where 
the signals damp in time due in principal by the absorption process thus there can not be 
modeled by the periodical functions. The nuclear magnetic resonance (NMR), Fourier 
transform infrared spectroscopy (FTIR) as well as X-ray absorption spectroscopy (XAS) 
dedicated to K or L near and extended edges are based on non periodical signals analysis.  

3.1 Mathematical background of the discreet and inverse Fourier transform 

Let consider the complex form of the Fourier series for a signal h defined on the interval 
[ ]/ 2, / 2T T−  it will be introduced the Fourier transform of h based on the concept of 
infinite period ( T →∞ ) 

 
/2

/2

Fourier  coefficients

1
( ) ( )exp 2 exp 2

T

T
n

n n
h t h s i s ds i t

T T T
π π

∞

−
=−∞

⎧ ⎫⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∫
������	�����


 (37) 

where the fundamental frequencies f0 is expressed by 0 1 /f T= . If it be denoted by 
/nf n T=  and 1 1 /n nf f f TΔ += − =  then the relation (37) becomes 

 ( ){ } ( )/2

/2
( ) ( )exp 2 exp 2

T

n nT
n

h t h s i f s ds i f t fπ π Δ
∞

−
=−∞

= −∑ ∫  (38) 

If 0fΔ →  then period T goes to infinity and 

 ( ){ } ( )
( )

( ) ( )exp 2 exp 2

H f

h t h s i f s ds i ft dfπ π
∞

∞

−∞
−∞

= −∫ ∫
������	�����


 (39) 

The function h will be found in the scientific literature named as the Fourier integral 
(Brigham, 1988) and the expression  

 ( )( ) ( )exp 2H f h s i f s dsπ
∞

−∞
= −∫  (40) 

represents the Fourier transform of the function h. From the relation (40) is it possible to 
obtain the function h by inverse Fourier transform given by  
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 ( )( ) ( )exp 2h t H f i f t dfπ
∞

−∞
= ∫  (41) 

The argument of the exponential function from relation (40) is dimensionless. From physical 
point of view this is very important to emphasize it. For instance, if the argument represents 
time [s] or distance [m] thus the argument of Fourier transform has dimension [1/s] and 
[1/m], therefore the product of dimensions for the arguments of Fourier transform is 
dimensionless.  

From physical point of view the difference between the Fourier series and the Fourier 
transform is illustrated considering two signals one periodic, g, and the other non periodic, 
h. The non periodical signal, h, is often find in NMR spectroscopy. 

 
0

0,                                               if  0
( )

exp( / 2)exp(2 ),     if   ( 1) T , 1,2, ; 0
t

g t
a t if t n - t nT nγ π γ

<⎧
= ⎨ − ≤ ≤ = >⎩ "

 (42) 
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 (43) 

The Fourier coefficients An and theirs magnitudes associated with periodical signal (42) are 
given by relation 
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 (44) 

Fig. 4. shows the graphic for the real part of the periodical g signal for a=10, γ=5 ms-1 and 
f0=2 KHz. 
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Fig. 4. The periodical physical signal g 

Fig. 5 represents the spectral distribution of g signal that it is defined by the square 
magnitude of the Fourier coefficients.  
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The real component of the function (43) is represented in Fig. 6 and the square magnitude of 
the Fourier transform is given by relation (45) and it is represented in Fig. 7. 
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Fig. 6. The real part of non periodical signal h 

The maximum value for the spectral distribution take place when 0f f= , thus 
2 2 2

max( ) 4H f a γ= . The full width at half maxim (FWHM) is denoted by 1 2fΔ  and 
1 2 2f γ πΔ =   
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Some times in signals analysis theory, the inverse of the damping parameter γ  is named the 
relaxation time denoted by τ . Between the relaxation time and FWHM there is the relation  

1/2
1

2
fτ Δ

π
= .  

From physical reason it is easier to analyze the resonant answer of a physical signal than 
free damping oscillations. In NMR spectroscoply this signal is known as Free Impulse Decay 
(FID). Studying the resonant answer it is possible to obtain the relaxation time parameter of 
the free oscillations. The relaxation time derives from the width of the spectrum obtained 
from the Fourier transform of the FID. Therefore it is easier to determine the relaxation time 
from Fourier transform of h signal instead of fit technique applied to FID.  

Above it was shown that the Fourier series of periodical signal is represented as a sum of 
periodical functions with discreet frequencies f0, 2f0, 3f0, … as shown in Fig. 5. The 
amplitudes of the signals associated to each frequency are given by the spectral distribution 
named Fourier analysis. The difference between Fourier series and Fourier transform is that 
the latter has the frequencies as argument which continuously varies. Whereas Fourier 
transform of the signal h allows spectral decomposition of it with frequencies defined on the 
whole real axis. 

3.2 The Fourier transform for discreet signals 

In practice the function h represents a physical signal resulted from an experiment. The 
signal can be discretizated on N samples with a constant step .tΔ  From physical reasons, the 
experimental signals can not be acquisitioned on the entire real axis thus the working 
interval is ( )/ 2, / 2 1N t N tΔ Δ⎡− − ⎤⎣ ⎦  (Mandal & Asif, 2007). Instead of the function H there 

are a set of pairs ( ), nn f HΔ , 0, 1n N= −  where fΔ  represents the discretization step of 

data. Let consider the following relation between discretization steps  
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 1
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N t
Δ
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=  (46) 

the Fourier transform associated to the set ( ) /2, /2 1( )
k N N

h k tΔ =− −  is contained in the H vector 
with the components 
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It is more convenient, for the computation, if all the indexes are positive, for this it is 
assumed that q k N= +  for k<0. Relation (47) becomes  
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ikn
H n f t h k t
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π
Δ Δ Δ
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=
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∑  (48) 

Using the same consideration, the inverse Fourier transform has the form 

 [ ]
1

0
( )
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( ) Re ( ) Im ( ) exp
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H k f

ikn
h n f f H k f i H k f

N
Δ

π
Δ Δ Δ Δ
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∑������	�����
  (49) 

If the physical signal is recorded on negative arguments then for the numerical computation 
of the Fourier transform for the components ( , )kk t hΔ , / 2... / 2 1k N N= − −  must be arrange 
in the following order 

 
0 1 2 /2 1

/2 /2 1 /2 2 1
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, 1 , 2, , 1 ( , , , , ).
2 2 2
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N N N
N h h h h

−

− − + − + −

− →

⎛ ⎞+ + − →⎜ ⎟
⎝ ⎠

" "

" "
 (50) 

3.3 The main algorithms for the Fourier transform. The Filon quadrature and the 
Cooley-Tukey method 

Most of the times the physical-chemical signals can not be expressed analytical, thus it is 
impossible to use the relation (40). Therefore in computation is used the discreet form of 
Fourier transform given by the relation (48). Generally speaking the physical signals are 
recorded around thousands of points; additionally the Fourier transform of the signal is 
important to compute on the same numbers. By using relation (48) the computation time is 
too long. This problem was solved by Cooley Tukey algorithm (Brigham, 1988) named in the 
literature as a Fast Fourier Transform (FFT) method. In the case when the physical signal is 
registered from pairs in a range of hundreds up to few thousand values can be successfully 
used the Filon algorithm (Abramowitz & Stegun, 1972). The method assumes that the 
physical signal is defined on the interval [ ]0 2, nt t  with step tΔ  then the real component of 
the Fourier transform is approximated by  

 

[ ]

2
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2 2

0 0 2 2 1
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                               -  sin(2 ) (2 ) (2 )

nt
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n n
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t h t f f t C f t C

π Δ α π Δ π

Δ π β π Δ γ π Δ −

≈ −
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where 
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and the imaginary component of the Fourier transform is given by  
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where 
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By taking into account the relation (46) used in the FFT method it is not possible to compute 
the Fourier transform for all value of the frequency. This disadvantage can lead to poor 
resolution of the Fourier transform H. Meanwhile the Filon algorithm is more time 
consuming but its application offers a more reliable resolution. A detailed analysis of these 
algorithms applied in the extended X-ray absorption fine structure (EXAFS) spectroscopy 
can be found in the paper (Aldea & Pintea, 2009).  

3.4 Application of the Fourier transform in X-ray absorption spectroscopy and X-ray 
diffraction  

The study of XAS can yield electronic and structural information about the local 
environment around a specific atomic constituent in the amorphous materials (Kolobov et 
al., 2005), 

Additional, this method provides information about the location and chemical state of any 
catalytic atom on any support (Miller et al., 2006) as well as the nanoparticle of transition 
metal oxides (Chen et al., 2002; Turcu et al., 2004)). X-ray absorption near edge structure 
(XANES) is sensitive to local geometries and electronic structure of atoms that constitute the 
nanoparticles. The changes of the coordination geometry and the oxidation state upon 
decreasing the crystallite size and the interaction with molecules absorbed on nanoparticles 
surface can be extracted from XANES spectrum.  

The EXAFS is a specific element of the scattering technique in which a core electron ejected 
by an X-ray photon probes the local environment of the absorbing atom. The ejected 
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photoelectron backscattered by the neighboring atoms around the absorbing atom interferes 
constructively with the outgoing electron wave, depending on the energy of the 
photoelectron. The energy of the photoelectron is equal to the difference between the X-ray 
energy photon and a threshold energy associated with the ejection of the electron. 

X-ray diffraction (XRD) line broadening investigations of nanostructured materials have 
been limited to find the average crystallite size from the integral breadth or the FWHM of 
the diffraction profile. In the case of nanostructured materials due to the difficulty of 
performing satisfactory intensity measurements on the higher order reflections, it is impossible 
to obtain two orders of (hkl) profile. Consequently, it is not possible to apply the classical 
method of Warren and Averbach (Warren, 1990). On the other hand we developed a rigorous 
analysis of the X-ray line profile (XRLP) in terms of Fourier transform where zero strains 
assumption is not required. The apparatus employed in a measurement generally affects the 
obtained data and a considerable amount of work has been done to make resolution 
corrections. In the case of XRLP, the convolution of true data function by the instrumental 
function produced by a well-annealed sample is described by Fredholm integral equation of 
the first kind (Aldea et al., 2005; Aldea & Turcu, 2009). A rigorous way for solving this 
equation is Stokes method based on Fourier transform technique. The local and global 
structure of nanosized nickel crystallites were determined from EXAFS and XRD analysis. 

3.4.1 EXAFS analysis 

The interference between the outgoing and the backscattered electron waves has the effect of 
modulating the X-ray absorption coefficient. The EXAFS function χ(k) is defined in terms of 
the atomic absorption coefficient by 

 0

0

( ) ( )
( )

( )
k k

k
k

μ μχ
μ
−

=  (55) 

where k is the electron wave vector, μ(k) refers to the absorption by an atom from the 
material of interest and μ0(k) refers to the atom in the free state. The theories of the EXAFS 
based on the single scattering approximation of the ejected photoelectron by atoms in the 
immediate vicinity of the absorbing atom gives an expression for χ(k)  

 ( ) ( )sin 2 ( )j j j
j

k A k kr kχ δ⎡ ⎤= +⎣ ⎦∑   (56) 

where the summation extends over j coordination shell, rj is the radial distance from the jth 
shell and δj(k) is the total phase shift function. The amplitude function Aj(k) is given by 

 ( )( )2 2
2( ) ( , , )exp 2 / ( )j

j j j j j
j

N
A k F k r r k k

kr
π λ σ

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (57) 

In this expression Nj is the number of atoms in the jth shell, σj is the root mean squares 
deviation of distance about rj, F(k, rj, π) is the backscattering amplitude and λj(k) is the mean 
free path function for the inelastic scattering. The backscattering factor and the phase shift 
depend on the kind of atom responsible for scattering and its coordination shell (Aldea et 
al., 2007). The analysis of EXAFS data for obtaining structural information [Nj, rj, σj, λj(k)] 

www.intechopen.com



 
Fourier Series and Fourier Transform with Applications in Nanomaterials Structure 

 

17 

generally proceeds by the use of the Fourier transform. From χ(k), the radial structure 
function (RSF) can be derived. The single shell may be isolated by Fourier transform,  

 ( ) ( ) ( )exp( 2 ) .nr k k WF k ikr dkΦ χ
∞

−∞
= −∫  (58) 

The EXAFS signal is weighted by kn (n=1, 2, 3) to get the distribution function of atom 
distances. Different apodization windows WF(k) are available as Kaiser, Hanning or Gauss 
filters. An inverse Fourier transform of the RSF can be obtained for any coordination shell, 

 2

1

1
( ) ( ) ( )exp(2 ) .j

j

R

j n R
k WF k r ikr dr

k
χ Φ= ∫  (59) 

The theoretical equation for χj(k) function is given by: 

 ( ) ( )sin 2 ( )j j j jk A k kr kχ δ⎡ ⎤= +⎣ ⎦ , (60) 

where the index j refers to the jth coordination shell. The structural parameters for the first 
coordination shell are determined by fitting the theoretical function χj(k) given by the 
relation (60) with the experimental signal χj(k) derived from relation (59). In the empirical 
EXAFS calculation, F(k,r,π) and δj(k) are conveniently parameterized (Aldea et al., 2007). 
Eight coefficients are introduced for each shell: 

 3c2
0 1 2)=c exp(c ) /ksF (k,r,π k c k⎡ ⎤+⎣ ⎦

  (61)  

 1 2
1 0 1 2( )s k a k a a k a kδ −
−= + + +  (62)  

The coefficients c0, c1, c2, c3, a-1, a0, a1 and a2 are derived from the EXAFS spectrum of a 
compound whose structure is accurately known. The values Ns and rs for each coordination 
shell for the standard sample are known. The trial values of the eight coefficients can be 
calculated by algebraic consideration and then they are varied until the fit between the 
observed and calculated EXAFS is optimized. 

3.4.2 XRD analysis 

X-ray diffraction pattern of a crystal can be described in terms of scattering intensity as 
function of scattering direction defined by the scattering angle 2θ, or by the scattering 
parameter (2sin ) /s θ λ= , where λ is the wavelength of the incident radiation. It is 
discussed the X-ray diffraction for the mosaic structure model in which the atoms are 
arranged in blocks, each block itself being an ideal crystal, but with adjacent blocks not 
accurately fitted together. The experimental XRLP, h, represents the convolution between 
the true sample f and the instrumental function g 

 ( ) ( ) ( )* * *h s g s s f s ds
+∞

−∞
= −∫  (63) 

The equation (63) is equivalent with the following relation 

 ( ) ( )( )H L G L F L= , (64) 
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where F(L), H(L) and G(L) are the Fourier transforms of the true sample, experimental XRLP 
and instrumental function, respectively. The variable L is the perpendicular distance to the 
(hkl) reflection planes. The generalized Fermi function (GFF) (Aldea et al., 2000) is a simple 
function with a minimal number of parameters, suitable for the XRLP global approximation 
based on minimization methods and it is defined by relation: 

 
( ) ( )( )

a s c b s c

A
h s

e e− − −=
+

, (65) 

where A, a, b, c are unknown parameters. The values A, c describe the amplitude, the 
position of the XRLP and a, b control its shape. In the case when X-ray line profiles h and g 
are approximated by GFF distribution then the solution of Fedholm integral equation of the 
first kind represents the true sample function and it is given by  

 
cos cosh

2 2
( )

cos cos2

h
h

h g g

hg
h

g

s
A

f s
A s

πρ ρ
ρ ρ

πρπ ρ
ρ

=
+

 (66) 

where the arguments of trigonometric and hyperbolic functions depend on the shape 
parameters of the h, g signals, respectively. They are expressed by ( ) / 2h h ha bρ = +  and 

( ) /2.g g ga bρ = +  

3.4.3 EXAFS results 

The extraction of the EXAFS signal is based on the threshold energy of the nickel K edge 
determination followed by background removal of pre-edge and after-edge base line fitting 
with different possible modeling functions where μ0(k) and μ(k) evaluation are presented in 
Fig. 8. 
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Fig. 8. The absorption coefficient of the nickel K edge  
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In according with relation (55) EXAFS signals modulated by Hanning and Gauss filters were 
performed in the range 2 Å -14 Å and they are shown in Fig. 9. In order to obtain the atomic 
distances distribution it was computed the RSF, using the relation (58) and the Filon algorithm.  
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Fig. 9. EXAFS signal for the nickel crystallites  

The mean Ni-Ni distances of the first coordination shell for standard sample at room 
temperature are closed to values of R1=2.49Å. Based on relation (46) between Δk and Δr 
steps, the computation of the RSF using the FFT of the EXAFS signal gives a non reliable 
resolution. To avoid this disadvantage it used the Filon algorithm for Fourier transform 
procedure. Based on this procedure the Fourier transform of k3χ(k)WF(k), performed in the 
range 0.51 Å and 2.79 Å, are shown in Fig. 10 for the standard Ni foil investigation. In order 
to minimize the spurious errors in the RSF it was considered Gauss filter as the window 
function. 
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Fig. 10. The Fourier transform of the EXAFS spectrum for the nickel foil  
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Each peak from |Φ(r)|is shifted from the true distance due to the phase shift function that is 
included in the EXAFS signal. We proceed by taking the inverse Fourier transform given by 
relation (59) of the first neighboring peak, and then extracting the amplitude function Aj(k) 
and the phase shift function δ(k) in according with the relations (61) and (62).  

By Lavenberg-Marquard fit applied to the relation (60) and from the experimental contribution 
for each coordination shell, are evaluated the interatomic distances, the number of neighbors  
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Fig. 11. Experimental and calculated EXAFS signals of the first coordination shell of the 
nickel foil 

and the edge position. Fig. 11 shows the calculated and the experimental EXAFS functions 
1( )kχ  of the first shell for the investigated sample. 

3.4.4 XRD results 

Practically speaking, however, it is not easy to obtain accurate values of the crystallite size 
and the microstrain without extreme care in the experimental measurements and analysis of 
XRD data. The Fourier analysis of XRLP validity depends strongly on the magnitude and 
the nature of the errors propagated in the data analysis. In paper (Aldea et al., 2000) are 
treated three systematic errors: the uncorrected constant background, the truncation and the 
effect of the sampling for the observed profile at a finite number of points that appear in 
discrete Fourier analysis. In order to minimize propagation of these systematic errors, a 
global approximation of the XRLP is adopted instead of the discrete calculations. Therefore, 
the analysis of the diffraction line broadening in X-ray powder pattern was analytically 
calculated using the GFF facilities. 

The reason of this choice, as described above, was simplicity and the mathematical elegance 
of the analytical Fourier transform magnitude and the integral width of the true XRLP. The 
robustness of the GFF approximation for the XRLP arises from possibility of using the 
analytical form of the Fourier transform instead of the numerical FFT. The validity of the 
microstructural parameters are closely related to accuracy of the Fourier transform 
magnitude of the true XRLP. The experimental relative intensities with respect to θ values  
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and the nickel foil as instrumental broadening effect are shown in Fig. 12. The next steps 
consist in the background correction of the XRLP by the polynomial procedures and the 
determination of the best parameters of GFF distributions by nonlinear least squares fit. In 
order to determine the average crystallite size, the lattice microstrain and the probability of 
defects were computed the true XRLP by the Fourier transform technique and it is 
illustrated in Fig. 13, the curve is centred on its mass centre s0. 
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Fig. 12. The experimental XRLP (h) and the instrumental signals (g) 
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Fig. 13. The true sample signal (f)  

4. Conclusions 

In this contribution it has presented the mathematical background of Fourier series and 
Fourier transform used in nanomaterials structure field.  
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The conclusions that can be drawn from this contribution are: 

i. The physical periodical signals are successfully modeled using the trigonometric 
polynomial such us global approximation of the XRLP and the spectral distribution 
determination based on the Fourier analysis; 

ii. The most important tools applied in EXAFS is based on the direct and inverse Fourier 
transform methods; 

iii. The examples presented are based on the original contributions published in the 
scientific literature. 

The experimental data used in analyses consists in measurements that have done to Beijing 
Synchrotron Radiation Facilities from High Institute of Physics. 
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Appendix 

In this appendix are given the main analytical properties of the Fourier transform.  

i. Linearity. If the signals x and y have the Fourier transform X and Y then the Fourier 
transform of x yα β+ is X Yα β+ . 

ii. Symmetry. If the Fourier transform of the function h is H, then  

 ( )( ) ( )exp 2h f H t i f t dtπ
∞

−∞
− = −∫  (67) 

iii. Scaling. If h has the Fourier transform H then  

 *1
( )exp( 2 ) ( / ),h kt ift dt H f k k R

k
π

∞

−∞
− = ∈∫  (68) 

iv. Shifting. If the Fourier transform of h is H and h is translated with t0 then  

 0 0( )exp( 2 ) exp( 2 ) ( )h t t ift dt if t H fπ π
∞

−∞
− − = −∫  (69) 

v. If the signal he is even function and the Fourier transform of he is He then 

 ( ) ( )cos(2 )e eH f h t ft dtπ
∞

−∞
= ∫  (70) 

vi. If the signal ho is odd function and the Fourier transform of ho is Ho then  

 ( ) ( )sin(2 )o oH f i h t ft dtπ
∞

−∞
= − ∫  (71) 

vii. Any real function defined on a symmetrical interval has the following decomposition  

 ( ) ( ) ( )o eh t h t h t= + , (72) 
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thus 

 ( ) ( ) ( )o eH f H f H f= +  (73) 

For the next properties are assuming the function h is sufficiently smooth so that can be 
acceptable the differentiation and the integration. 

viii. The Fourier transform of the derivative of the function h is given by 

 ( ) (2 ) ( )dh h

dt

H f i f H fπ=  (74) 

where Hh represents the Fourier Transform of the function h, and for the n times derivative 

 ( ) (2 ) ( )n

n

n
hd h

dt

H f i f H fπ=  (75) 

ix. The derivative of the Fourier transform is given by  

 
( )

2 ( )h
th

dH f
iH f

df
π= −  (76) 

and for the n times derivative of the Fourier transform 

 
( )

( 2 ) ( )n

n
nh

n t h

d H f
i H f

df
π= −  (77) 
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