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1. Introduction

Negative refractive index (NRI) media are extensively studied nowadays. The interest in these
materials keeps on increasing since the year 2000 when a team at the university of California
in San Diego (UCSD) published an experimental demonstration of the existence of a material
presenting both a negative permittivity and negative permeability (Shelby et al. (2001); Smith,
Padilla, Vier, Nemat-Nasser & Schultz (2000)). They also showed that it is necessary to
attribute a negative refractive index to such media (Smith & Kroll (2000)). Novel physical
phenomena such as the inversion of Doppler’s effect, Cerenkov effect and focusing using flat
slabs are then predicted based on the theoretical publication V. G. Veselago dating back to
1967 (Veselago (1968)).

Though different terminologies are used for these media (the actual terms are "left handed
media", "double negative metamaterial", "negative refractive index metamaterial"), the
concept of backward wave propagation (wave with a phase velocity propagating in the
opposite direction with respect to the propagation of energy) dates back to at least
1904 (Moroz (n.d.); Tretyakov (2005)). Indeed, H. Lamb has studied this concept for
mechanical systems and A. Schuster in the field of electromagnetism. Independently, H.
C. Pocklington (Pocklington (1905)) demonstrated theoretically that in a media supporting
backward wave propagation, the phase velocity can be directed in the direction of the source,
in the inverse direction of the group velocity. Forty years later (in 1944), L. I. Mandelshtam
studied the properties of NRI media (Mandel’shtam (1944)) and more than twenty years later,
V. G. Veselago published an exhaustive study on NRI media. The interest in these media then
decreased up to the year 2000.

The actual revival of interest for these media can certainly be explained published (Smith,
Padilla, Vier, Nemat-Nasser & Schultz (2000)). This demonstration has been performed
at microwaves by assembling a medium of periodic metallic wires (for negative
permittivity) (Pendry et al. (1996)) and a medium of split ring resonators presenting a negative
permeability (Pendry et al. (1999)). These media can be assimilated to a crystalline structure
of artificial molecules hence the term metamaterial.

Different technological solutions have been proposed to synthesize negative refractive index
media, such as the use of backward wave transmission lines (Eleftheriades et al. (2003); Lai
et al. (2004)) and photonic crystals in negative phase velocity regime (Gadot et al. (2003);
Gralak et al. (2000); Qiu et al. (2003)). The approach to be chosen depends mainly on the
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2 Will-be-set-by-IN-TECH

applications and the frequency band of interest. All the approaches have the same aim i.e
to synthesize NRI metamaterials for the potential applications and considering the industrial
and economic potential of such materials.

The synthesis and study of NRI metamaterials is however difficult because of its
heterogeneous characteristics. For an easier study of applications of metamaterials
in microwave frequency range, homogenization and macroscopic description of these
metamaterials can prove to be very helpful. It can specially allow a higher degree of freedom
to overcome the fundamental limitations imposed by natural materials on the performances
of microwave devices.

In this chapter, the description of NRI resonant metamaterials in terms of a continuous
medium will be analyzed. The electrodynamics of NRI materials will first be described. The
effective medium theory as applied to NRI resonant metamaterials as well as the calculation
methods will then be detailed. Finally numerical results will be presented together with a
thorough analysis and interpretation of the effective parameters calculated with respect to the
electrodynamics of negative refractive index materials presented for continuous media.

2. Electrodynamics of negative refractive index materials

2.1 Adequate choice of the sign of the refractive index and wave impedance

For backward wave propagation, an adequate choice of the sign of the refractive index n(ω)
given by (1) is necessary.

n(ω) = ±
√

ε(ω)µ(ω), (1)

where ε(ω) and µ(ω) represent the effective permittivity and permeability respectively.

2.1.1 Refractive index

The determination of the sign in front of the square root of (1) is done thanks to causal
properties which the solutions of wave propagation should respect and energy conservation
principles. The choice of this sign allows to define, among other parameters, the direction of
the outgoing wave with respect to an interface between a NRI and a conventional material.

To demonstrate that for a material with (ε(ω) < 0, µ(ω) < 0), the sign of the refractive index
should be negative, let us consider a current surface in x = x0 (Smith (2000)). The radiation of
this surface current in the medium (ε(ω) < 0, µ(ω) < 0) is then studied as shown on figure 1.

The wave equation in the medium can be written as fol.:

∂2

∂x2 E(x) + k2E(x) = −jωµJ0(z), (2)

where E(x) is the electric fied component along x̂, �J0 = i0δ(x − x0) ẑ et µ = µ0µr. The solution
of this equation is given by:

E(x) = α exp(jk |x − x0|). (3)

To determine α, let us first calculate :

∂2E(x)
∂x2 = −αk2 exp(jk |x − x0|) + 2jαkδ(x − x0), (4)
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Resonant Negative Refractive Index Metamaterials 3

Fig. 1. Surface current J0 in x = x0 radiating in the medium (ε(ω) < 0, µ(ω) < 0). The
current distribution is considered uniform and infinite in ŷ et ẑ.

and substitute the expressions (4) and (3) in equation (2). α is then given by:

α = −µωi0
2k0n

= − i0η0

2
µr

n
, (5)

and the wave equation becomes:

E(x) = − i0η0

2
µr

n
exp(jk |x − x0|). (6)

However, if the power P delivered by the current �J0 to the volume V (Balanis (1989)) is
calculated, the fol. equation is obtained:

P = − 1
2

∫

V
�E ·�J∗0 dV =

i2
0η0

2
µr

n
. (7)

This equation represents the work done by the source and it must be positive, which implies
that P > 0 (Balanis (1989)). The ratio µr/n must also be positive. If µr is negative, then n must
also be negative. An equivalent demonstration can be done for εr. For a propagative medium,
the solution retained for the wave equation verifies backward wave propagation.

To determine the constraints with respect to the sign choice of the imaginary part of the
refractive index, let us consider the electric field �E(�r, ω) in a medium with n = n′ − jn′′ for a
time dependence in exp(jωt):

�E(�r, t) = Re
[∣

∣

∣

�E(�r)
∣

∣

∣
exp(−�k0 ·�rn′′) exp[j(ωt− �k0 ·�rn′)]�uE

]

, (8)

where �k0 is the free space wave vector and �uE is the unit vector along the direction of the
E-field vector �E. If a stable propagation is to be ensured, the magnitude of Re[�E(�r, t)] must
decrease with time. This implies that the term �k0 ·�rn′′ must be positive and:
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n′′
> 0, (9)

irrespective of the sign of n′ 1

2.1.2 Wave impedance

Impedance is a concept generally applied to circuits but is also extended to electromagnetic
wave propagation. This extension was developped by Schelkunoff and the analogy between
the impedance of a medium for wave propagation and the impedance of a transmission line
is fully described in (Stratton (1941)). The physical interpretation of the wave impedance Z
given here is based on this analogy.

The complex wave impedance of a medium is strongly related to the flux of energy of the
wave propagating in the medium. This is why there are fundamental limitations to the values
that Z can admit; one of the limitations is directly linked to the passivity of the medium. These
limitations apply to both positive and negative refractive index medium.

The passivity or absence of activity within a medium implies that for a plane progressive
electromagnetic wave, the mean energy flux must be directed inside the medium in which the
wave propagates (Wohlers (1971)). The directions of the vectors (�E, �H,�k) and the energy flux
�S for a plane progressive wave at the interface between a conventional material and an NRI is
shown in figure 2.

(a) (b)

Fig. 2. Direction of the field vectors (�E, �H,�k) et �S for the interaction of a plane wave with at
the interface of (a) two conventional material with positive refractive index, and (b) a
conventional material and a negative refractive index material.

The wave impedance2 is defined as the ration of the electric field to the magnetic field
component in the propagation plane; the real part is thus given by:

Re[Z(ω)] = Re
[

Ē(ω)

H̄(ω)

]

=
|Ē(ω)|
|H̄(ω)| cos(ϕH − ϕE), (10)

where Ē(ω) = |Ē(ω)| exp(−jϕE) et H̄(ω) = |H̄(ω)| exp(−jϕH). Equation (10) is verified for
both positive and negative refractive indexes. The sign of Re[Z(ω)] depends only on the term
cos(ϕH − ϕE).

1 It can be shown that for the convention exp(−jωt), n′′ is positive also but in this case n should be written
as n = n′ + jn′′. This is quite similar for the wave impedance, the permittivity and permeability.

2 The wave impedance is generally defined for a single plane wave and in the case of a guided or periodic
structure, monomodal wave propagation is assumed and an impedance is assigned to each mode.
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Resonant Negative Refractive Index Metamaterials 5

The mean of Poynting’s vector �Sav is calculated, :

�Sav(�r, ω) =
1
2

Re[�E(�r, ω)× �H∗(�r, ω)] =
1
2

∣

∣

∣

�E(�r, ω)
∣

∣

∣

∣

∣

∣

�H(�r, ω)
∣

∣

∣
cos(ϕH − ϕE)�uS, (11)

where �E(�r, ω) =
∣

∣

∣

�E(�r, ω)
∣

∣

∣
exp(−jϕE), �H(�r, ω) =

∣

∣

∣

�H(�r, ω)
∣

∣

∣
exp(−jϕH) and �uS is the unit

vector of �Sav(�r).

Knowing that passivity of a medium implies that the energy flux must be directed inside the
medium implies that �Sav(�r, ω) > 0. The term cos(ϕH − ϕE) is thus always positive for all
medium irrespective of the sign of their refractive index(as it can be verified on figure 2). If
we apply this restricion to equation (10), the fol. condition is obtained:

Re[Z(ω)] > 0, (12)

for both conventional and NRI materials3.

There is no particular sign restriction on the imaginary part of the wave impedance. The
complex wave impedance provides information non only on wave propagation (as described
above) but it also allows physical understanding when there is no wave propagation in a
medium (i.e. when its imaginary part is much higher that its real part)as to which field
component (�E or �H fields) is canceled. This information is indeed interesting for the design
of artificial magnetic medium such as those based on split-ring resonators. Indeed, if the
imaginary part of Z is negative, the medium can be said to be capacitive and there is no wave
propagation because of H-field filtering. The response of the medium to an applied magnetic
field is thus non-negligible and it can be considered as an artificial magnetic medium.

2.2 Adequate choice of the sign of the effective permittivity and permeability

There are fundamental restrictions limiting the signs that the imaginary part of ε(ω)
et µ(ω) can admit for linear, passive, isotropic homogeneous medium.For conventional
material, these restrictions are derived from fundamental theorems of macroscopic
electrodynamics (Depine & Lakhtakia (2004); Efros (2004)) and it has been demonstrated in
various ways, namely by Callen et al. thanks to the fluctuation-dissipation theorems (Callen
& Welton (1951)) for arbitrary linear and dissipative systems, and by Landau et al. (Landau
et al. (1984)) for electromagnetic waves. Based on this last demonstration, we propose to
demonstrate the extension of these limitations for NRI materials.

Let us consider a passive, linear, homogeneous, isotropic and dispersive medium of
permittivity ε(ω) = ε′(ω)− jε′′(ω) and permeability µ(ω) = µ′(ω)− jµ′′(ω). The Poynting
vector �S(�r, t) provides the definition of the power flux density in a medium with variable
fields. It can be written in time-domain for dispersive medium as:

�S(�r, t) = �E(�r, t)× �H(�r, t) (13)

Using Maxwell-Faraday et Maxwell-Ampere equations in the absence of sources,

∇× �E(�r, t) = − ∂

∂t
�B(�r, t), (14)

3 This restriction is identical in both conventions exp(−jωt) and exp(jωt)
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and

∇× �H(�r, t) =
∂

∂t
�D(�r, t), (15)

the divergence of Poynting vector is given as:

−∇ · �S(�r, t) = �E(�r, t) · ∂

∂t
�D(�r, t) + �H(�r, t) · ∂

∂t
�B(�r, t). (16)

This equation provides an expression of the energy conservation in a dispersive material in
time-domain (Balanis (1989)). In frequency domain, the electric and magnetic fields are given,
after Fourier transform, by:

�E(�r, t) =
1

2π

∫

∞

−∞

�E(�r, ω) exp(jωt)dω, (17)

∂

∂t
�D(�r, t) =

j
2π

∫

∞

−∞

ωε(ω)�E(�r, ω) exp(jωt)dω. (18)

For equation (18), we assume an isotropic material with �D(�r, ω) = ε(ω)�E(�r, ω). Integration of
the product of Eq. (17) an Eq. (18) with respect to time gives:
∫

∞

−∞

�E(�r, t) · ∂

∂t
�D(�r, t)dt =

j
4π2

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

ωε(ω)�E(�r, ω)�E(�r, ω′) exp
(

j(ω + ω′)t
)

dωdω′dt.

(19)
A first integration with respect to t of the right-hand side of Eq. (19) is done using

∫

∞

−∞

exp
(

j(ω + ω′)t
)

dt = 2πδ(ω + ω′).

The Dirac distribution is then eliminated by the second integration with respect to ω′. The
principle of causality and reality of fields impose (Good & Nelson (1971)):

�E(�r,−ω) = �E(�r, ω)∗,

The right-hand side of the equation (19)can finally be written as:

j
2π

∫

∞

−∞

ωε(ω)
∣

∣

∣

�E(�r, ω)
∣

∣

∣

2
dω. (20)

After application of the same procedure for magnetic fields �H, we obtain:

∫

∞

−∞

�H(�r, t) · ∂

∂t
�B(�r, t)dt =

j
2π

∫

∞

−∞

ωµ(ω)
∣

∣

∣

�H(�r, ω)
∣

∣

∣

2
dω. (21)

Then substituting ε(ω) et µ(ω) by their complex expression, the energy dissipated (in the
period of field variations) in frequency domain is:

∫

∞

−∞

Qdt =
1

2π

∫

∞

−∞

ω

(

ε′′(ω)
∣

∣

∣

�E(�r, ω)
∣

∣

∣

2
+ µ′′(ω)

∣

∣

∣

�H(�r, ω)
∣

∣

∣

2
)

dω. (22)

The divergence of Poynting vector is expressed as the rate of energy transformation to heat:
this dissipated energy depends on ε′′(ω) et µ′′(ω). The dependence on ε′(ω) et µ′(ω) is
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canceled because the integrand of equation (20) is an odd function of ω 4. The two terms
of the right-hand side of Eq. (22) represent respectively the dielectric and magnetic losses.

The second law of thermodynamics, stating that the entropy of a isolated macroscopic system
never decreases, imposes that Q > 0. It is thus necessary according to equation (22) that:

ε′′(ω)
∣

∣

∣

�E(�r, ω)
∣

∣

∣

2
+ µ′′(ω)

∣

∣

∣

�H(�r, ω)
∣

∣

∣

2
> 0 (23)

for positive frequencies (ω > 0). The laws of Thermodynamics also express the irreversible
nature of physical processes and the fundamental difference between two types of energy:
work and heat (Yavorski & Detlaf (1975)). The energy dissipated by fields into heat is
irreversible. In other terms, there can be no exchange between the work done by either the
electric field [�E(�r, ω) or magnetic field �H(�r, ω)] and the heat dissipated by the other, implying:

ε(ω)′′ > 0 and µ(ω)′′ > 0 (24)

This demonstration can be very easily extended to NRI materials. Indeed, the starting point
of the demonstration is energy conservation through the expression of the divergence of
Poynting vector [Eq. (16)] written thanks to Maxwell-Ampère [Eq. (15)] and Maxwell-Faraday
[Eq. (14)] equations as well Poynting theorem [Eq. (13)]. For a NRI material, these equations
and theorems are valid (Veselago (1968)). Indeed, only the direction of the vector�k changes
in a NRI material thus giving a negative value for the product �S ·�k (This product is positive
for conventional materials). This is easily verified for a monochromatic wave but can actually
also be verified for non-monochromatic wave.

Let us consider for instance, the mean of Poynting vector for a dispersive material excited
by the superposition of two monochromatic waves of angular frequency ω1 et ω2 such that
ω1 �= ω2 (Pacheco-Jr et al. (2002)):

< �S(�r, t) >=
|E|2

2

(

�k(ω1)

ω1µ(ω1)
+

�k(ω2)

ω2µ(ω2)

)

(25)

The relation between the direction of Poynting vector �S and that of the wave vector�k is clearly
shown by this equation. The direction of �S is independent of the sign of the refractive index
and for any propagative medium, i.e. when �k is real, the ratio k/µ is positive. As shown
before, if k takes negative values, then µ will be negative too.

3. Effective parameters of resonant NRI metamaterials

3.1 Effective medium theory as applied to metamaterials

The concept of effective medium for the description of heterogeneous systems by a
homogeneous one is very attractive in different field of physics. Homogenization procedures
allowing the definition of an effective macroscopic response from physical parameters
characterizing the heterogeneous system are generally developed. In our case, from
the microscopic parameters (geometrical and physical definitions) of the metamaterial,
a macroscopic electromagnetic response can be obtained. If this macroscopic definition

4 Principle of causality imposes that (Good & Nelson (1971)): ε(−ω) = ε(ω)∗ and µ(−ω) = µ(ω)∗.
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is performed in accordance with the electrodynamics of continuous medium, they can
afterwards be used in Maxwell’s equations to predict propagation phenomena and provide
physical insight into the design of metamaterial-based microwave and optical devices.

In this chapter, the NRI metamaterials considered are assumed periodic and based on
resonant inclusions such as the combination of Split Ring Resonator and wire medium. The
general definition of the relevant dimensions for the definition of the effective parameters of
such periodic medium is depicted on figure 3 (Baker-Jarvis, Janezic, Riddle, Johnk, Kabos,
Holloway, Geyer & Grosvenor (2004)).

Fig. 3. Dimensions for effective medium of resonant periodic metamaterial.

The left-hand side region represents the quasi-static region where the wavelength is much
bigger than the periodicity of the inclusions. The effective parameters of the composite in this
zone can be easily calculated using quasi-static solutions or classical mixing rules (Berthier
(1993)).

In the right-hand side region, the composite is heterogeneous and the resonances of the
medium can be directly linked to the periodicity. Such a composite cannot be considered
homogeneous. To study the propagation characteristics of these media, full-wave numerical
methods are generally required. The volume under study has to be discretized : a unit-cell is
defined and Floquet-Bloch boundary conditions are used. This case is typically the working
regime of photonic crystals.

The intermediate region is a region where the inclusions are resonant. The electrical
dimensions of the inclusions as well as the periodicity are small compared to the wavelength.
Resonant NRI metamaterials belong to this intermediate region. Such a medium is generally
considered homogeneous. However, the question which remains to be answered is: how
should one study the characteristics of such a medium and how should the associated effective
medium be defined?

There is indeed no simple or unique definition to the effective medium concept. The possible
approach and definition which will be used in this chapter for NRI metamaterials will be
described hereafter.

3.2 Definition of the effective medium concept for composites of the intermediate region

When an EM field is applied to a composite, the fields in the composite results from the
interaction between the applied field and the reaction of the inclusions constituting the
composite (Baker-Jarvis, Janezic, Riddle, Johnk, Kabos, Holloway, Geyer & Grosvenor (2004);
Baker-Jarvis, Kabos & Holloway (2004)). The local field in the composite can be freely
propagative, propagative with attenuation or evanescent. The resulting local field is a
complicated physical process whereby the applied field polarizes the inclusions which in turn
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polarize the neighboring inclusions. The group of inclusions then react by creating a modified
local field. The presence of inclusions (or perturbations) in a given environment can make an
initially evanescent field propagative (de Fornel (1997)). A common example is the insertion
of inclusions in a guide under the cut-off frequency. All these complex interactions are visible
at the microscopic or local scale. However, the field in a material as expressed in Maxwell’s
equations is the macroscopic field, usually defined by constitutive equations.

The definition of constitutive parameters require the determination of a relationship
between the local field, the applied field and the macroscopic field. the theory of local
field of Lorentz (Berthier (1993); Tretyakov (2003)) can be used but it is not always
adequate (Baker-Jarvis, Janezic, Riddle, Johnk, Kabos, Holloway, Geyer & Grosvenor (2004);
Baker-Jarvis, Kabos & Holloway (2004)). It has been however applied to certain types of
composites. The polarizabilities are calculated analytically and the theory of Lorentz then
provides the macroscopic parameters. Numerous examples of such calculations are given in
( (Tretyakov (2003)) and the papers there cited there. Other methods have also been used
in the literature such as those introduced by O. Keller et J. Baker-Jarvis (Baker-Jarvis, Kabos
& Holloway (2004); Keller (1996)) but they rely on statistical and quantum approaches. The
discussion will be restricted to the context of classical electrodynamics.

The definition of effective medium can be mainly performed in two distinct categories of
approaches. The first category can be termed locale (ğ 3.3) and the second one global (ğ 3.4). In
the first case, the effective parameters are defined directly from local fields while the second
one allows a definition based on global propagation characteristics of the periodic system, for
instance from the model of scattering parameters.

3.3 Local approaches

When they are not based on analytical approaches, the input data are the fields or electric
and magnetic induction calculated using full-wave numerical methods. The definition of
effective parameters from local fields is not straightforward. Three methodologies can be
distinguished. The first one consists in defining an equivalence between the local field
calculated and the effective parameters of a corresponding homogeneous medium (Pincemin
(1995); Silveirinha & Fernandes (2004a;b; 2005a;b)). The second methodology consists in the
calculation of the propagation constant from the phase velocity locally determined using
time-domain numerical modeling methods (Moss et al. (2002)). Finally, the third methodology
consists in the definition of effective parameters by calculation a linear, surface-based or
volume-based mean field values on adequately chosen geometries. Several methods are
available in the literature (Acher et al. (2000); Bardi et al. (2002); Lerat et al. (2005); Lubkowski
et al. (2005); Pendry et al. (1999); Smith (2005); Smith, Vier, Kroll & Schultz (2000); Weiland
et al. (2001)). In the method given by Acher et al. (Acher et al. (2000)), it is worth
noting that a convergence is demonstrated between effective parameters calculated using
this type of numerical approach and those obtained by the Bruggeman extended theory of
effective medium (taking into account magnetic polarizability) for the asymptotic case of
metal-dielectric slab.

3.4 Global approaches

Global approaches provide effective parameters starting from global responses of the periodic
system. These responses such as the scattering matrix, the reflection and transmissions
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coefficients, resonant frequencies are observable or measurable quantities with can be either
experimentally determined or numerically calculated from fields defined locally in the unit
cell of the periodic NRI metamaterial.

The transformation of the local field to the scattering matrix relies on an analogy between
propagation in a periodic structure and in waveguides and circuits. It consists in assimilating
the periodic structure in a multiple-access system and to study transmission and reflection
between the different accesses. The development of such an analogy requires a few
assumptions (Hélier (2001); Richalot (1998); Rivier & Sardos (1982)), namely:

• linearity: the vectors �E et �D, �B et �H are linked to one another by linear relationships,

• stationarity: the properties of the system are invariant with respect to time,

• absence of radiation: the system is closed and energy exchange can only exist between the
system accesses,

• existence of pure mode: each access of the system supports a pure mode, i.e. a unique
propagation mode characterized by a given propagation constant. If this assumption is
not verified, then sufficient supplementary virtual accesses have to be defined to account
for higher propagation modes.

Figure 4 depicts an example of a system with three physical accesses modeled using the
generalized scattering matrix method described before. Each physical access is artificially
decomposed in N virtual accesses, where N represent the number of modes to be taken into
account at each physical access.

Fig. 4. Example of a system with three physical accesses modeled by a system of N virtual
accesses to take inbto account the number of modes present or excited at each physical access.

Such a scattering matrix allows the complete characterization of the structure both in emitting
and receiving modes both in near and far fields. The reflection and transmission matrices
can thus be directly determined from this matrix followed by the effective parameters; this
procedure is further detailed hereafter.

3.5 Calculation of effective parameters of resonant metamaterials

The calculation method described here is belongs to the category of global approaches as
defined in section (3.4) and can be divided in two parts, namely for NRI metamaterials
structures finite and infinite in the direction of propagation.

180 Metamaterial
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3.5.1 NRI metamaterials finite in the propagation direction

For NRI metamaterials finite in the direction of wave propagation, the problem to be solved is
the substitution of this periodic structure by a homogeneous slab of same thickness as shown
in figure 5.

Fig. 5. Equivalence between a periodic composite of transverse periodicity PT by a
homogeneous slab of same thickness d, effective permittivity ε(ω) and permeability µ(ω).

This substitution or equivalence is only valid under a few assumptions (Lalanne & Hutley
(2003); Lalanne & Lalanne (1996)): (i) Only the first mode propagates in the incident medium,
transmitted medium and the periodic structure. This condition is given by the fol. equation:

|β| ≤ π

PT
. (26)

β is the propagation constant in each medium. (ii) Evanescent modes should not be present
in the x0y plane. If only the first mode can propagate in the periodic structure with a speed
of c0/n(ω) where n(ω) the interference phenomenon is identical to the one which occurs in a
homogeneous slab. However, the existence of higher order modes give a much more complex
interference phenomenon such that the equivalence with a homogeneous slab is no longer
valid.

In the case of a metal-dielectric composite, these equivalence conditions are not automatically
satisfied. Indeed, the existing propagation modes and their associated propagation constants
depend highly on the nature of the inclusions: their geometry, size and distribution.

The calculation of effective parameters of NRI metamaterials under these assumptions is
done in two steps. The first one consists in the determination of the complex reflection and
transmission coefficients which can be numerically calculated according to the generalized
scattering parameters described in section 3.4. They can also be obtained by experimentally.
The second step is then the calculation of the effective permittivity and permeability
(ε(ω), µ(ω)) from these reflection and transmission using inversion methods. These methods
can either be direct using analytical inversion of Fresnel equations, (r, t) = f (ε(ω), µ(ω)) or
performed by an iterative approach. Both approaches are described here.

3.5.1.1 Direct method - Nicholson Ross Weir (NRW) approach

In the NRW method, the wave impedance and refractive index are first calculated. The
effective permittivity and permeability are then deduced. The normalized wave impedance
of a slab can be described by analogy as the input impedance of a transmission line thus
containing information not only on Ē/H̄ at the interface of two lines or medium but also of
the propagation constant inside the propagating medium. Z is given by:

Z = ±
√

(1 + r)2 − t2e−2jk0d

(1 − r)2 − t2e−2jk0d , (27)
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where d is the slab thickness, k0 = 2π/λ0 is the wave number λ0 the free-space wavelength.
The choice of the sign in front of the square root of Z is done according to the definitions given
in section 2.1.

The real part of the refractive index n is given by equation (28):

n′ =
arctan (Im(Y)/Re(Y))± mπ

k0d
, (28)

where m ∈ Z. The variable Y is defined as:

Y = e−jnkd = X ±
√

X2 − 1, (29)

where

X =
ejk0d

2t

(

1 − r2 + t2e−2jk0d
)

. (30)

The choice of the value of m in equation (28) constitute one of the ambiguities of this method
which can be solved in different ways, namely (i) by considering various thicknesses and
assuming that there is no coupling between different layers of metamaterials in the direction
of propagation (Markos & Soukoulis (2001)), (ii) by comparing the measured group arrival
time to the calculated one (Baker-Jarvis, Janezic, Riddle, Johnk, Kabos, Holloway, Geyer &
Grosvenor (2004)).

The imaginary part of the refractive index n′′ is given by:

n′′ =
ln |Y|
k0d

(31)

n′′ is calculated using the fundamental limitation described in 2.1, i.e. n′′ > 0 for both positive
or negative refractive index materials.

Using the two independent equations (32 and 33) the effective permittivity and permeability
can be deduced.

n =
√

ε(ω)
√

µ(ω) and Z =
√

µ(ω)/ε(ω) (32)

ε(ω) =
n
Z

and µ(ω) = nZ (33)

It should be noted that the refractive index is defined as: n =
√

εe f f
√

µe f f such that when
ε(ω) and µ(ω) are simultaneously negative, the real part of n is also negative. The common
formula n =

√
εe f f µe f f should not be used.

3.5.1.2 Iterative method - Optimization approach

This method consists in the minimization of the difference between the functions F1(x), F2(x)
and the scattering parameters S11 et S21 according to the fol. cost function:

E(x) = |F1(x)− S11|2 + |F2(x)− S21|2 with x = {ε(ω), µ(ω)} (34)

The functions F1(x) et F2(x) are complex and represent respectively the Fresnel reflection and
transmission coefficients defined for a magneto-dielectric slab of thickness d and of infinite
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transverse dimensions. For a plane wave having an incident angle of θi and a polarization TE
or TM, the reflection coefficient r and transmission t are defined by:

r =
A − B
A + B

et t =
2A

A + B
, (35)

avec A = cos qd +
j sin qd

Z0
, B = Z0

(

j sin qd
Z

+
cos qd

Z0

)

et q = k0

√

1 −
(

1
n

sin θi

)2
.

For the TE polarization,

Z =
ωµe f f

q
and Z0 =

cos θi

ε0c0
. (36)

For TM polarization,

Z =
q

ωεe f f
and Z0 =

µ0c0

cos θi
. (37)

In our case, the functions F1(x) and F2(x) of the equation (34) are replaced by r et t
equation (35). The cost function (34) is minimized using the non-linear mean square algorithm
of Levenberg-Marquardt. To ensure good results, this algorithm needs to start from a feasible
point. This is why a large choice of values for the couple (ε(ω), µ(ω)) is done for the starting
point in frequency. Then if the frequency sampling from the numerical simulations is fine
enough and the functions considered to be continuous, the starting point chosen is the one for
the previous frequency point.

For a few composites, the algorithm can converge to many solutions for large values of
the thickness of the slab. These solutions are not local minima but are solutions to Fresnel
equations. To choose the right solutions, two physical criteria have been defined:

• If the scattering parameter S21 is close to 1, the structure is propagative. The refractive
index, being a parameter representative of propagation 5, its imaginary part must be close
to zero,

• If S11 is close to one, there is no propagation in the structure ; the real part of the refractive
index must be close to zero.

These criteria are particularly appropriate for NRI resonant metamaterials and may not be
adequate for all type of composites. The principal limitation is that the starting point must be
far from resonance and the composite should not present high dissipative losses.

3.5.2 Periodic structure infinite in the propagation direction

If the EM wave propagation is considered in a periodic medium such as the one presented on
figure 6(a), the solution of the wave equation provides solution for the propagation constant
which are given by kn = k + 2mπ/P where m ∈ Z and P = PL or PT.

5 The imaginary part of the refractive index does not allow to calculate losses by dissipation of a
medium (Landau et al. (1984)). It can only represent the presence or absence of propagation in a
medium.
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(a) Réseau périodique bi-dimensionnel (b) Contour de Brillouin associé

Fig. 6. Réseau périodique bi-dimensionnel et zone irréductible de Brillouin associée.

Because the structure is periodic, the analysis of the propagation in only a unit cell of the
constant k is enough : the fundamental analysis domain is defined for −π < kP < π. This
fundamental domain consists sufficient information for defining propagation inside the whole
structure. Figure 6(b) shows the irreducible Brillouin zone associated to the periodic structure
for PT = PL. This Brillouin zone can be briefly described in terms of the propagation constants
(kx , ky) in the following way:

1. the ΓX contour corresponds to propagation constants kyP = 0 et kxP ∈ [0; π]. for this
contour, only normal incidence is considered.

2. the XM contour corresponds to propagation constants kxP = π et kyP ∈ [0; π]. The
incidence angles vary from 0°to 45°.

3. the MΓ contour corresponds to propagation constants kxP et kyP ∈ [0; π]. The only
incidence angle considered is 45°.

To calculate the two dimensional dispersion diagram of an arbitrary periodic NRI resonant
metamaterial, a source-free eigenmode solver of a numerical modeling tool such as Ansoft
HFSS (HFSS (2004)) can be used. The calculation volume is sampled by finite elements in
the case of the software HFSS and for specific periodic boundary conditions, the eigenvalues
of the "periodic cavity" are searched. A couple of propagation constants (kx , ky) belonging
to the Brillouin zone is imposed as boundary condition and the eigenfrequency is calculated
such that the source-free Maxwell equations with the boundary conditions are satisfied. The
calculation of each eigenfrequency is performed in an iterative manner (Chang (2005)). To
ensure reasonable calculation time, it is thus necessary to impose two parameters which are
the lowest eigenfrequency to be calculated and a limited number of eigen frequencies.

4. Numerical results and interpretation of effective parameters of resonant NRI

metamaterials

The first unit cell (figure 7a) considered here as resonant NRI metamaterials is based on
the metamaterial edge-side coupled split-ring resonators (EC-SRR) proposed in (Greegor
et al. (2003)) because the dissipative losses presented by these metamaterials are relatively
low. The second NRI metamaterial unit cell considered are based on broad-side coupled
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NRI metamaterials (figure 7b) proposed in (Seetharamdoo et al. (2004)) for the reduced
bianisotropic properties they present.

(a) EC-SRR unit cell (b) BC-SRR unit cell

Fig. 7. Unit cell of NRI resonant metamaterials constituted of BC-SRR and EC-SRR and
metallic lines. These inclusions are printed on the dielectric teflon substrates (ε = 2.2,
tan δ = 9 × 10−4). The periodicities PH=4.5 mm, PT=3.3 mm, and d=3.3 mm.

The unit cell are simulated using Ansoft HFSS and the reflection and transmission coefficients
are shown figure 8. A resonance can be observed where the metamaterials are transparent to
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.
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the incident wave at the frequencies of 12.3 GHz for the EC-SRR and 8.1 GHz for the BC-SRR

respectively.

4.1 Effective parameters calculated by inversion methods

The effective parameters are then calculated by inversion methods presented in the previous
section and the refractive index, wave impedance and permittivity and permeability are
shown on figure 9.
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Fig. 9. Effective paramaters of NRI metamaterials. The upper frequency scale correspond to
EC-SRR structures and lower one to BC-SRR.

The NRI metamaterials constituted of EC-SRR and BC-SRR present respectively a negative
refractive index from 11.5 GHz - 13.3 GHz and from 7.7 GHz - 8.7 GHz [figure 9(a)]. It should
be noted that the refractive index saturates in both cases (11.5 GHz < f < 12.3 GHz for the
EC-SRR and 7.7 GHz < f < 7.9 GHz for the BC-SRR). This maximum value can be predicted by
equation (26). The effective permeability shown on figure 9(d) is resonant and the imaginary
part is positive. The effective permittivity shown on figure 9(c) is anti-resonant and presents
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also positive values for the imaginary parts. The main frequency bands of interest of these
NRI metamaterials are given in table 1.

BC-SRR EC-SRR

Negative refractive index 7.7 -8.7 GHz 11.5-13.3 GHz
Negative permeability 7.9 -8.7 GHz 12.3-13.3 GHz
Negative permittivity 6-10 GHz 9-16 GHz
Saturation of the real part of refractive index 7.7-7.9 GHz 11.5-12.3 GHz
ℑm(ε) > 0 7.7-7.9 GHz 11.5-12.3 GHz
ℑm(µ) > 0 7.7-7.9 GHz 11.5-12.3 GHz

Table 1. Frequency bands of interest for NRI metamaterials based on BC-SRR and EC-SRR.

A similar behavior can be observed for both metamaterials but with a shift in frequency. This
shift as explained in (Seetharamdoo et al. (2004)) is due to higher capacitive coupling in the
BC-SRR compared to the EC-SRR. There is indeed a frequency band for which the real part
of the refractive index, effective permittivity and permeability are negative. However, in a
part of this frequency band the imaginary parts of ε(ω) and µ(ω) are positive which not a
physically correct as described in section 2.2. This frequency band deserves further analysis
and in the next sections for better understanding of these results, a dispersion diagram as well
as a multimodal analysis will be proposed for the BC-SRR NRI metamaterial. The choice of
this metamaterial for further analysis is justified by the fact that it has also been shown to be
2D-isotropic (Seetharamdoo (2006)).

4.2 Dispersion diagram of NRI metamaterials

The dispersion diagram is calculated using the method described in section ??. This diagram
shown on figure 10(a) gives information on the modes that can propagate in the periodic
medium in two dimensions in the irreducible Brillouin zone. The dispersion diagram of the

(a) Dispersion diagram (b) Real part of Refractive index

Fig. 10. (a) Two dimensional dispersion diagram of the medium with BC-SRR only and the
NRI metamaterial in the irreducible Brillouin zone. (b) Superposition of the refractive index
calculated from the dispersion diagram and the one calculated by the inversion methods.
The shaded frequency band represents the frequency band where the refractive index is
negative and where there is backward propagation.
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metamaterial constituted of only BC-SRR (without the metallic line medium) is also shown.
In the shaded frequency band, the metamaterial with BC-SRR only presents a forbidden
frequency band while in association with the metallic lines, a propagated frequency band is
observed. The phase velocity given by the slope of the curve is negative; the propagation
is hence a backward wave propagation. The refractive index can be calculated from this
phase velocity and it is compared to the one calculated using inversion methods. As it can
be observed, there is indeed a frequency band (7.9 - 8.7 GHz) where both results are in good
agreement.

However, in the frequency band (7.7 - 7.9 GHz) where the calculation of effective parameters
by inversion methods yield unphysical results, the dispersion diagram shows no propagation.
This strongly suggests that the results obtained by the inversion method in this frequency
band is not correct and is caused by the finite thickness of the structure. If the structure
were large enough in the direction of propagation to represent a periodic or a continuous
medium, these unphysical results would not have been obtained. Unfortunately, either in
measurements or in the design of NRI metamaterials using numerical modeling, it is not
always possible to analyze large structures due to the cost or resources required for the
calculation.

4.3 Solution proposed: multi-modal analysis

A simple solution to verify the validity of the results given by inversion methods is to make
a multimodal analysis of the periodic NRI resonant metamaterial to detect the existence of
higher order modes which would definitely result in incorrect effective parameters calculation
by inversion methods using a finite-size structure in the direction of propagation. Figure 11
depicts the modal S21 parameters and the associated propagation constants for the first two
modes of the periodic structure 6.
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Fig. 11. (a) Modal Scattering parameter S21 for the first two modes. (b) Propagation constants
of these first two modes. Only Im(γ) is shown for the first mode Re(γ) for the second mode
because the corresponding imaginary and real parts are close to zero. The shaded frequency
band represents the frequency band where the unphysical results have been observed.

The scattering parameter S21 of the fundamental mode presents a resonance at frequency close
to 7.8 GHz. Around this frequency and in the shaded frequency band, a second mode can be

6 S21 Mode2:Mode1 represents for instance what is observed from the profile of the second mode on
access 2 when only the first mode is excited on access 1.
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observed whose magnitude is higher that that of the fundamental mode. In figure 11(b), this
second mode can be seen to be evanescent while the first one is propagative. The value of the
propagation constant of the evanescent mode is low enough to shown that it can propagate
through a few layers of the structure. This implies that the evanescent modes do participate
to the interference phenomena is this frequency band and this effect will be more visible with
lower dissipative losses in the resonant NRI metamaterial (Seetharamdoo (2006)).

This analysis can prove to be very useful to verify if the assumptions made while using the
inversion methods are violated. In this case, one can conclude that the effective parameters
calculated in this frequency band is incorrect and non-physical and should thus not be
presented or interpreted (Seetharamdoo et al. (2005)).

5. Conclusion

The electrodynamics of NRI materials and the fundamental limitations related to the signs
of refractive index, wave impedance, effective permittivity and permeability, both in real
and imaginary parts have been fully described. The effective medium theory as it is
applied to NRI resonant materials have been detailed with a description of the assumptions
linked to this theory for cases of finite thickness in the direction of propagation and infinite
dimensions. The methods used for the calculation of effective parameters have been given
and applied to numerical models of NRI resonant metamaterials. Unphysical results have
been obtained: the imaginary part of the effective permittivity and permeability takes positive
values. It has been shown that this is mainly due to the finite size of the structure and
that there is a frequency band where the results obtained by the classical inversion methods
for the calculation of effective parameters are not correct and this frequency band can be
defined thanks to complementary analysis like the calculation of a dispersion diagram and
a multimodal analysis.
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