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1. Introduction  

Flow Cytometers are key devices used to monitor the composition of cells in the blood in the 
setting of a variety of disease states. Recent advances have produced a range of instruments 
that range from simple desktop-type devices to multi-laser platforms that allow for high 
complexity measurements. This variety of instrumentation makes the technology suitable 
for different budgets, expertise levels and intended uses (research versus diagnostic) with a 
set of reagents that can effectively be used on any platform so long as the laser line can 
excite the given fluorochrome and the optics are set up to discriminate emission from the 
excitation wavelength. Traditional medical applications for flow cytometers include evaluation 
of CD4 T cell depletion and associated immunophenotypic changes in HIV-infected persons 
as well as characterization of aberrant cell types used to diagnose hematologic malignancies. 
More recently, investigators have not only extended immunophenotyping campaigns to 
other disease settings, but have also taken advantage of fluorescent probes that provide 
insight into cellular function. For example, it can be inferred that a cell that expresses CD107 
on its surface has likely participated in the delivery of cytotoxic granules to a target cell 
(Michael R.Betts, 2004). Likewise, amine-reactive dyes can be used to track cell division, 
probes that fluoresce only after enzymatic cleavage can report on caspase activities in 
apoptosis experiments and intracellular phosphorylation can be measured with specific 
antibodies and cell permeabilization buffers (phosphoflow) (Maxwell et al., 2009; Krutzik 
and Nolan, 2006; Wu et al., 2010). The elegance of the flow cytometry platform relies on its 
simplicity in as much as any combination of fluorescently-conjugated probes can be used to 
address contemporary hypotheses in cell biology and immunology. It is therefore not 
surprising that investigators have introduced flow cytometric measurements in biomarker 
campaigns to study a variety of activities of an immunomodulatory therapeutics), including 
effects of proximal signaling events as influenced by agonist or antagonistic drugs, or cell 
immunophenotype as a representative distal pharmacodynamic marker in treated persons.  

The breadth of flow cytometric biomarker activities programs by members of our laboratory 
is quite broad, and we have leveraged our collective expertise to attempt to address 
contemporary issues in biomarker campaigns that include such assessments. Despite the  
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availability and precision of measurements performed by flow cytometers, it is important to 
realize that these measurements are made in the absence of accuracy standards; this is true 
even in the case of established assays. Thus, the strength of clinical flow cytometry is a 
function of the approach used for assay set-up and validation. One of the goals of this 
chapter is to share some of our strategies for the use of imunophenotyping data in the 
setting of disease and to further discuss the potential limitations of immunophenotyping in 
settings where correlative functional data may not be available. Even though the technology 
of flow cytometry is over 30 years old, the applications and ideas of using this platform as 
biomarker tools are in some ways in their infancy. Questions regarding the reliability of a 
given measurement, specimen and reagent stability, and methods to improve upon assay 
performance persist. It is our hope to contribute to maturation of this process and to begin to 
put forth ideas that could ultimately be used to standardize biomarker measurements in the 
clinic as executed by the flow cytometry laboratory. We have focused on immunophenotyping 
of blood from Systemic Lupus Erythematosus (SLE) patients in this chapter, but the 
principles put forth here are applicable to any disease and cell-type setting. This chapter is 
divided into four sections – an Overview of B cell development, B cell classification by flow 
cytometry, Technical Considerations, and B cell flow cytometry in contemporary biomarker 
campaigns.  

2. Overview of B cell development  

B cells are a central component of the immune system, not only because they produce one of 
the most important (and abundant) molecules in human serum – the class-switched high 
affinity antibody – but also by sensing innate stimuli, processing and presenting antigens to 
T cells and by producing pro- and anti-inflammatory cytokines. Class-switched antibodies 
(IgG, IgA, IgE) play critical effector roles as well: directing antibody-dependent cellular 
cytotoxicity (ADCC), phagocytosis and complement fixation to neutralize pathogens. The 
terminally differentiated plasma cell, residing primarily in the bone marrow, produces high 
affinity antibodies, sometimes providing high titer antibodies for as long as 75 years, 
depending on the antigen (Amanna et al., 2007; Crotty et al., 2003; Wrammert et al., 2009).  

B cells originate from hematopoietic stem cells, starting their journey in the bone marrow 

(Figure 1). The B cell receptor (BCR) variable region of the heavy chain locus is rearranged 

to produce a functional heavy chain and spliced together with the μ constant region to 

produce IgM. The heavy chain is paired with the surrogate light chain forming the pre-BCR. 

If a productive signal is transmitted, the light chain undergoes rearrangement. Together, the 

newly paired heavy and light chain undergo selection in the bone marrow: most immature B 

cells with a high affinity for self proteins undergo apoptosis or the variable region of either 

the heavy or light chain can be rearranged anew; those with unproductive BCRs undergo 

‘death by neglect’ and the small fraction that signals optimally proceeds down the 

developmental pathway. B cells that survive this process are now considered immature and 

begin to transition out of the bone marrow and to the secondary lymphoid organs. Further 

deletion of the transitional B cell population can occur (Carsetti et al., 1995), and the variable 

region of either the heavy or light chain can be rearranged further (Toda et al., 2009; 

Nemazee, 2006). The transitional B cell traffics to the secondary lymphoid organs and 

differentiates into a mature naïve B cell, now expressing the variable regions of the heavy 

chain spliced together with the δ constant region to produce IgD (Monroe et al., 2003). A key 
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difference between the transitional B cell and the mature naïve B cell is the response to 

antigen – a transitional B cell will undergo apoptosis if the BCR is triggered with a cognate 

antigen, the naïve B cell will become activated (Monroe et al., 2003). An activated naïve B 

cell proliferates, internalizes the antigen via the BCR, and processes and presents antigen-

derived peptides on MHC class II. With help from a specialized population of CD4+ T 

follicular helper cells (TFH), the B cell forms a germinal center. Through the course of the 

germinal center reaction, the B cell proliferates and daughter cells rearrange the BCR locus, 

resulting in class-switching (from IgM and IgD to either IgG, IgA, or IgE) and introduction 

of non-germline encoded nucleotides that result in unique BCR specificities. Each new 

daughter cell tests its BCR for affinity on follicular dendritic cells; those with higher affinity 

tend to survive. This process is collectively referred to as somatic hypermutation and 

affinity maturation. A subset of the activated B cells further differentiates into memory B 

cells and plasma cells. With a higher affinity BCR than those in the naïve pool, memory cells 

can respond faster and with greater magnitude than their naïve counterparts. Plasma cells 

are the final stage of B lineage development and travel to the bone marrow (and in some 

cases the secondary lymphoid organs) where they can produce antibodies for many years.  

 

Fig. 1. An overview of B cell development. B cell development initiates in the bone marrow 

where the B cell receptor (BCR, ) is rearranged and expressed on the surface of immature B 

cells (Imm. = Immature). The developing BCR pairs with signaling molecules at this early 

stage ( ). Cells with appropriate BCR affinity (neither too high nor too low) exit the bone 

marrow and traffic to the secondary lymphoid organs (2º = Secondary). Here, the 

transitional B cell completes the maturation process to become a naïve B cell, expressing 

both IgM ( ) and IgD ( ). Upon activation by antigen, and with Follicular T cell (TFH) 

help, the naïve B cell forms a germinal center. The BCR is rearranged further and 

plasmablasts and memory B cells (Mem. = Memory) are formed, expressing IgG, IgA or IgE 

( ). Plasma cells are the final stage of differentiation, secreting soluble Ig ( ) and 

homing to the bone marrow. Exceptions to this paradigm are noted in the text 
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If an optimal survival niche is not found, plasma cells are short lived. The plasma cell is 
optimally designed to produce large amounts of antibody molecules – somewhat analogous 
to the manufacturing capabilities of a biotechnology company. It should be noted that, in 
some cases where multivalent antigens can cross-link the BCR efficiently, T cell help is not 
required for antibody production, although germinal centers are not typically formed. 
Throughout this dynamic differentiation process, autoreactive B cells are kept in check by 1) 
direct deletion through apoptosis, 2) receptor editing of the BCR, and 3) through anergic 
BCR-driven signals, rendering the B cell unresponsive to stimulation. It is the dysregulation 
of these tolerance mechanisms that is thought to contribute to the survival of pathogenic 
autoreactive B cells and possibly result in autoimmunity. 

3. B cell classification by flow cytometry 

The flow cytometer is a useful instrument for the study of B cell differentiation, maturation 
and development. At any moment in time, the cellular composition of our bodies reflects a 
balance between the input of new cells versus the expansion and death of existing cells. 
Taken in whole, cells are transported to their tissue sites via the bloodstream and any given 
sample is a snapshot in time of the constituents of the biologic highway. Cells continuously 
enter and exit the extravascular space making blood a convenient and minimally invasive 
sample that captures the diversity of cells as they traverse the body to interact with other 
cells to mediate their effector functions. With respect to B cells, the antigens displayed on the 
cell surface are indicative of their developmental stage and may also reflect ongoing 
pathologic processes. Indeed, the paradigm of B cell classification has evolved to the extent 
that different B cell types have been awarded descriptive names. However, caution is 
advised to those that rely solely upon naming convention without functional validation of 
those immunophenotypic descriptions. As flow cytometers continue to advance in their 
ability to detect more antigens simultaneously, and as investigators continue to link 
functional readouts to phenotypic identities the exact definition of a given cell type is subject 
to change.  

For those new to B cell investigations via flow cytometry, it is advisable to start with 
“anchor” markers and to devise a strategy to establish a B cell gate. For example, CD45 
identifies all leukocytes in peripheral blood and can clearly separate this population from 
debris or dying cells and erythrocytes (Figure 2). The B lineage markers most commonly 
used to identify B cells in the blood are CD19 and CD20 and additional markers can 
characterize a variety of distinct subsets. Using this approach at least seven circulating B cell 
sub-populations can be identified: 1) immature, 2) transitional, 3) mature naïve, 4) non class-
switched memory, 5) class-switched memory, 6) CD27- memory, 7) plasmablasts/cells. 
These B cell populations are identified by markers that are now well established; we can 
describe them as “pillars” of B cell biology and are expanded in more detail below. 

Antigenic pillars of B cell biology – classification and caveats 

Two classification systems originated in the early 1990’s (Maurer et al., 1990; Maurer et al., 

1992; Pascual et al., 1994), both demonstrating discrete populations that could be reliably 

measured over time. In the classification scheme described by Maurer et al., a combination 

of CD19, IgD and CD27 provide a means for describing three circulating mature B cell 

populations where “cB” refers to “circulating B cell”: “cB1 naïve” (IgD+CD27-), “cB2 non-
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class switched memory” (IgD+CD27+) and “cB3 class-switched memory” (IgD-CD27+) 

(Figure 3A). The characterization of a “double negative (DN)” (IgD-CD27-) memory B cell 

population was introduced later (Wei et al., 2007; Jacobi et al., 2008). This population has 

been shown to be elevated in some patients with lupus and has become commonplace in the 

classification system using IgD and CD27. Therefore, DN memory B cells are also included 

in Figure 3A. This system is still routinely used to monitor changes in peripheral B cell 

composition in patients with SLE treated with investigational agents (Belouski et al., 2010).  

 

Fig. 2. Establishing the B cell gate. Blood from one healthy donor with recent influenza 

vaccination is shown to demonstrate B cell lineage gate. CD45 is used to discriminate 

leukocytes  from red blood cells and debris. Co-staining with CD19 and CD20 separates 

B cells 
 
from dim CD20 expressing T cells  and CD20 negative plasmablasts/cells  

In 1994, Pascual et al. introduced additional markers to further study mature B cells. In the 
tonsil, B cells were characterized by activation states using CD38, CD23, and CD77 
expression in addition to IgD. This resulted in a classification scheme whereby “mature B 
cells” were binned into categories Bm1 through Bm5 (Figure 3B) (Pascual et al., 1994). 
However, the focus of this classification system was on B cells involved in germinal centers 
formed in lymphoid tissue and was not correlated with peripheral blood populations. 
Mature naïve B cells were classified by surface IgD and CD38 expression (Bm1 naïve: 
IgD+CD38-, Bm2 naïve/activated: IgD+CD38+intermediate) and somatic mutation status in 
VH region genes of the BCR. These populations were shown to have virtually no mutations. 
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However, it is relevant to note that IgG+ cells were depleted prior to gene rearrangement 
studies. Germinal center founder B cells were identified as Bm3: IgD-CD38++CD77+ (dark 
zone centroblasts) and Bm4: IgD-CD38++CD77- (light zone centrocytes) and showed 
elevated proliferation by ki-67 and increased mutational status and class switching to IgG+. 
Memory B cells were identified as Bm5 (IgD-CD38+/-) and demonstrated somatic 
hypermutation and class switching to IgG+. Bohnhorst et al. showed a correlation between 
tonsil and blood in healthy and primary Sjögren’s syndrome donors for most of the Bm 
subpopulations; Bm1-2 (naïve/activated) and Bm5 (memory: early CD38+ and late CD38-). 
Germinal center founder cells identified as Bm3 and Bm4 (IgD-/CD38++) were not present 
in Bohnhorst’s dataset (Bohnhorst et al., 2001). CD27 was also added to further discriminate 
memory B cell status. Once again, cells were sorted using cell surface markers (IgD, 
CD38,CD27) to study the somatic mutation status in VH region genes of the BCR. These 
studies demonstrated that the “Bm1” population included both un-mutated BCR (CD27-) 
and mutated BCR (CD27+) populations; whereas “Bm2” showed no gene rearrangement, 
thus bolstering the paradigm that IgD+CD38+CD27- cells are antigen inexperienced B cells.  

 

Fig. 3. B cell subset classification. Blood from one healthy donor is shown to demonstrate 
classification using IgD, CD27, and CD38. B cells are initially gated using CD45+ and  
co-expression of CD19+ and CD20+. A) cB1-cB3 and DN are defined using IgD and CD27. 
Mature Naïve B cells (IgD+CD27-) are designated cB1 (green), non-class switched memory  
B cells (IgD+CD27+) are designated cB2 (red), class-switched memory B cells (IgD-CD27+) 
are designated cB3 (blue), and CD27- memory B cells (IgD-CD27-) are designated DN (purple). 
B) Bm1-Bm5 are defined using IgD and CD38. Naïve B cells (IgD+CD38-) are designated Bm1, 
naïve/activated B cells (IgD+CD38+intermediate) are designated Bm2. Germinal center 
founder B cells (IgD-CD38++) in tonsil are defined as Bm3 (CD77+) and Bm4 (CD77-) (data 
not shown). In blood, this population (IgD-CD38++) is comprised of plasma blast/cells and 
designated PC. Memory B cells are classified as Bm5early (IgD-CD38+intermediate) and 
Bm5late (IgD-CD38-). The color schemes listed in A) are maintained in B) to demonstrate the 
location of each cB/DN population in the Bm scheme 
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The cB and Bm classification systems have limitations if used in isolation. For example, 

naïve B cells have been defined as cB1 or Bm1/2, depending on the investigator. However, 

with a more comprehensive arsenal of surface markers (Table 1), the heterogeneity of each B 

cell population becomes evident. As an example of this heterogeneity, Figure 4 demonstrates 

that the cB1 population also includes transitional CD10+ cells and the Bm1/2 population is 

muddled by CD10+ transitional cells and IgD+ non-class switched CD27+ memory cells. 

Indeed, more discrete populations have been described (Wei et al., 2007; Sanz et al., 2008). 

 

Fig. 4. Limitations of using cB1 and Bm1/2 in isolation to define the naïve B cell population. 

Blood from one healthy subject with recent influenza vaccination is shown. B cells are 

initially gated using CD45+ and co-expression of CD19+ and CD20+. IgD, CD27, CD38 are 

used to capture naïve B cells using both classification systems. Subpopulations are 

backgated to visualize heterogeneity in reciprocal classification schemes. Additionally, each 

classification scheme (cB1, Bm1, Bm2) is shown using CD10 and CD27 to identify 

CD10+CD27- transitional B cells. A) cB1  (IgD+CD27-) consists of transitional cells 

(CD10+CD27-)  as well as mature naïve (IgD+CD27-CD38-CD10-) B cells  and 

activated naïve (IgD+CD27-CD38+CD10-) B cells . B) Bm1  (IgD+CD38-) consists of 

mature naïve (IgD+CD27-CD38-CD10-) B cells  and non-class switched memory 

(IgD+CD27+CD10-) B cells . C) Bm2  (IgD+CD38+) consists of transitional cells 

(CD10+CD27-)  as well as activated naïve (IgD+CD27-CD38+CD10-) B cells  and 

non-class switched memory (IgD+CD27+CD10-) B cells  
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Marker Antigen Specificity on B cells* Function 

IgM First heavy chain immunoglobulin isotype 
expressed by B cells 

Eliminates pathogens in the early 
stages of B cell mediated immunity, 
often referred to as the “natural 
antibody” 

IgD Second heavy chain immunoglobulin isotype 
expressed by B cells 

Acts as receptor for antigen 
inexperienced B cells, stimulates 
basophils to release anti-microbial help 

IgG Immunoglobulin isotype expressed B cells after 
differentiation in the germinal center, secreted 
by plasma cells 

Provides the majority of antibody-
based immunity against invading 
pathogens, provides passive immunity 
to fetus 

HLA-DR Major histocompatibility complex class II, 
expressed on all mature B cells except non-
proliferating plasma cells 

Plays key role in antigen presentation 

CD10 Expressed on immature and transitional B cells 
and possibly post germinal center B cells 

Important in B cell development 

CD19 One of the core components of the BCR 
expressed early in development, retained 
throughout maturation process, down-
modulated in bone marrow resident plasma 
cells 

Acts as signaling complex throughout 
life of B cell 

CD20 Expressed on B cells from late pro-B cell phase 
to mature memory cell, down-modulated in 
plasma blast/cells 

Acts as calcium channel in cell 
membrane and important in B cell 
activation and proliferation 

CD22 Expressed cytoplasmically early in B cell 
development (late pro-B), surface expression 
coordinated with IgD, down-modulated in 
plasma cells 

Regulates B cell adhesion and signaling 
functions 

CD27 Expressed on memory B cells and plasma 
blasts/cells 

Involved with memory differentiation, 
upregulated on plasma blasts 

CD38 Expressed on various activated B cell 
developmental stages 

Thought to indicate activation status of 
cell 

CD45 Expressed on all nucleated hematopoietic cells Essential for antigen receptor signal 
transduction and lymphocyte 
development 

CD138 Expressed on plasma cells Important for plasma cell adhesion to 
bone marrow stromal matrix 

*Please refer to (Neil Barclay et al., 1997) for additional details 

Table 1. Description of B cell related markers. Description of the marker’s specificity on B 
cells only. The marker may be expressed on other cell populations with other functions 

The markers most commonly used in our laboratory to analyze peripheral blood B cells are 
CD45, CD19, CD20, IgD, CD10, CD38, CD27 and CD138. With this strategy, using CD19 and 
CD20 as our anchor gate, we define the following populations within the IgD positive B cell 
population: transitional (IgD+CD27-CD38+CD10+), quiescent and activated naïve 
(IgD+CD27-CD38-/+CD10-), and non class-switched memory (IgD+CD27+CD38-/+CD10-).  
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The IgD negative B cells are comprised of immature (IgD-CD27-CD38+CD10+), class-
switched memory (IgD-CD27+CD38-/+ and IgD-CD27-CD38-/+) and plasma blast/cell 
(CD20-IgD-CD27++CD38++ CD138-/+). These markers may not be appropriate in all 
situations and a number of caveats should be noted: [1] In clinical situations where a B-cell 
monoclonal therapy is used, an alternate B lineage marker may be required. For example, 
CD19 is used in most Rituximab trials since CD20 is the therapeutic target, [2] If CD20 is 
used in isolation to identify B lineage cells, a T cell marker is recommended as some T cells 
express low levels of CD20 (Figure 2) (Hultin et al., 1993), [3] Caution should be exercised 
when using CD20 to establish the initial B cell gate, as plasma cells lose expression of this 
marker upon terminal differentiation (Figure 2), [4] With regard to naïve B cell populations, 
while most IgD+ cells in the periphery co-express IgM, and IgD negative populations are 
assumed to express class-switched immunoglobulins (Klein et al., 1998), rare populations 
that are exclusively IgM+ or IgD+ have been described (Belouski et al., 2010; Weller et al., 
2004), [5] CD38 is continuously expressed on B cells with frequent modulation of 
fluorescence intensity throughout development and therefore defining CD38+bright and 
CD38+dim can be subjective without proper controls and finally, [6] CD19 expression on B 
cells can be quite dim in patients with SLE, so selecting a bright fluorochrome is important.  

 

Fig. 5. Impact of gating strategy of B cells. Restricting the B cell lineage anchor gate can 
result in exclusion of plasma cells. Blood from one healthy subject with recent influenza 
vaccination is shown. B cells are initially gated using CD45+ 

There is still considerable debate on the phenotypic classification and nomenclature of 
antibody secreting cells. Uncertainties in classification most likely reflect the variety of 
surface antigens that can be modulated on the basis of their maturation and activation state, 
residence in bone marrow, blood or tissue compartments as well as the relative age of the 
individual (Caraux et al., 2010). A particular challenge is the differentiation of plasma cell 
precursors, aka plasmablasts, from the terminally differentiated, non-proliferating plasma 
cells. Growing evidence suggests that plasmablasts can be distinguished from plasma cells 
by their expression of MHC class II, elevated chemokine receptor expression (CXCR4,  
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CXCR3; suggestive of homing to inflamed tissues or bone marrow), and proliferative 

capacity (as measured by ki-67) (Odendahl et al., 2005; Jacobi et al., 2010b). In healthy 

subjects plasmablasts appear in the blood as a transient population that arises in response to 

antigen challenge (Chaussabel et al., 2008) and can be studied in this setting. Although 

tissue resident plasma cells downmodulate CD45, we are comfortable using CD45 to gate on 

plasma cells in peripheral blood (Figure 5) (Pellat-Deceunynck and Bataille, 2004; Schneider 

et al., 1997). Overall, we recommend that each lab carefully evaluate their schema for 

phenotyping plasmablast and plasma cells and generate data to support their decisions 

prior to embarking on tests with clinical specimens. 

To further understand B cell heterogeneity and for better comparison of data across 

laboratories, it will be important for investigators to work toward more comparable data 

sets, and bring together data from many individuals for comparisons. An array of antigens 

could be summarized into a proteomic array of surface phenotypes and be analyzed in a 

comparable manner to transcription analysis by microarray. Some investigators are using 

complex multi-color panels (e.g. 20+ colors) to address these challenges (Lugli et al., 2010b; 

Lugli et al., 2010a; Gattinoni et al., 2011; Qian et al., 2010), but the impact of fluorescent 

overlap on the quality of these measurements is still a concern for everyday use, and may be 

limited to specialized laboratories. One new instrument that holds promise in approaching 

this kind of global standard is the elemental cytometer (Bendall et al., 2011), capable of 

analyzing a large array of data (e.g. 50+ parameters) and is not limited by overlapping 

fluorescence like more traditional flow cytometric platforms.  

Dysregulated B cell Phenotypes in SLE 

Methods to detect deviation from healthy development patterns have provided 

information for the diagnosis and monitoring of B cell aberrancies, especially in the field of 

oncology (Craig and Foon, 2008). Likewise, in autoimmune diseases such as SLE, the 

cellular composition of the B cell compartment is notably skewed. This dysregulation may 

provide insight into the steps that contribute to a break in tolerance observed in 

autoimmune diseases. Some SLE patients have a higher proportion of circulating T 

follicular helper (TFH) cells (CD4+CXCR5+ ICOS+) and plasmablast/cells 

(CD19dimCD27+CD38++) compared with healthy individuals (Hutloff et al., 2004; Illei et 

al., 2010). Increased frequency of TFH cells correlate with anti-dsDNA titer (Simpson et al., 

2010) and increased plasma cell numbers correlate with disease activity (Dorner and 

Lipsky, 2004). The high number of TFH cells could reflect aberrantly high number of 

germinal centers; this could trigger the development of more plasma cells, and, later-on, 

pathogenic auto-antibodies. Likewise, on peripheral B cells, CD38 expression can be 

increased and conversely, CD19 expression decreased. Unusually high numbers of 

transitional cells have also been reported. Elevation of specific memory cell subsets (CD27-

IgD-CD95+) have also been reported by many investigators as well as our own experience 

(Wei et al., 2007; Jacobi et al., 2008b). Finally, it is worth noting that dysregulation of B cells 

could potentially lead to high affinity auto-antibodies. For example, SLE patients exhibit an 

increase in antibody and complement deposition on circulating reticulocytes and platelets, 

correlating with disease activity (Navratil et al., 2006; Batal et al., 2011). Study of these 

deviations may provide clues to disease status and the potential efficacy of established or 

experimental therapeutics. 
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4. Technical considerations 

Flow Cytometry is a powerful analytical tool yet insufficient care in technical considerations 

can lead to data that is difficult to interpret or worse, data that is misleading or incorrect. 

When establishing an immunophenotyping assay, all analytical aspects that might 

contribute to variability must be considered. 

Specimen stability 

Biological material, regardless of origin, begins to change and degrade once removed from 

the body. This presents a unique challenge in flow cytometric assays where accurately 

enumerating and measuring cellular components is dependent on maintaining the integrity 

of the specimen. Choice of specimen (i.e. whole peripheral blood, isolated and 

cryopreserved peripheral blood mononuclear cells (PBMCs)), blood collection tube, anti-

coagulant, and shipping/storage conditions all play a critical role and should all be 

considered. Various whole blood stabilization products, such as Cyto-Chex® BCT, 

TransFix®, and CellSave have become available in the last few years, purporting to provide 

improved stability of surface marker expression and light scatter properties of lymphocytes 

and circulating tumor cells in whole blood. These products can be divided into two 

categories: 1) cell preservative solutions that are added to blood after collection into 

standard anticoagulant blood collection tubes or 2) direct-draw blood collection tubes that 

include both anticoagulant and a cell preservative solution. Although these products were 

initially approved by the FDA for use in extending the stability of blood for CD4 counts in 

remote laboratory HIV testing and maintaining integrity of fragile circulating tumor cells, 

there is promise that other surface markers may be stabilized as well. There is growing 

evidence that the use of blood collection tubes with cell preservative formulation may 

preserve some surface antigen expression superior to that of blood collected with 

anticoagulant alone (Plate et al., 2009; Warrino et al., 2005; Davis et al., 2011). However, a 

cell stabilization formula that truly extends the stability of blood without impacting 

resolution of dim markers has yet to be brought forward. Peripheral (whole) blood is the 

specimen of choice in our laboratory because the composition of cells in the unseparated 

and unfrozen state is most likely to resemble the in vivo state of the blood donor (Belouski et 

al., 2010). Peripheral blood analysis also has the advantage that the cells are exposed to the 

biologic matrix throughout the assay. This is particularly important in clinical trials because 

the therapeutic compound is retained in the specimen.  

Establishing the antibody panel 

The expansion of commercially available monoclonal antibodies conjugated to an ever-

increasing list of fluorescent dyes has provided the opportunity for higher complexity 

multiplexed assays. However, to establish the optimal panel, one must consider: [1] 

expected antigen density and frequency of the cell population of interest, [2] interaction of 

reagents within the panel (spectral overlap between fluorochromes), [3] stability and 

sensitivity to assay conditions (temperature, pH, cell concentration), and [4] the sensitivity 

limitations of the flow cytometer. 

Once the theoretical panel has been constructed, it is good practice to test the features of the 

cocktail of fluorochrome-conjugated antibodies under the conditions that you will use in 
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your study. Questions worth answering include: [1] determination of antibody clone(s) and 

conjugate(s) that correctly identify the population of interest (different clones can generate 

markedly different staining patterns), [2] The optimal titration of each antibody for its 

intended purpose (the density of antigen in the target population may exceed that of the 

healthy range and require a higher antibody concentration to saturate the target), [3] 

whether compensation controls accurately address spectral overlap for each antibody-

fluorochrome, based on expected dynamic range of the data (a fluorescence-minus-one 

(FMO) matrix experiment (example in Table 2) can provide valuable insight during the 

development phase and may identify potentially troublesome compensation issues and/or 

markers with dim or heterogeneous expression), [4] How stable are the fluorochromes in the 

matrix (some fluorescent dyes are sensitive to pH, fixation and photobleaching (e.g. tandem 

dyes))?, [5] Whether antibody cocktails with demonstrated stability and extended shelf life 

(>1 month) can be produced and used. With information about these biochemical components, 

it is now appropriate to develop the assay. 

 FITC  PE  PerCP  APC  Pacific Blue  

Panel  IgD  CD38  CD45  CD27  CD19  

FMO 
FITC  

--  CD38 CD45  CD27  CD19  

FMO  
PE  

IgD  --  CD45  CD27  CD19  

FMO 
PerCP  

IgD  CD38  --  CD27  CD19  

FMO  
APC  

IgD  CD38  CD45  --  CD19  

FMO 
Pacific 
Blue  

IgD  CD38  CD45  CD27  --  

Table 2. Example of Fluorescence Minus One (FMO) Matrix Experiment. In this 5-color 

panel, each antibody-fluorochrome is removed from the matrix, one by one to determine 

spectral overlap issues and establish negative thresholds 

Assay development 

Numerous assay parameters should be tested. These include the evaluation of: [1]the impact 

of sample type (e.g. peripheral blood, PBMC), [2] red blood cell lysis (recipe, temperature 

and timing of lysis), [3] antibody-cell incubation time and temperature, [4] washing and 

acquisition buffers, and [5] the number of cells needed to acquire meaningful data. This is 

particularly true when targeting rare cell populations. Many of the cell populations that 

have been suggested as contributing to chronic inflammation in autoimmune diseases, such 

as TFH and plasmablast/cells, are quite rare in circulation. Advances in the technology of 

rare event detection are warranted and enrichment technologies, such as magnetic bead 
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sorting prior to flow cytometry, may provide an improvement. The impact of enrichment on 

phenotype and function will need to be characterized for each population of interest.  

Setting up and maintaining instrument 

A key aspect to generating reliable and accurate data is ensuring that the instrument is 

properly set up and maintained. There is a wealth of information on how to optimize, 

validate, and maintain flow cytometers so the scope of this chapter will not include 

instrumentation specifics (Green et al., 2011). In brief, the instrument must be first properly 

aligned and characterized. Next, a good routine quality control system must be 

implemented and adhered to. Some clinical trials persist for years, making it even more 

important to maintain data integrity and reduce longitudinal variability. Beads with known 

fluorescent quantities (e.g., MESF, QuantiBRITE) can be used to establish a standard curve 

by which fluorescent intensity can be converted into semi-quantitative measurements, thus 

reducing the impact of longitudinal variability (Schwartz et al., 2004; Wang et al., 2008). 

Ensuring that the flow cytometer has optimal sensitivity for the panel is critical. This is 

especially true if the expected density of the marker is very dim. Figure 6 is an example of 

using standardized beads with known fluorescent properties to test these parameters, where 

Instrument C is inferior in the APC channel, compared with Instruments A and B.  

 

Fig. 6. Sensitivity varies between instruments. SPHEROTM Ultra Rainbow beads were 

acquired using optimal instrument settings on 3 different flow cytometers. Resolution of the 

dim peaks in the APC channel on Instrument C is inferior to Instrument A and B 

Data analysis and Interpretation 

Many software programs are available for post-acquisition analysis of flow cytometry data 
files, including instrument associated acquisition software and stand alone third party 
analysis software. While this flexibility provides the researcher with many tools to 
customize analysis for a specific purpose, caution is advised when establishing the analysis 
template. Electronic listmode/FCS files that are imported from various instruments into 
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third party software may display quite differently based on hardcoded meta-data in the raw 
data and user preferences set within each software. While the actual electronic files have not 
changed, variation in data display can significantly impact the final results. Likewise, the 
technical detail of gating strategy represents another source of variance from standardized 
definitions because differences in gating can easily result in different data output regarding 
a given cell type. For example, a stringent CD19/CD20 gate could exclude circulating 
plasmablast/ cells (Figure 5). 

Another component of data analysis entails understanding the reliability of each 

measurement. Performing validation exercises to establish: [1] the stability of whole blood 

for intended analytes, [2] assay precision (replicates), and [3] inter- and intra-subject 

variability is paramount to interpretation of meaningful changes in phenotype or 

composition after treatment with clinical therapeutics. Although flow cytometric datasets 

are not inherently different than any other regarding statistical analyses, applications in the 

setting of early phase clinical trials incorporate cohort sizes that are not always amenable to 

population-based statistical approaches. We have chosen to highlight one approach to this 

problem that can prove useful in this setting that is referred to as the coefficient of reliability 

(CoR) (Taylor et al., 1989b).  

The CoR tethers reliability to the consistency of repeat measurements in an individual over a 

window of time, calibrating a meaningful change after treatment with a therapeutic agent as 

one compared against each person’s baseline measurement. For this analysis scheme to 

work and reveal a treatment effect in a clinical trial, the within-person variability must be 

well characterized such that one can call-out a change after treatment that exceeds the 

intrinsic variability of the assay.  

A CoR can be determined by dividing inter-subject variability by the total variability 
(inter+intra), resulting in a number from 0.00 (least reliable) to 1.00 (most reliable) (Belouski 
et al., 2010; Taylor et al., 1989a). Using the CoR, one can determine what analytical 
parameter contributes most variance (Table 3). For example, an analyte that shows very little 
intra-subject variability but exhibits high variability between subjects can still be considered 
“reliable”. If more variability is seen within repeat measures from the same subject than is 
observed between subjects on a single draw, the analyte could be considered “unreliable”. 
The reliability of a given measurement can reflect variability that is introduced as a function 
of specimen stability or specimen processing/analysis or can reflect bona-fide biologic 
variability. If one takes care to minimize laboratory variability, datasets with high CoR can 
be attained (Table 3, with discussion below).  

We typically begin our investigations by estimating inter-subject variability (donor-to-
donor) and intra-subject variability across three repeat blood draws in a group of healthy 
and/or diseased donors, and use a threshold of 0.64 as a guide to differentiate between a 
reliable (≥0.64) and unreliable (<0.64) measure; this reflects the original publication from 
Taylor et al (Taylor et al., 1989b)that examined the CoR for CD4 counts in HIV-infected 
persons. As an example using data generated in our laboratory (Table 3), we show the CoR 
of common B cell subsets for nine healthy donors (HD) and five SLE donors with mild 
disease severity. As shown in the Table, nearly all of the measures as expressed in this 
analysis exhibited a high CoR, with many approaching a value of 1.00. Such analyses would 
be promoted for application in a clinical trial, but we caution the reader in assuming that 
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CoR values such as these are typical (we have failed a variety of assays based on CoR 
measures that are not shown here).  

CoR:
inter-subject variability 

(inter- +  intra-subject variability)

0.00 least reliable
1.00 most reliable

Cell populations <200 events

Analyte Parent Gate HD (N=9) SLE (N=5)

%CD3+ 
CD45+ Lymphocytes 

0.87 0.97

%CD19+CD20+ 0.91 0.96

%CD27+CD38++ 

B lineage

0.83 0.81

%CD138+ CD38++ 0.76 0.79

IgD+/CD27-% 0.96 0.96

IgD+/CD27+% 0.96 0.97

IgD-/CD27+% 0.96 0.94

IgD-/CD27-% 0.66 0.94

 

Table 3. Coefficient of Reliability of B cell subsets 

Populations with an average of less than 200 events in Table 3 are highlighted in blue, as 
low event counts are a common laboratory source of low CoR scores. As depicted in the 
Table, it can be seen that not all flagged values fail CoR; only the cell types of lowest relative 
frequency in the blood, i.e., IgD-CD27- B cells in HD appear as (low) outliers in the Table. 
Interestingly, CoR increased as a function of a disease marked by increased frequencies of 
IgD-CD27- B cells in SLE (as much as 3X healthy range), that is, the higher CoR in SLE 
patients most likely reflected the expansion of this cell type in the blood. It is important to 
perform validation exercises in persons that exhibit a targeted pathology to fully characterize 
and understand each assay deployed in the clinical setting (Belouski et al., 2010).  

Maximizing resources 

It is becoming clear that for the medical community to truly leverage the information 
garnered by such flow cytometric investigations, consensus protocols and proficiency 
testing will be required. In lieu of that greater goal, it is important for any given investigator 
to bring forward all details of their immunophenotyping methodologies and to take time to 
understand the potential differences in reporting that exist between investigators and 
laboratories. In this regard, the ISAC (International Society for Analytical Cytometry) 
guidance document “Minimum Information about a Flow Cytometry Experiment” is of 
great value (Lee et al., 2008). Likewise, it would be inappropriate to discount the impact of 
resources to the implementation of a flow cytometric program. Instruments are highly 
technical and provide a service unique to the biomarker portfolio. However, instruments are 
priced accordingly, and the reagents to detect antigens, especially the ‘cutting edge’ 
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fluorochromes, can be quite expensive. Two products would therefore help to reduce the 
cost of flow cytometry by allowing batch analysis: [1] lyophilized antibody panels with 
extended shelf-lives that could detect the “leukocyte proteomic array” of phenotypes and [2] 
collection tubes formulated to extend the window of time for processing whole blood.  

Balancing the needs of the biologist (which is the best population to follow?), the technical 
considerations of the cytometrist (what is the most precise and accurate way to do the 
assay?) and resources (is it worth it?) are a few of the challenges encountered in flow 
cytometry biomarker programs. However, as evidenced in the next section, it is well worth 
the effort. The flow cytometer can provide essential decision-enabling data that unlocks 
evidence of therapeutic efficacy, mechanism-of-action and provide a fascinating snapshot 
into the dynamics of the immune system.  

5. B cell flow cytometry in contemporary biomarker campaigns  

Flow cytometry undeniably offers great insight into B cell biology in health and disease by 
enabling researchers with the ability to identify cells and understand their representation in 
the immune repertoire. The impact of flow cytometry based evaluations becomes even 
greater in the clinical settings because it allows one to understand the pharmacodynamic 
effects of a given treatment and when paired with biomarkers testing functional aspects of B 
cell biology (e.g. the vaccine response). We review some of the more common examples that 
have emerged from integrated assessment of B cells and B cell subsets during clinical 
intervention as examples of the value of understanding B cells in the context of therapeutic 
treatments in the clinic. In particular, we have reported in Table 4 on the phenotype as 
described by the investigator in each study, heterogeneity notwithstanding, and have 
summarized the key findings in Table 5. It is within the reach of these efforts to someday 
use these strategies to measure B cell-related biomarkers for patient selection, or to be 
leveraged in therapeutic co-development as companion diagnostic assays. 

Pharmacodynamic activity of B cell-directed therapeutics 

Strategies that deplete B cells to varying degrees are now commonly applied in the clinic. 
Initially tested in oncology, Rituximab is a chimeric monoclonal antibody that binds the B 
cell surface antigen CD20, leading to depletion of this population (reviewed in Boumans et 
al., 2011; Dorner et al., 2009). Rituximab was first approved in non-Hodgkin’s lymphoma 
(NHL) and has now been approved in many other indications, including chronic 
lymphocytic leukemia, rheumatoid arthritis (RA), and two forms of vasculitis. The 
successful depletion of oncologic B cells in NHL was encouraging enough to trigger the 
study of Rituximab in autoimmune scenarios. Rituximab proved successful in the treatment 
of TNF-resistant RA (in combination with methotrexate) and firmly established the B cell as 
a central player in the autoimmune immune system. Investigators also reported success of 
Rituximab in numerous autoimmune diseases including SLE. Controlled trials of Rituximab 
in SLE (with and without nephritis), however, failed to meet the primary and secondary 
efficacy endpoints although a beneficial effect was observed in some ethnic groups (Merrill 
et al., 2010; Looney, 2010). Rituximab is still used often to treat SLE off-label, and that impact 
on B cells in SLE still provides interesting insights. Most recently, Rituximab was approved 
for two forms of vasculitis associated with anti-neutrophil cytoplasmic antibodies (ANCAs), 
Wegener’s Granulomatosis and Microscopic Polyangiitis. 
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Mechanism  Example  Transitional  Naïve  Memory  Plasmablast 
/ cell  

Anti-CD20 
(depleting)  

Rituximab  nd  ‾ ‾ ｠ 

Anti-BAFF  Belimumab  ‾ ‾ ↑ ｠ 

TACI-Ig  Atacicept  nd  ‾ ↑  ‾ 

Anti-IL-6R  Tocilizumab  nd  ｠  ｠ ‾ 

Table 5. Summary of changes in B cell populations in response to B cell therapeutics. 
Nomenclature varies for each study and this summary is based on the phenotype as 
described by the investigator. Please refer to the text for more details. nd = not determined  

The effects of Rituximab mediated depletion and repletion of the B cell compartment have 
been carefully characterized using flow cytometry (Anolik et al., 2004; Anolik et al., 2007). In 
most subjects, Rituximab leads to the rapid depletion of CD19+ B cells in the peripheral 
blood (Merrill et al., 2010; Edwards et al., 2004), with fewer than 5 cells/μL by two weeks 
post dose. In a Phase 2 efficacy trial of general SLE, approximately 9.5% of treated subjects 
did not reach this level of depletion in the peripheral blood. [Removing these subjects from 
the efficacy analysis did not change the result in SLE.] Interestingly, approximately 26% of 
subjects had developed anti-therapeutic antibodies (Merrill et al., 2010) at week 52, during 
the early stages of B cell repletion.  

The functional impact of B cell repletion was recently described in a study of neo-antigen 
(phiX174) and recall (tetanus toxoid) responses in Rituximab-treated patients. Peripheral B 
cell depletion was achieved (fewer than 5 cells/μL) in all subjects treated with Rituximab. 
The Rituximab-treated group had significantly lower anti-phiX174 responses compared to 
placebo during the window of B cell depletion (weeks 6-8) (Pescovitz et al., 2011). However, 
when re-immunized at weeks 52 and 56, after naïve (CD19+ CD24+ IgD+ CD38-CD10-) but 
not memory (CD19+ CD1c+/- IgD- CD27+ IgM-/+) B cell repletion had begun, the anti-
phiX174 response returned to nearly normal levels. The vaccine memory response was 
tested at 52 weeks and although the memory B cell compartment had not returned to 
normal levels, all subjects mounted a response, albeit weaker in the Rituximab group. The 
impact of this study is important to note. The kinetics of Rituximab depletion and repletion 
of B cells, the half-life of the tetanus titer in healthy individuals (~11 years (Amanna et al., 
2007)) and the new knowledge that Rituximab-treated individuals can rebuild their 
serologic titers once naïve B cell repletion begins will help physicians estimate when to 
begin re-vaccination on a patient-specific basis.  

Resistance to depletion and repletion of B cells may also help identify those patients most 
likely to benefit from Rituximab or when to re-treat therapeutic responders. In SLE, 
Rituximab depletes peripheral naive and memory B cells (CD19+CD27-CD38- and 
CD19+CD27++CD38-, respectively) and circulating plasmablasts (CD19+ CD20+/- CD27++ 
CD38++) (Vital et al., 2011). However, the plasmablast level at 26 weeks may predict relapse 
of the clinical response, as subjects with more than 0.8 plasmablast cells/μL were more  
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likely to relapse then subjects with fewer than 0.8 plasmablast cells/μL. In RA, subjects had 
a more favorable outcome with delayed B cell repletion (both naïve (CD19+IgD+) and 
memory (CD19+ CD27+) cells) (Teng et al., 2009; Roll et al., 2008) and reduced plasma cells 
(CD79a+ CD20-) in the synovium (Teng et al., 2009). A second study of RA demonstrated 
early relapse was characterized by higher non-class switched memory B cells (CD19+ IgD+ 
CD27+) before therapy (Roll et al., 2008). These studies suggest that the efficacy of 
Rituximab could be related to pre-treatment levels of unusual memory B cells, plasmablasts 
or plasma cells. Leveraging these studies, but using transcript analysis, a recent report 
suggests that plasmablast levels can identify those patients most likely to respond to anti-
CD20 depletion therapies (Owczarczyk et al., 2011).  

The effects of Belimumab (anti-BAFF) can be differentiated from those of Rituximab, where 
Belimumab selectively leads to the reduction in naïve (CD19+ IgD+ CD27- CD10-) and 
transitional (CD19+ IgD+ CD27- CD10+) B cells but leaves the memory (CD19+ CD27+ IgD-) 
B cell compartment intact (Jacobi et al., 2010a; Jacobi et al., 2010b). Non-class switched 
memory B cells (CD19+ CD27+ IgD+) cells and the compartment containing plasmablasts 
and plasma cells (CD19+ IgD- CD27++ CD38++) decreased after much longer exposure to 
therapy (~1.5 years). The phase III studies of Belimumab used a novel SLE Responder Index 
(SRI) (Furie et al., 2009) based on Belimumab’s clinical phase II experience. With this 
strategy, Belimumab demonstrated efficacy in SLE and was approved by the FDA in 2011. 
Further studies of agents targeting BAFF have been initiated. Two phase III studies of Lilly’s 
LY2127399 in patients with SLE are currently recruiting (Clinical Trials identifiers: 
NCT01196091, NCT01205438) and a phase III study of Anthera’s Blisibimod (A-623) is 
scheduled to study safety and efficacy in SLE (NCT01395745).  

The effects of Atacicept treatment (TACI-Ig) are distinct from Rituximab and Belimumab as 
well. Atacicept is a fusion protein of the extracellular portion of the TACI receptor and the 
Fc portion of human IgG. The TACI receptor binds BAFF and APRIL, two proteins with 
numerous functions (Davidson, 2010), including providing homeostatic survival signals to 
naïve B cells (BAFF) and plasma cells (APRIL) (Mackay and Schneider, 2008). Atacicept 
reduces the level of circulating naive B cells (CD19+ IgD+ CD27-) and plasma cells (CD19dim 
CD38bright). Memory B cells (CD19+CD27+CD38-) exhibit a transient increase in the 
peripheral blood (van Vollenhoven et al., 2011). Atacicept additionally reduces total 
immunoglobulin levels (IgM, IgG and IgA) (Dall'Era et al., 2007; van Vollenhoven et al., 
2011). In RA, Atacicept did not meet the primary endpoint in two studies - in subjects with 
inadequate responses to methotrexate (van Vollenhoven et al., 2011) and subjects with 
inadequate response to TNF antagonist therapy (Genovese et al., 2011). By impacting a 
broad spectrum of B cell subsets, BAFF/APRIL blockade may deplete long lived tissue 
resident plasma cells that produce pathogenic autoantibodies; however, BAFF/APRIL 
blockade may carry a greater infectious risk due to the depletion of protective antibody 
titers as well.  

Finally, we discuss a molecule that significantly decreases the frequency of circulating 
plasma cells, Tocilizumab (anti-IL-6R). IL-6 has numerous roles in immune regulation, 
hematopoiesis, inflammation and oncogenesis (reviewed in (Kishimoto, 2010)) as well as 
providing survival signals to plasmablasts and plasma cells. Tocilizumab was efficacious in 
RA patients in several Phase 3 trials and has been approved in the US for patients who have 
failed TNF-blockers (Yazici et al., 2011) and in small studies of other autoimmune disorders 
(Kishimoto, 2010). In an open-label study of SLE subjects, Tocilizumab led to a significant 
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decrease in circulating plasma cells (CD19low IgD- CD38+++), a decrease in serum IgG levels 
and a promising clinical response (Illei et al., 2010). There were no other changes in 
peripheral T or B cells.  

More traditional therapies like cyclophosphamide may result in B cell depletion to a degree 
not as fully appreciated in the past. For example, cyclophosphamide induced significant B 
cell depletion in a trial compared with Rituximab in ANCA-associated vasculitis (Stone et 
al., 2010). 

Modulation of B cell function 

CD22 is an important signaling molecule for the homeostasis of early B lineage cells (Tedder 
et al., 2005). CD22 is expressed on developing pro- and pre- B cells as well as naïve B cells 
and is lost after activation; i.e. memory B cells, plasmablasts and plasma cells do not express 
CD22 (Dorken et al., 1986; Tedder et al., 2005). Epratuzumab is an anti-CD22 monoclonal 
antibody that modulates B cell function although the mechanism of action in vivo is unclear. 
In vitro, Epratuzumab leads to the rapid internalization of the CD22/antibody complex, 
resulting in significant CD22 phosphorylation (Carnahan et al., 2003) as well as a change in 
adhesion molecule cell surface expression and migration (Daridon et al., 2010). 
Epratuzumab is not thought to mediate ADCC or complement-dependent cytotoxicity 
(CDC) in vivo. In SLE, however, Epratuzumab leads to a significant reduction in CD27-
negative B cells (primarily naïve and transitional populations) (Dorner et al., 2006; Jacobi et 
al., 2008a). The recent hypothesis that Epratuzumab alters B cell migration is compelling 
(Daridon et al., 2010) and may shed light on the mechanism of action, but has yet to be 
tested in the clinic. Epratuzumab has shown promising results in combination with 
Rituximab in oncology (Grant, 2010); SLE trials were terminated early due to insufficient 
drug supply. An interim report of the data suggested that Epratuzumab was effective 
(Wallace, 2010), however this study was not powered to detect statistical differences 
between treatment groups. A new set of phase III studies in severe general SLE 
(NCT01262365 and NCT01261793) will provided a clearer picture soon.  

Additional molecules such as those targeting JAK3 kinase, mTOR and Syk (Changelian et 
al., 2008; Fernandez and Perl, 2010; Weinblatt et al., 2008) have been shown preliminarily to 
modulate B cell function in autoimmune subjects. Ongoing trials continue to evaluate the 
effectiveness and safety of these agents in various autoimmune disorders.  

Pharmacodynamic activity of indirect B cell therapeutics 

Therapeutic blockade of T cell help also removes essential B cell survival signals. In such 
circumstances a “T cell therapeutic” may also be considered a “B cell therapeutic”; or an 
indirect B cell target. A number of molecular interactions are required to form the germinal 
center reaction and to produce high affinity antibodies. Costimulation through CD28:CD80, 
CD28:CD86 or ICOS:ICOSL is required for naive T cell activation. T cell help to B cells 
requires CD40:CD40L interactions as well as ICOS:ICOSL and IL-21 signaling. Therapeutic 
blockade of each of these signaling nodes could reduce the generation of high affinity 
autoreactive antibodies.  

Abatacept is a fusion protein of the extracellular domain of CTLA4 and the Fc portion of 
human IgG. CTLA4 binds CD80 and CD86 with higher affinity than CD28, thus making a 
fusion protein a good therapeutic candidate for blocking early steps in T cell activation.  
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A controlled trial of Abatacept in SLE (in patients with arthritis, serositis, or discoid lupus) 
did not reach the primary endpoints, however a post-hoc analysis demonstrated a 
significant benefit in certain SLE subgroups and issues with the study design, including the 
relatively high dose of glucocorticoids mandated during the trial, may have obscured the 
trial results (Lateef and Petri, 2010). Abatacept increases the proportion of monocytes in RA 
subjects (Bonelli, 2010) and baseline numbers of CD28+ T cells may predict remission (Scarsi 
et al., 2011).  

Another approach is to block signaling in established, autoreactive germinal centers. 
BG9588, a monoclonal anti-CD40L antibody, showed initial clinical success in renal SLE 
(Boumpas et al., 2003). Safety concerns led to the discontinuation of this program due to 
thrombotic events due to platelet CD40L expression (Buchner et al., 2003; Henn et al., 2001). 
A second generation anti-CD40L antibody (IDEC-131) showed initial benefit in SLE subjects, 
however in a large phase II IDEC-131 study failed to show efficacy over the placebo group. 
Additional clinical study of IDEC-131 was initiated in other autoimmune settings but halted 
after a thromboembolic event in a Crohn’s trial (Sidiropoulos and Boumpas, 2004). Of 
interest to the flow cytometry expert, in a study of four renal SLE patients, BG9588 in 
combination with prednisone was capable of modulating effector B cell populations and 
return components of the dysregulated phenotype to normal. Highly activated naïve and 
memory B cells (expressing CD38++) and intracellular Ig+ plasma cells (CD19+ CD38++) 
were reduced following two treatments of BG9588 (Grammer et al., 2003), although they 
returned to high baseline levels after treatment. This in combination with a reduction in 
proteinuria and anti-dsDNA antibodies (Grammer et al., 2003; Sidiropoulos and Boumpas, 
2004) suggested that CD40:CD40L interactions contribute to the generation of autoreactive 
plasmablast and plasma cell populations and that perhaps other, safer, therapeutics that 
target the GC reaction could provide benefit in SLE. 

Recent advances in T cell immunology have identified a specialized subset of CD4 T cells 
that provide help to B cells attempting to form a germinal center. This population has been 
called T follicular helper cells (TFH) (Crotty, 2011). Naïve CD4 T cells become activated in 
the T cell zone of the secondary lymphoid organ. The inducible costimulator, ICOS, is 
expressed, and ICOS engagement drives the upregulation of CXCR5 and BcL6, migration 
toward the B cell zone and differentiation into a TFH (Choi et al., 2011). Phenotypically, TFH 
are characterized by their high expression of CXCR5, ICOS and PD-1, and location (if 
possible). Patients with an ICOS-null mutation do not develop TFH and have significantly 
reduced serum IgG concentrations (Bossaller et al., 2006; Warnatz et al., 2006; Grimbacher et 
al., 2003). 

MEDI-570 is a monoclonal antibody that depletes ICOS-bearing T cells and is currently 
being tested in a phase I study of SLE (NCT01127321). AMG 557 is a monoclonal antibody 
that binds ICOSL and blocks the ICOS:ICOSL interaction; AMG 557 is currently being 
studied in SLE (NCT00774943), Subacute Cutaneous Lupus Erythematosus (NCT01389895), 
Psoriasis (NCT01493518), and SLE with Lupus Arthritis. NN8828 is a monoclonal antibody 
that binds the cytokine IL-21, which has many effects including the prolongation of the 
germinal center reaction; NN8828 is being studied in RA (NCT01208506). It will be 
intriguing to see these data come forth over the next few years – does safe blockade of the 
GC reaction with anti-ICOS, anti-ICOSL or anti-IL-21 lead to similar effects on the 
immunophenotype as anti-CD40L?  
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Patient selection 

One of the goals of personalized medicine is to identify biomarkers for patient selection. An 
elegant example of this is the recent description of a peripheral blood plasmablast biomarker 
to identify non-response to anti-CD20 depleting therapy in RA (Owczarczyk et al., 2011). 
Many studies had shown that the level of plasmablasts (or pre-plasma cells) were high in 
non-responders (Boumans et al., 2011). Behrens et al. demonstrated that two mRNA 
biomarkers of plasmablast levels in peripheral blood (IgJhiFCRL5lo) identify a group of one in 
five RA subjects who are not likely to respond to anti-CD20 depletion therapy. Peripheral 
blood B cells were identified flow cytometrically (CD19+) and whole blood RNA samples 
were assayed for CD20 mRNA expression by RT-qPCR. Levels of the FCRL5 transcript in 
whole blood correlated with the proportion of naïve B cells while the IgJ transcript was anti-
correlated with the levels of naïve and memory B cells. Therefore, the IgJhiFCRL5lo whole 
blood transcript could identify subjects with high levels of plasmablasts and plasma cells 
and low levels of naïve cells. 

For other therapeutic programs, data is more preliminary. For example, baseline numbers of 
CD28+ T cells have been shown, in a small study, to predict remission of RA treated with 
Abatacept (Scarsi et al., 2011). One thing that is clear is that flow cytometry has utility in 
patient selection in its own right but can also enable utilization of other platforms towards 
this goal. 

6. Conclusion 

In summary, the clinical flow cytometer has provided decision-enabling data in the 
monitoring of therapeutic impact (e.g., B cell depletion and repletion, normalization to the 
healthy phenotype), and is beginning to be used to identify biomarkers for patient selection. 
We hope to help clarify the context of flow cytometry in clinical development and provide 
some of our insight into successful implementation of immunophenotyping biomarker 
programs. However, to those new to B cell investigations via flow cytometry, caution should 
be utilized - it should be acknowledged that “anyone can get dots” on the flow cytometer but 
that it is up to the investigators to truly understand their assay. With this rigor, it will be 
possible to generate meaningful biomarker data and help guide decision-making on the next 
generation of B cell therapeutics.  
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