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1. Introduction  

Composite material, also called composite, a solid material that results when two or more 

different substances, each with its own characteristics, are combined to create a new 

substance whose properties are superior to those of the original components in a specific 

application (Encyclopædia Britannica, 2011). Because the objective in manufacturing 

component is to produce a stiff and a strong material with a low density, these materials 

have found place in many application fields such as land transportation, marine, 

construction, aerospace and medical. There are two constituents in a composite material 

which are the reinforcement and matrix phases. From the matrix point of view, composites 

can be divided into three main categories; polymer, metal and ceramic matrix composites 

(Zhang, 2003). Based on the reinforcement mechanism, composites can be separated as 

particle reinforced (large particle, dispersion strengthened), fibre reinforced (continuous 

(aligned), and short fibres (aligned or random)) and structural composites (laminates, 

sandwich). Fibre reinforced composites have been first introduced in exterior parts of 

Corvette in 1953. Today, fibre reinforced composites are used in many application fields.  

Textile structural composites usually consist of stacked layers known as 2D laminates, 
exhibit better in-plane strength and stiffness properties compared to those of metals and 
ceramics (Bilisik, 2010, 2011; Mohamed&Bogdanovich, 2009). However, the application of 
2D laminates in some critical structures in aircraft and automobiles has also been restricted 
by their inferior impact damage resistance and low through thickness mechanical properties 
when compared against the traditional aerospace and automotive materials such as 
aluminium alloys and steel (Mouritz et al., 1999). These structures have low out-of plane 
properties because of the lack of third direction reinforcements which will result in low 
delamination resistances (Chou, 1992). In order to improve interlaminar properties of the 2D 
laminates, three dimensional (3D) textile preforms have been developed by using different 
manufacturing techniques like weaving, knitting, braiding, stitching, and non-woven 
manufacturing. Among these manufacturing techniques, sewing and 3D weaving are the 
promising technologies which address the shortcomings of the stack-reinforced composites 
(Padaki et al., 2010). Since manufacturing technology has a direct effect on the fibre 
orientation and fibre volume fraction of the preform, the properties of the end product will 
vary depending on the production and end-use requirements (Peters, 1998). 

Although 3D woven preforms have been used for approximately forty years in different 
application fields, there is not a common understanding and definition of these fabrics 
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which make them difficult to comprehend. Therefore, this chapter attempts to make a 
detailed overview of 3D woven fabrics, basic structure of 3D woven fabrics, definitions and 
classifications of 3D woven fabrics in comparison with 2D woven fabrics. 

2. Definition, classification and weave structures of 3D woven fabrics 

2.1 Definition of 3D woven fabrics 

A basic common definition of 3D fabric is that these types of fabrics have a third dimension 
in the thickness layer. In 3D-fabric structures, the thickness or Z-direction dimension is 
considerable relative to X and Y dimensions. Fibres or yarns are intertwined, interlaced or 
intermeshed in the X (longitudinal), Y (cross), and Z (vertical) directions (Badawi, 2007).  

3D fabrics can also be defined as “a single-fabric system, the constituent yarns of which are 
supposedly disposed in a three mutually perpendicular plane relationship” (Behera&Mishra, 
2008). According to Chen, structures that have substantial dimension in the thickness direction 
formed by layers of fabrics or yarns, generally termed as the three-dimensional (3D) fabrics 
(Chen, 2011). Although all textiles have a 3D internal structure, macroscopically most can be 
regarded as thin 2D sheets. By 3D fabrics, (1) thick multilayer fabrics in a simple regular form 
or (2) made in more complicated 3D shapes, (3) hollow multilayer fabrics containing voids and 
(4) thin 3D shells in complex shapes are meant (Hearle&Chen, 2009). Khokar defined 3D 
woven fabrics as a fabric, the constituent yarns of which are supposed to be disposed in a 
three-mutually-perpendicular-planes relationship (Khokar, 2001). 

2.2 Classification of 3D woven fabrics 

When the classification of 3D woven fabrics are examined, it is observed that there are 

several classifications based on the shedding mechanisms, weaving process, geometries and 

configurations, interlacements and fibre axis according to the different researches 

(Khokar,1996 as cited in Soden&Hill, 1998; Chen, 2010; Soden&Hill, 1998;Bilisik, 2011).  

Khokar classified the 3D fabrics as follows (Khokar, 1996 as cited in Soden&Hill, 1998); 

1. The conventional 2D weaving process designed to interlace two orthogonal sets of 
threads (warp and weft). This produces an interlaced 2D fabric on a 2D weaving device. 

2. The conventional 2D weaving process designed to interlace two orthogonal sets of 
yarns (warp and weft) with an additional set of yarns functioning as binder warps or 
interlacer yarns in the through-the-thickness or Z direction. This is referred to as 
multilayer weaving and produces an interlaced 3D fabric constituting two sets of yarns 
on a 2D weaving device.  

3. The conventional 2D weaving process using three sets of yarns (ground warp, pile warp 
and pile weft) to produce pile fabrics, known as 2.5D fabrics.  

4. The conventional 2D weaving process using three sets of yarns to produce a non-
interlaced fabric with yarns in the warp, weft and through-the-thickness directions. This 
produces a non-interlaced 3D fabric with three sets of yarns on a 2D weaving device. 

5. The 3D weaving process designed to interlace three orthogonal sets of yarns. The 
weaving shed operates both row-wise and column-wise. This produces a fully interlaced 
3D fabric where all three sets of orthogonal yarns interlace on a specifically designed 3D 
weaving machine.  
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6. A non-woven, non-interlaced 3D fabric forming process designed to connect three 
orthogonal sets of yarns together with no interlacing (weaving), interloping 
(knitting), or intertwining (braiding). The fabric is held together by a special binding 
process.  

However Soden and Hill added a new category as 4A to Khokar’s classification for the 

fabrics that could be placed between categories 4 and 5 where the conventional 2D weaving 

process uses three sets of yarns to produce an interlaced 3D fabric with yarns in the warp, 

weft and through-the-thickness directions (Soden&Hill, 1998).  

Regardless of the types of machines used, weaving technology is capable of constructing 3D 

fabrics with many different geometrical shapes. Chen studied the configurations and 

geometries of the 3D woven fabrics and classified 3D woven fabrics into four different 

categories, as listed in Table 1 (Chen, 2007 as cited in Chen et al., 2011). 

 

Structure Architecture Shape 

Solid 
Multilayer 
Orthogonal 

Angle Interlock 

Compound structure, with regular  
or tapered geometry 

Hollow Multilayer 
Uneven surfaces, even surfaces,  
and tunnels on different level  

in multi-directions 

Shell 
Single layer 
Multilayer 

Spherical shells and open box shells 

Nodal 
Multilayer 
Orthogonal 

Angle Interlock 
Tubular nodes and solid nodes 

Table 1. 3D textile structures and weave architectures (Chen, 2011). 

2.3 Weave structures and properties  

In 3D woven fabrics, generally multilayer, angle interlock and orthogonal weave 

architectures are the most widely used weave structures. While multilayer and angle 

interlock weave structures can be produced with conventional 2D weaving machines 

especially with shuttle looms, orthogonal weave architecture needs a special designed 3D 

weaving machine to be produced. Orthogonal weave structures consist of three sets of yarns 

that are perpendicular to each other (X, Y and Z coordinates). In this particular 3D woven 

fabric formation process, Z yarns interconnect all individual warp- and fill-directional yarns 

and thus solidify the fabric (Bogdanovich, 2007). Mechanical and structural properties of the 

composites having orthogonal weave architectures with various binding weaves and 

different numbers of layers were investigated (Chen&Zanini, 1997 as cited in 

Behera&Mishra, 2008). The results of the investigation are as follows: 

 Since straight yarns exist in the orthogonal structures, tensile stiffness and strength 
properties of these structures are well regardless of type of binding weave. However, 
tensile stiffness and strength values of these weave structures are directly proportional 
with the number of layers. 
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 Number of layers and binding weaves do not affect the breaking elongation of the 
orthogonal structures. This property is mostly dependent on the elongation properties 
of the yarns used. 

 The shear rigidity and shearing hysteresis increases when more layers are involved. 

 Tighter binding weaves and more layers of the orthogonal structure will produce 
higher bending stiffness and bending hysteresis.  

Multilayer weave structures consist of multiple layers each of which have its own sets of 

warp and weft yarns. The connection of the layers is done by self-stitching (existing yarns) 

or central stitching (external sets of yarns). In angle interlock weave structures; there are at 

least two sets of yarns such as warp and weft. In some cases, in order to increase fibre 

volume fraction and in-plane strength, stuffer yarns can be added. Angle interlock weaves 

are divided into two groups; through thickness angle interlock and layer to layer angle 

interlock weaves. In through thickness angle interlock weaves, warp yarn travels from one 

surface of the 3D fabric to the other holding all the layers together, whereas in layer to layer 

angle interlock weaves warp yarn travels from one layer to the adjacent layer and back. A 

set of warp weaves together hold all the layers of the weave structure. Mechanical 

properties of 3D angle interlock woven composites are not as good as the mechanical 

properties of corresponding laminated composites. However, composites having angle 

interlock woven structure have advantages of enhanced delamination resistance, 

impact/fracture resistance, damage tolerance and dimensional stability (Naik et al., 2002). 

Higher through-the-thickness elastic and strength properties can be achieved by using 3D 

orthogonal interlock woven composites (Naik et al., 2001).  

 

Fig. 1. Weave structures (Stig, 2009; Badawi, 2007;Chen, 2011). 

Composites having different weave architectures will have different mechanical properties 

as well as structural stability. Chen et al investigated the mechanical and structural 

properties of the composites produced from 3D woven preforms having warp self-stitched 

multilayer weave and angle interlock weave (Chen et al., 1999). The results of the 

investigation are as follows:  

 Increasing number of layers in multilayer weave structures results in a stronger 
structure. As the multilayer fabrics are warp self-stitched, the strength increase in weft 
direction is more significant than in the warp direction. 
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 The structural stability of multilayer structures increases when more layers are 
involved.  

 For multilayer structures, the effect of weave combination is little on strength properties 
whereas it plays a significant role on structural stability.  

 The increase in stitch density in multi-layer structures will generally reduce the strength 
of the structures, but its effect on the structural stability is not clear. The latter may be 
related to the distribution of the stitches and also to the weaving conditions. 

 The number of layers of weft threads in angle-interlock structures mainly increases the 
tensile strength in the weft direction because of the construction. 

 Angle-interlock structures permit more elongation in the warp direction than in the 
weft. 

 The increase in the number of layers in angle-interlock structures makes the structures 
more difficult to bend; this is more significantly so in the weft direction than in the 
warp direction. However, the increase in the number of layers showed little influence 
on the shear rigidity. 

3. Weaving 

Weaving is an ancient tradition which dates back over seven millenniums. In traditional 
weaving, there are two sets of yarns, perpendicular to each other, interlace to form a woven 
fabric. While one set of the yarns that run lengthwise along the weaving machine direction 
are called warp, the other set of the yarns that run transversely from one side to the other 
side of the machine are called weft (a.k.a. filling).  

There are three basic motions in order to produce a fabric by ensuring the interlacing 

between warp and weft yarns. These three essential motions are; shedding, weft insertion 

and beat-up. For the continuation of weaving process, warp yarns have to be let-off and the 

produced fabric has to be taken-up. These necessary two motions are auxiliary movements 

that are warp let-off and fabric take-up. 

 

Fig. 2. Basic motions on weaving machine (Lord&Mohamed, 1982). 

In order to get different weave structures in traditional weaving, the movement of the warp 
yarns have to be controlled and changed before each weft insertion. To perform warp yarns 
movement on a loom, warps that follow the same interlacing pattern have to be grouped 
with the same frame called harness. In each harness, there are heddles that have an eye in 
the middle in which the warp yarns pass through. By lifting the harness up or down, the 
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groups of warp yarns will move either upwards or downwards. Based on the pattern, there 
must be different harnesses for each group of warp yarns. In the case where each warp 
weaves a different pattern, a harness cord is provided for each heddle. There are four 
different shedding mechanisms to manipulate warp yarns; crank, cam, dobby and jacquard. 
Crank, cam or dobby mechanisms work together with harnesses. On the other hand in 
jacquard mechanism there are harness cords for each warp yarn, no harnesses. Thus 
patterning capability of jacquard mechanism is the highest among shedding mechanisms. 
By altering shedding motion, various weave structures such as plain, twill and satin can be 
produced.  

When the shedding is opened based on the patterning, weft insertion takes place. 
Considering the weft insertion system of the weaving machine, weft insertion can be 
performed in different ways. In single-phase weaving machines, the weft yarn is carried 
from one side of the machine to the other side transversely by shuttle, projectile, rapier or jet 
systems. After the weft insertion, the reed beats up the last inserted weft and the produced 
fabric is taken up. For the next cycle, warp yarns have to be let off in order to open a shed. 
This cycle of operations are continued repeatedly to obtain the woven fabric in a sequence. 
This weaving process is called 2D weaving. Even this fabric production process is two 
dimensional (warp yarns are moved through fabric thickness and weft yarn is inserted at 
the open shed, consequently two orthogonal sets of yarns are interlaced), it is also possible 
to weave 3D woven fabrics known as multilayer structures. However, producing 3D woven 
fabrics with conventional weaving (2D weaving) does not mean that the process can be 
named 3D weaving. Because, the arrangement of the weaving motions unchanged whether 
a single warp sheet is used to produce sheet-like 2D fabrics or multiple warp sheets are used 
to produce multilayer 3D fabrics (Stig, 2009).  

 

Fig. 3. Fabric production on conventional weaving machine (Khokar, 2001). 

As previously mentioned, multilayer and angle interlock weave structures can be produced 
with 2D weaving. Unfortunately, composites made of 3D woven fabrics produced with 2D 
weaving have low in-plane stiffness and strength properties due to high crimp levels 
(Bogdanovich, 2007; Mohamed&Bogdanovich, 2009). A 3D woven fabric produced with 2D 
weaving is costly because only one weft insertion can take place during one cycle of 
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weaving machine. Furthermore increasing the thickness of 3D woven fabrics while 
producing them with 2D weaving makes the costs more (Bogdanovich, 2007). Therefore, a 
new method of 3D woven fabric has been required and developed that is called 3D weaving. 
However, there is not only one method of 3D weaving. There are different methods of 3D 
weaving techniques according to the produced structure (angle interlock, orthogonal or 
fully interlaced 3D woven structures) and orientation of the yarn sets (uniaxial, multiaxial).  

4. 3D woven fabric production 

3D woven fabrics can be manufactured both with 2D and 3D weaving. The produced 3D 

fabrics are different from the properties point of view due to the differences in weaving 

methods. With 2D weaving, pleated or plissé fabric, terry fabrics, velvet fabrics and 

multilayer woven fabrics can be manufactured. Orthogonal 3D weave structures, fully 

interlaced 3D weave structures can be manufactured only by using special designed 3D 

weaving machines. In this section, manufacturing methods of different 3D woven fabrics 

will be mentioned.  

4.1 Production of 3D woven fabrics with 2D weaving 

In the case of 2D weaving, two sets of perpendicular yarns are interlaced, irrespective of 

whether it is woven as single- or multi-layer. Another set of yarns, known as pile or binder 

yarns, can be introduced in the direction of fabric thickness. Fabrics could be produced by 

2D techniques, with different sets of warp yarns in the ways mentioned below 

(Gokarneshan & Alagirusamy; 2009): 

1. By effective utilisation of warp and weft in single layer. 
2. By the use of multi-layer warp and weft or multi-layer ground warp, binder warp and 

weft. 
3. Conventional 2D process can also produce pile fabrics by utilising three sets of yarns, 

namely, single-layer ground warp, pile warp and weft. 

4.1.1 Production of Plissé or pleated fabrics 

Plissé or pleated material is a folded material, which can be achieved in different methods 
such as weaving, shrinking and finishing (Routte, 2002);  

i. Woven plissé: Produced by an additional device on a power loom; two warp systems of 
different tension achieve drape. Folding can also be achieved by suitable bindings. In 
knit goods folds are created by stitching. 

ii. Shrunk plissé is produced by the use of synthetic fibres with different shrinking 
properties. 

iii. Finishing plissé: The material is laid in folds, which are thermally fixed in so-called 
pleating machines.  

Plissé or pleated woven fabrics can be produced on weaving machines equipped with two 
warp beams in addition to a special pleated device or a variable beat up.  

Pleated woven fabric is produced on weaving machines equipped with a special pleated 
device as follows: 
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Fig. 4. The appearances of a). a smooth pleated fabric b). a tough pleated fabric (Kienbaum, 
1996 as cited in Badawi, 2007). 

In this method, at the beginning of pleat formation, both back rest and breast-beam take the 
most far on the right lying position as illustrated at point A in Figure 5. When the intended 
pleat length is reached, they are farther on the left (B). The distance between the two limit 
points A and B is determined by the pleat length. After the last weft insertion within the 
pleat length and with beginning of the next inter-fabric part, the pleated length is formed by 
returning back of the back rest and breast-beam into the starting position (A), at that 
moment the back rest pull the tight warp to the back position (A) (Badawi, 2007).  

 

Fig. 5. Device for pleated fabrics weaving (Kienbaum, 1996 as cited in Badawi, 2007). 

The coordination of pleated fabric and take-up mechanism are shown in Figure 6. The 
height of the formed pleat is equal to about half of the pleat length before the backward-
movement of the tight warp yarns (Kienbaum, 1996 ; Hennig, 1968 as cited in Badawi, 2007). 

Pleated woven fabric is also produced on weaving machines equipped with a variable sley 
beat up. 

Manufacturing of pleated woven fabric on weaving machines equipped with a variable sley 
beat up can be briefly explained as follows; 

The mechanism allows the beating-up point of the sley to be shifted by small but precise 
steps from the normal beating-up point. While the pleat is being woven, the fabric take-up 
remains idle so that the weft density is achieved by shifting the beating-up point of the sley. 
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With a weft density of 40 picks/cm, this means that the beating-up point needs to be shifted 
only 0.25 mm weft by weft. At the end of the woven pleat, which may be up to 20 mm long, 
the device must return to its normal beating-up position. 

 

Fig. 6. Movement coordination of pleated fabric and take-up device (Kienbaum, 1996 as 
cited in Badawi, 2007). 

 

Fig. 7. Beat-up motion during pleat formation (redrawn from Marfurt, 1998). 

Weaving a pleat uses only some of the warp threads which are wound onto a separate warp 
beam. The small proportion of warp threads in the pleat area is compensated for by a 
greater weft density. The remaining warp threads are left lying underneath the fabric while 
the pleat is being woven (a). The fabric is no longer taken off, and the sley stays back a given 
distance in each weft (b). Once the pleat has reached the desired length, all the warp threads 
are again used in the weaving of the fabric. The sley executes its complete movement, 
known as full beating. The threads wound onto the separate warp beam yield, and the pleat 
falls into line (c) (Marfurt, 1998). 
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4.1.2 Production of terry fabrics 

The production of terry fabrics is a complex process and can only be realized on special 

designed weaving machines. Two warps are processed simultaneously in the production of 

terry fabrics which one of them is the ground warp that are highly tensioned and the other 

is the pile warp that is lightly tensioned. A special weaving method enables loops to be 

formed with lightly tensioned ends on either one surface or two surfaces (Adanur, 2001). 

Two specialized mechanisms are used in terry weaving machines such as reed control and 

fabric control.  

Two picks are inserted at a variable distance –the loose pick distance- from the cloth fell. The 

loose pick distance is varied according to the desired loop height. When the third pick is 

beaten up, the reed pushes the pick group, on the tightly tensioned ground warps, towards 

the fell and loose pile warp ends woven into the pick group are uprighted and form loops. 

Depending on the weave, loops are thus formed on one or both sides of the fabric. In 

general, the reed has two beat up positions which do not impose alternative movements to 

the warp, fabric and various components of the weaving machine. The sley has a special 

mechanism built in which allows different beat-up positions for pile formation (Adanur, 

2001).  

 

Fig. 8. Structure of a three-pick terry fabric (Adanur, 2001). 

In the second system, the sley motion is constant on the other hand cloth fell is moving. 

Using this principle the fabric is shifted towards the reed by means of a positively controlled 

movement of the whip roll 6 and a terry bar together with the temples on the beat-up of the 

fast pick. The sturdy reed drive is free of play. It provides the necessary precision for the 

beat-up of the group of picks. A compact, simplified whip roll system 6 with the warp stop 

motions arranged on two separate levels improves handling and has a decisive influence on 

reducing broken ends. With the help of electronics the precision of measuring the length of 

pile yarn is improved. The tensions of the ground and pile warps 1 and 2 are detected by 

force sensors 3 and 9 and electronically regulated. In this way warp tension is kept uniform 

from full to the empty warp beam. To prevent starting marks or pulling back of the pile 

loops the pile warp tension can be reduced during machine standstill (Badawi, 2007). 
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Fig. 9. Fabric control mechanism (Dornier, 2007). 

4.1.3 Production of velvet fabrics 

Velvet fabrics are a class of pile fabrics which are divided into two as warp pile fabrics and 

weft pile fabrics known as velveteen according to the pile direction. Warp pile fabrics, also 

known as velvet, can be produced with two weaving methods; wire weaving technique and 

face to face (a.k.a. double plush) weaving technique. The advantage of face to face weaving 

technology is two fabrics are effectively woven at the same time one above the other joined 

together by the pile warp ends which cross from top cloth to bottom cloth according to the 

design and during this weaving process a knife situated between the two cloths 

continuously traverses the width of the fabric cutting the pile warp threads to create two 

cloths each with a cut warp pile surface. It is important to appreciate that a surface pile tuft 

is formed only when a pile end crosses from the top cloth into the bottom cloth and is cut on 

the loom by the traversing knife, and it is in this way that the surface pile design and colour 

are created. When it is not required on the surface of the fabric the pile is woven or 

‘incorporated’ into the ground structure either in the top or bottom cloth (Fung&Hardcastle, 

2001). Therefore, two different pile structures such as cut pile or loop pile can be obtained 

based on the pile cut or not.  

Weaving machines based on face to face weaving technique are equipped with a 3 position 

shedding device (dobby or Jacquard machine), so as to form two overlapped and properly 

spaced out sheds and to permit to the pile warp to tie up the two fabrics together. Into each 

of the two shed a weft is inserted, usually by means of a pair of superimposed rods driven 

by the same gear (Castelli et al., 2000). With this technique, 3D woven spacer fabrics can also 

be easily woven.  
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Fig. 10. Face to face weaving technique of producing velvet fabrics  
(Van De Wiele as cited in Chen, 2011). 

In wire weaving technique, there is one set of ground warp, one set of ground weft and an 

extra set of warp yarns to form piles on the fabric. In order to produce a fabric with this 

technique, firstly a group of ground warps is raised according to the fabric pattern and the 

weft yarn is inserted to make its first interlacing with the ground warps. Then, pile warps 

are raised and a rod is inserted to the opened shed through the entire width of the fabric. To 

complete the weaving cycle, the remaining ground warps are raised and then again weft 

yarn is inserted. This weaving cycle is repeated several times; then the rods are slipped out 

by forming a loop pile. In order to produce cut pile velvet, rods equipped with knives can be 

used. In some special types of weaving machines with wire weaving techniques, for the 

production of velvet fabrics, weft yarn is inserted in the bottom shed of a double shed 

opening while steel rods or wires are inserted in the top shed to obtain piles. Pile yarns are 

supplied from a creel that all the ends come from a separate package utilising a negative 

system of yarn feed controlled by friction tension devices. Again in this method, during 

extraction of the wires, the piles can be cut or uncut or a combination of both. The weft 

insertion is performed with a rapier and weft insertion rates can be up to 200 rpm. However, 

the wire insertion reduces the speed of the weaving machine. Through the combination of 

ground warps and the weft the base fabric is obtained. The pile ends are woven over the 

wires and fixed into the base fabric in such a way that loops are being formed over the 

wires. A certain number of wires is woven into the fabric (10, 12, 16, 20 or 24 wires in total). 

Each wire is inserted into the shed between the weaving reed and the fabric border. The 

wires that are woven into the fabric are being extracted one by one from the fabric. For each 

insertion of a wire another wire is extracted. The wire that has been extracted is reinserted 

into the shed. Pile wires are specially made very fine steel rods rolled in several passages 

into the final dimension as requested for the specific pile height that one wants to obtain.  

4.1.4 Production of spacer fabrics 

Spacer fabrics can be produced both on conventional weaving and special 3D designed 

weaving machines. These fabrics are classified as even and uneven surfaces according to 

Chen (2011).  

Spacer woven fabrics with even surfaces can be produced on conventional weaving 
machines with the weft insertion system of shuttle. The weaving loom has a conventional 
heddle harness (50) system comprising individual heddles 51 to 56 controlling warp yarn 
groups 11, 12, 21, 22, 31 and 32. As in all weaving looms, shedding and movement of the 
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harnesses in timed sequence with shuttle and reed movement is controlled with the 
shedding mechanism. Figure 12 represents the opened shedding for 21 and 22 warp yarns 
for weft insertion, shuttle (57). On the loom, totally three shuttles are used, one for each 
fabric ply. With arranging the fabric take-up motion in time sequenced with shedding 
mechanism, this kind of fabric can be easily woven (Koppelman&Edward, 1963). 

   

Fig. 11. Different views of spacer fabrics (Chen, 2011). 

 

Fig. 12. Method of weaving a hollow 3D woven fabric on a conventional loom 
(Koppelman&Edward, 1963). 

Another design of 3D spacer fabric consisting of double ribs between the bottom and top 

layers or a 3D spacer fabric with an I shape can be produced on a conventional weaving 

machine (Rheaume, 1976). For the production of this type of fabric, the weaving loom has to 

have four separate shuttles and to include eight separate harnesses, each of which control 

different groups of warp yarns. Both of these two fabrics have the properties of foldability 

while being produced on the loom. When the fabrics are taken off the loom and get rid of 

the stresses, they open up and have the cross sections of V-shaped and I-shaped (Figure 13). 
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Fig. 13. Method of weaving a hollow 3D woven fabric consisting of two ribs on a 
conventional loom and appearance of fabric cross section and I-shaped hollow fabric 
(Rheaume, 1976&1970). 

Another type of 3D woven spacer fabric with double ribs connecting the upper and lower 
layers which is designed to be used in lightweight composite materials is given in Figure 14. 
However, the structure of this fabric is different compared to the others mentioned up to 
now. The double ribs connecting the top and bottom layers also constitute the upper and 
lower layers interchangeably. The weaving of this fabric is possible with warp-let off and 
fabric take up modifications of the narrow weaving machine. The weaving is performed in 
three stages; upper and lower ground fabrics weaving, wall-fabrics weaving, and backward 
movement of the floated tight yarns (formation of wall-fabric) (Badawi, 2007).  

 

Fig. 14. The structure of 3D woven spacer fabric designed for lightweight composites 
(Badawi, 2007) 
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4.1.5 Production of shell fabrics 

Shell fabrics are a special class of 3D woven fabrics since the structure of these fabrics may 
have only one layer or multiple layers; however the end product is always three 
dimensional. The importance of these types of fabrics is increasing since these types of 
woven fabrics are widely used in helmets, bra cups in fashion and clothing, female body 
armour and car door lining material (Chen&Tayyar, 2003).  

Shell (a.k.a. doomed) fabrics can be produced with weaving, or cut and sew. Cut and sew 
technique has been the most commonly method used to produce shell fabrics but seams are 
a big disadvantage in technical applications, where the continuity of fibres is important. 
Seams definitely reduce the level of reinforcement and protection. Furthermore, cut and sew 
creates extra waste of materials and labour (Chen&Tayyar, 2003).  

 

Fig. 15. An example of a shell fabric woven with conventional weaving (Chen, 2011) 

In conventional weaving, shell fabrics can be produced with using discrete take up and 
combination of different weaves. In order to produce a shell woven fabric, one can use a 
mixture of weaves with long and short floats. For instance, the plain weave, the tightest, is 
arranged in the middle, where a 2/2 twill is used in middle ring, and a five-end satin, with 
the longest average float length which is the loosest weave of the three types, is used for the 
outer ring. In a fabric with constant sett (the same warp and weft densities), the areas woven 
with plain weave tends to occupy a larger area and therefore will grow out of the fabric 
plane; the part of the fabric with the five-end satin tends to be squeezed, thus enhancing the 
domed effect. Consequently, the height difference between the lower and higher planes 
forms a dome. This method is a quick, easy, and economical way to produce fabrics that 
require relatively small domed effects. However, it appears that for fabrics requiring larger 
domed effects, the weave combination method is not sufficient (Chen&Tayyar, 2003).  

 

Fig. 16. Weave combination to produce shell fabric (redrawn from Chen&Tayyar, 2003) 

Fig. 15. An example of a shell fabric woven with conventional weaving  
(Busgen, 1999 as cited in Chen, 2011)
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There is a balance between warp let-off and fabric take up of the weaving machine in 
normal weaving. Otherwise, there will be variations in the weft density which is an 
undesired situation. However, in weaving of shell fabrics, the variations of the weft density 
are required. But these variations have to be under control. In order to achieve a controlled 
variation in the weft density, the width of the loom is needed to be divided into several 
sections and each section is required to be maintained in its own balanced fabric take up and 
warp let off. This can be achieved by a method in which the fabric is taken forward at 
different rates across the sections (Chen&Tayyar, 2003). To produce the shell fabric given in 
Figure 16 as an example, the loom has to be divided into three parts and three warp beams 
are required controlled individually. By this way, the ratio of fabric take up and warp let off 
will be constant in each section.  

A special fabric take up system which consists of many discs electronically controlled to 

perform individual take-up movement, besides individually controlled warp let off system 

on conventional weaving machines allow producing 3D shell woven fabrics (Busgen, 1999). 

4.1.6 Production of non-interlaced uniaxial orthogonal 3D fabrics 

Khokar (2002) named this kind of fabrics as NOOBed fabrics which is an acronym for Non-
interlacing, Orthogonally Orientating and Binding. These fabrics are different in structure 
when compared to the classical weaving structures (Figure 17.a). There are three different 
yarns that are positioned in three coordinates (x, y, and z). However, the yarns are not 
interlaced with each other as in the conventional weaving. Orthogonal fabrics are divided 
into two groups as uniaxial and multiaxial.  

A conventional weaving machine is modified to produce a fabric which has three 
dimensions of yarns (Figure 17). In this fabric, Ground warps GW are arranged in rows 
and columns and are positioned in the x direction. In y direction, weft yarns are 
positioned and these yarns are used to bind ground warps in the row direction. In z 
direction, extra binder warp threads are used which are supposed to bind ground warps 
in the column direction (Figure 17.a). Ground warp yarns pass over a roller RL and 
through two sets or columns of horizontal spacing or separating bars SBR (1-5) and SBL 
(1-5) arranged in pairs. They pass then between heald wires. The horizontal bars SBR, SBL 
are designed to open a warp gap between adjacent horizontal rows or layers of ground 
warps to facilitate the weft insertion. for each such horizontal row, two bars are required; 
one of which is under appropriate row of threads and serves to raise it SBR, and the other 
SBL above which serves to lower it. Binder warp threads are controlled by heald frame by 
raising or lowering the frame. The weaving is performed as follows; when the heald frame 
HF is in the lowered position, all the bars SBR and SBL are also in the lowered position 
except SBR1 and SBL1 which are in the raised position in order to form a warp gap for the 
weft insertion. Thus, the first weft is inserted in the fabric. After the first weft insertion, 
second bars of SBR and SBL join SBR1 and SBL1 in the raised position are raised and the 
second weft is inserted into the warp gap. This process is continued until the last weft 
thread of the first vertical row of weft threads has been inserted. Then reed beats up the 
inserted wefts by moving forward. The heald frame HF is moved up to insert the vertical 
binder warp. The lowest SBR5 and SBL5 bars are lowered to form a gap for the weft 
insertion. Pair by pair all the bars are lowered and after each lowering, the corresponding 
weft is inserted until the second vertical row of weft threads is completed. Then the reed 
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again beats up the second row and once again the heald frame is lowered to insert the 
warp binder vertically (Greenwood, 1974). 

 

Fig. 17. An example of a uniaxial 3-D fabric and the modified conventional weaving loom 
(Greenwood, 1974) 

Uniaxial 3D variable shaped fabric can also be produced on conventional weaving machines 

(Mohamed&Zhang, 1992). In this system, two groups of weft yarns, Y1 and Y2 are used for 

weft insertion with one weft group (Y1) being inserted from one side for the flange and 

other weft yarn group (Y2) being inserted from the other side for the web portion of the 

inverted T cross-shape (Figure 18.b). Two selvage yarns, Sa and Sb, are required to hold the  

  

a.     b. 

Fig. 18. Production of a uniaxial 3D variable shaped fabric on modified weaving machine 
(Mohamed&Zhang, 1992) 
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fore end loops formed by the two groups of filling yarns, Y1 and Y2, respectively. 
Preferably, four harnesses, 11a, 11b, 12a, 12b, are used to control two sets of vertical Z yarns, 
Za-Zd. One of set of Z yarns, Za, Zb, is inserted for the flange portion of the inverted T 
shape fabric, and the other set of Z yarns, Zc, Zd, is inserted for the web portion of the 
inverted T cross-sectional shape fabric (Mohamed&Zhang, 1992).  

4.2 Production of 3D woven fabrics with 3D weaving 

4.2.1 Production of non-interlaced uniaxial orthogonal 3-D fabrics 

This method of producing an integrated nonwoven 3D fabric F (Figure 19) comprises disposal 
of axial yarns Z in a grid form and in accordance with the required cross sectional profile, and 
traversing horizontal and vertical sets of binding yarns X and Y about the corresponding rows 
and columns of axial yarns in a closed-loop path to bind the fabric directly. The device is 
essentially composed of a plate (P) having two sets of profiled tracks (D and C) existing in a 
mutually perpendicular configuration and in the same plane on the front face of the plate (P); 
two sets of binder yarn spool carriers (K and L); two pairs of tracking arrangement such that 
each pair is situated at the terminal sides to contain between it all the tracks of sets D and C 
respectively for guiding the binder yarn carriers in a closed-loop path; and openings (B) in 
plate (P), arranged in rows and columns, to allow the axial yarns Z to pass through, a creel (J) 
to supply axial yarns Z, and a fabric take-up unit (H) (Khokar, 2002). 

 

Fig. 19. Production of a uniaxial 3D fabric on a special designed 3D weaving machine 
(Khokar& Domeij, 1999) 

The warp yarns Y are arranged in multiple layers each of which has a number of yarns 
which run in one horizontal plane in parallel relation with or at an equal space from 
adjacent yarns that are passed through a reed 1 through number of holes formed therein at 
uniform intervals in both horizontal and vertical directions. The warp yarns of the 
respective layers are in vertical alignment, forming regularly spaced vertical warp rows. 
Weft inserting device 6 comprises a number of elongated picking plates 7 which are spaced 
from each other at the same distance for secure insertion of wefts into the spaces between 
the respective layers of the tensioned warp yarns.  
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Fig. 20. Special designed 3D weaving machine that produces a uniaxial 3-D fabric (Fukuta et 
al., 1974). 

In order to pick in weft yarns X and vertical yarns Z into the horizontally and vertically 

aligned warp yarns, the weft inserting device 6 is first picked transversely or 

perpendicularly to the warp yarns while maintaining the upper and lower vertical yarn 

inserting devices 4 and 5 in the upper and lower retracted positions as shown in Figure 20. 

Each of the weft yarns X being inserted between the warp layers in double fold forming a 

loop at the fore end thereof. The weft inserting device 6 is temporarily stopped when the 

looped fore ends of the weft yarns are projected out of the warp yarns on the opposite side 

for threading a binder yarn P (Fukuta et al., 1974). 

As shown in Figure 21, base 10 supports movable upper and lower frames 12 and 13 with 

holes for supporting a plurality of filaments 15 that extends in the vertical (Z-axis) 

orientation. Identically working filament feed units 20 and 20' alternately insert yarns in 

the X- and Y-axes directions, respectively. First, filaments 21 from supply bobbins are 

woven through the spaced rows between filaments 15 along the X-axis by advancing the 

needles 22 by pushing rods 25. A pin 30 is inserted in the Y-axis direction to lie across the 

top of filaments 21 outside the last row of filaments 15 to tamp filaments 21 down. 

Needles 22 are then retracted from filaments 15, forming a tightly looped first course of X-

axis filaments that is restrained by pin 30. Similarly, the course of Y-axis filaments is 

woven next by advancing threaded needles 22', inserting pin 30' on top of filament 21' in 

the X-axis direction and retracting needles 22'. As the filament layers build up, pins 30 

and 30' are removed. To increase the fabric's density, all the filament layers are 

compressed. The fabric integrity results primarily from inter-yarn friction (King, 1976 as 

cited Khokar, 2002). 

In Weinberg’s special designed 3D weaving machine, it is possible to form sheds between 

layers of planar warp yarns, so that the orthogonal weft yarns can easily be inserted in any 

predetermined directions. Planar warp yarns are threaded through two parallel and 

perforated plates. The distance between these two plates is enough to accommodate the 

shedding and weft insertion. The top plate can slide on the warp yarns. The base plate is 

used to anchor the ends of the warp yarns (Weinberg, 1995).  



 

Woven Fabrics 110 

 

Fig. 21. King’s special designed 3D weaving machine (King, 1976). 

 

Fig. 22. Weinberg’s special designed 3D weaving machine (Weinberg, 1995). 

4.2.2 Production of non-interlaced multiaxial orthogonal 3D fabrics 

One of the main problems using multilayer woven fabrics in preforms is insufficient in-
plane and off-axis properties of composites. Conventional weaving machines which are 
capable of producing multilayer fabrics cannot produce fabrics that contain fibres or yarns 
orientated at ±45° in the plane of the preform. With conventional machines, it is only 
possible to manufacture fabrics with fibres or yarns oriented at angles of 0° and 90°. It is also 
possible to orient the fibres or yarns at angles of ±45° in through the thickness. However, 
these oriented yarns at the angle of ±45° in through the thickness will not affect the in-plane 
and off-axis properties of composites in a positive way. The more recent machinery 
developments have therefore tended to concentrate upon the formation of preforms with 
multiaxial yarns (Tong et al., 2002). 



 

3D Woven Fabrics  111 

 

Fig. 23. Uniaxial (on the right) and multiaxial (on the left) orthogonal fabrics (Khokar, 2002). 

A set of linear yarns Z, X, ±θ, arrayed in multiaxial orientation in the directions of the 

fabric's length, width, and two bias angles respectively, is bound using a set of binding 

yarns Y in the fabric-thickness direction. The yarns Y could be of either single or double 

type. The corresponding bindings occur above and under the set of Z, X, ± θ yarns and they 

form two surfaces of the fabric. The resulting 3D fabric has the three sets of linear yarns X, Y 

and Z in a mutually perpendicular configuration and, additionally, the linear yarns ± θ in 

bias directions (Khokar, 2002). 

Anahara (1993) et al, invented a special weaving machine to manufacture a multiaxial 

orthogonal 3D fabric. In the aforementioned fabric, there are five axes of yarns used to 

construct the structure. First of all, there are warp yarns used in the length wise direction of 

the fabric (z). Similarly, there are weft yarns used in the width direction of the fabric (x). The 

first and second bias yarns B1 and B2 are arranged at an angular relationship of ±45°. In 

other words, the 3D fabric F has a five axis structure in which fabrics have four axes in one 

plane (Figure 24) and are interconnected by the lines of the vertical yarn y. 

 

Fig. 24. Multiaxial 3D woven fabric structure (Anahara et al., 1993). 
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Fig. 25. Multiaxial 3D woven fabric manufacturing method (Anahara et al., 1993). 

In the production of such a fabric F, a flat base 1 is used as shown in Figure 25 (a). There are 

a number of pins 2 that can be unfastened which allows the yarns to be arranged in different 

axes. The support bar 3 can be disposed between the pins 2 on the base 1. The lines of the 

weft x, warp z and first and second bias B1 and B2 are arranged in a way that these yarns 

run between the pins 2 and to be looped back, in engagement with those pins 2 which are 

located along the peripheral portion of the base 1. The weft layer, warp layer and bias yarn 

layers are inter-laminated in order. Firstly, the lines of warp yarns z are arranged in parallel 

in the length wise direction of the fabric in a way that they are being repeatedly looped back 

and forth around the pins 2 as shown in Figure 25 (b). Similarly, the lines of weft yarns x are 

arranged in parallel in the width direction of the fabric in such a way that they are being 

looped back and forth around pins 2 located at the right and left sides of the base 1 shown in 

Figure 25 (c). as shown in Figure 25(d), the lines of bias yarns B1 are inserted at an angle of 

+45° with respect to the lengthwise direction of the fabric while being repeatedly looped 

back and forth around the pins 2. Similarly, the lines of bias yarns B2 are inserted again in 

the length wise direction of the fabric that are being repeatedly looped back and forth 

around pins 2 however at the angle of -45° as shown in Figure 25(e). After the individual 

layers are completed one on another in a predetermined order, the pins 2 are removed from 

the base and are replaced by vertical warp yarns y through a needle Figure 25(f and g) 

(Anahara et al., 1993).  
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Fig. 26. Multiaxial 3D orthogonal woven fabric (Mohamed et al., 1995). 

In the invention of Mohamed et al., the woven preform consists of multiple warp layers 12, 

multiple weft yarns 14, multiple z yarns 16 that are positioned in the fabric thickness and 

±bias yarns as shown in Figure 26. The ±bias yarns 18 are located at the back and front of the 

fabric which are connected with the other sets of z yarns. In the manufacturing of this 

preform, warp yarns 12 are arranged in a matrix of columns and rows based on the required 

cross-sectional shape. After bias yarns oriented at ±45° to each other on the surface of the 

preform, weft yarns 14 are inserted between the rows of warp yarns and loops of weft yarns 

are locked with the help of two selvages at both edges of the fabric. Z yarns 16 are then 

inserted and passed across each other between the columns of warp yarns 12 to cross weft 

yarns 14 in place. The weft insertion takes place again as mentioned before and the yarns are 

returned to their initial positions. Z yarns 16 are now returned to their starting positions 

passing between the columns of warp yarn 12 by locking ±45° bias yarns 18 and weft yarns 

in their place. The inserted yarns are beaten up against the fabric formation line and a take 

up system removes the fabric frm the weaving zone. This is only a one cycle of the machine. 

By repeating this cycle, 3D multiaxial orthogonal woven fabric can be produced within the 

desired fabric length (Mohamed et al., 1995). 

A three-dimensional multiaxial cylindrical woven fabric (Figure 27) having a core, 

comprises five sets of yarns: axial (14), circumferential (16), radial (18) and two sets of bias 

yarns (12) that are orientated ±45° with reference to the longitudinal axis of the cylindrical 

fabric. The bias yarns (12) occur at the outer and inner surfaces. The fabric is produced using 

a multiaxial circular weaving apparatus (100) that comprises mainly four units: feeding unit 

(110), machine bed (130), beat-up unit (180) and take-up unit (190). The steps in the 

operation of the weaving machine are: rotation of positive and negative bias yarn carriers by 
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one carrier distance; rotation of circumferential yarn carriers by one carrier distance; moving 

radial yarn carriers between outer and inner edges of the machine bed; beating-up the 

inserted yarns; and taking-up the woven preform from the weaving zone (Bilisik, 2000 as 

cited in Khokar, 2002). 

 

Fig. 27. Multiaxial 3D circular woven fabric structure and apparatus (Bilisik, 2000). 

4.2.3 Production of interlaced 3D fabrics 

The aim of producing a full interlaced 3D woven fabric is to provide a flexible-structure 

composite which exhibits high mechanical strength against repeatedly exerted loads and, at 

the same time, enjoys the advantage of light weight. This process is first developed by 

Fukuta (Fukuta et al., 1982).  

In this manufacturing method, X and Y referred as horizontal and vertical weft yarns 

respectively, are interlaced with the rows and columns of Z multi-layer warp yarns 

respectively. In this method, shedding of multi-warp Z yarns is not performed only in the 

fabric thickness direction like in orthogonal 3D fabric formation but it is performed also 

across the fabric width. To do this, a dual shedding is needed.  

In addition to dual shedding that enables column-wise and row-wise sheds to be formed, in 

order to produce a fully interlaced 3D woven fabric; a grid-like multiple-layer warp (Z), and 

two orthogonal sets of wefts (X—set of horizontal wefts and Y—set of vertical wefts) are 

required (Khokar, 2001). 

The dual shedding is performed as shown in Figure 29 (a-i). In Figure 29 (a), the grid-like 
multiple layer warp yarns Z are in their initial position. Multiple synchronized column-wise 
sheds are formed (Figure 29 (b)) in which vertical wefts Y are to be inserted (Figure 29(c)) 
and after the insertion of vertical weft yarns Y all the sheds are closed. The produced fabric 
structure up to now is given in Figure 29 (d) which is a result of interlacement of vertical 
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weft yarns Y and grid-like warp yarns Z. Then the warp yarns Z are subjected to form a 
shed in the row-wise direction (Figure 29 (f)) into which horizontal weft yarns X are to be 
inserted (Figure 29(g)). The result of interlacing horizontal weft yarns X and grid-like warp 
yarns Z are shown in Figure 29(h). When the operations of column-wise and row-wise 
shedding are performed sequentially, and the corresponding wefts are inserted backward 
and forward in the aforementioned sheddings, the structure of plain-weave 3D fabric is 
formed that is shown in Figure 29(i).  

 

Fig. 28. Fully interlaced 3D woven fabric structure isometric view (a) and orthogonal view 
(b) (Fukuta et al., 1982). 

However, these fabrics suffer from the crimp and fibre damage problems (Mohamed & 
Bogdanovich, 2009). As the shedding operation alternately displaces the grid-like 
arranged warp yarns Z in the thickness and width directions, two mutually perpendicular 
sets of corresponding vertical wefts Y and horizontal wefts X are inserted into the created 
sheds. The warps Z, therefore, interlace with the sets of vertical Y and horizontal X wefts, 
thus creating a fully interlaced 3D woven fabric. Due to the interlacing, the resulting 
structure has crimped fibres in all three directions, which would be detrimental for 
potential applications of this type of fabric as a composite reinforcement  

 

Fig. 29. Dual-directional shedding and corresponding picking for weaving fully interlaced 
3D fabric (Khokar, 2001). 
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5. Advantages of 3D weaving process  

The production of 3D woven fabrics on conventional weaving machines is an inefficient 
process since conventional 2D weaving machine inserts weft yarns one at a time. Contrary 
to the aforementioned situation, 3D weaving looms that are special designed to produce 3D 
woven fabrics allow simultaneously insert multiple layers of warp yarns and weft yarns. 
The simultaneous insertion of an entire column of weft yarns makes the linear productivity 
of the 3D weaving process independent of layers (Lienhart, 2009).  

Another important distinction is that in 2-D weaving process, yarns in the warp direction 
are passed through heddles, and must be pulled past neighbouring warp yarns, above or 
below the filling insertion. Repeated motions through the heddles and through other planes 
of warp tend to abrade fibres, especially brittle technical fibres. In the 3-D Weaving process 
individual warp planes do not pass through heddles, and are not forced to repeatedly cross 
neighbouring warp planes; accordingly, weaving-induced fibre damage in this case is 
significantly reduced (Lienhart, 2009). 

6. Comparison of preforms produced from 2D and 3D woven fabrics 

3D woven preforms were first developed in 1970’s in an attempt to replace expensive high 

temperature metal alloys in aircraft brakes (Mouritz et al., 1999). In order to produce the 

preform of the brake component that was produced with 3D weaving process, Avco 

Corporation developed a specialised 3D weaving loom that performs weaving of hollow 

cylindrical preforms in which carbon fibres were aligned in radial, circumferential and axial 

directions. Research and development of 3D woven preforms remained at a low level until 

the mid-1980s since problems of using traditional 2D laminates in aircraft structures were 

encountered. One of the main problems that was faced at that time by the aircraft 

manufacturers was preforms produced from traditional 2D laminates were expensive to 

produce complex structures. The second problem was the low impact resistance of the 

traditional 2D laminates since aircraft maintenance engineers complaint of damage impacts 

from dropped tools during maintenance. These problems led more research and 

development in the field of composites produced from 3D woven fabrics. Nearly thirty 

years of know-how in the field of 3D weaving makes the preforms produced from 3D 

woven fabrics have superior properties compared to those of the preforms produced from 

traditional 2D laminates.  

While preforms produced from traditional 2D laminates can only be processed into 
relatively simple and slightly curved shapes, preform for a composite component with a 
complicated shape can be made to the near-net-shape with 3D weaving. This ability of 3D 
weaving producing near-net-shape preforms can reduce the production costs thanks to the 
reduction in material wastage, need for machining and joining, and the amount of material 
handled during lay-up. 

The second advantage of 3D weaving is preforms can be produced on conventional weaving 
looms only by making minor modifications to the machinery. This minimises the investment 
cost of producing preforms made of 3D woven fabrics. However, a range of specialised looms 
have been developed that have higher weaving speeds and are capable of weaving more 
complex shapes than traditional looms which have been modified (Mouritz et al., 1999). 
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With the use of 3D weaving, fabrics having different through-thickness properties can be 

produced. Amounts and types of binder yarns such as carbon, glass, Kevlar and ceramic 

fibres in through-thickness can be used to tailor the properties of a composite for a specific 

application (Mouritz et al., 1999).  

Composites produced from 3D woven fabrics have higher delamination resistance, ballistic 

damage resistance and impact damage tolerance. These aforementioned properties have 

been a major problem in composites produced with traditional 2D weaving used in military 

aircraft structures (Mouritz et al., 1999).  

7. Conclusion  

Today, textile structural composites are widely used in many application fields that usually 

consist of stacked layers known as 2D laminates, exhibit better in-plane strength and 

stiffness properties compared to those of metals and ceramics. However, the application of 

2D laminates in some critical structures in aircraft and automobiles has also been restricted 

by their inferior impact damage resistance and low through thickness mechanical properties 

when compared against the traditional aerospace and automotive materials such as 

aluminium alloys and steel. In order to improve interlaminar properties of the 2D laminates, 

three dimensional (3D) textile preforms have been developed by using different 

manufacturing techniques like weaving, knitting, braiding, and stitching. Among these 

manufacturing techniques, sewing and 3D weaving are the promising technologies which 

address the shortcomings of the stack-reinforced composites.  

In order to comprehend 3D weaving technology and its products, the production techniques 

and their principles have been reviewed in detail within this chapter.  
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