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Bulk Nanocrystalline Thermoelectrics  
Based on Bi-Sb-Te Solid Solution 

* L.P. Bulat1, D.A. Pshenai-Severin2, V.V. Karatayev3,  
V.B. Osvenskii3, Yu.N. Parkhomenko3,5, M. Lavrentev3,  

A. Sorokin3, V.D. Blank4, G.I. Pivovarov4,  
V.T. Bublik5 and N.Yu. Tabachkova5  

1. Introduction  

Thermoelectric energy conversion represents one of ways of direct conversion of the thermal 

energy to the electric energy. The thermoelectric converters – a thermoelectric power 

generator or a thermoelectric cooler are solid-state devices, therefore it possesses following 

advantages: environmentally cleanliness, simplicity of management and convenience of 

designing, high reliability and possibility of longtime operation without service, absence of 

moving parts, absence of noise, vibration and electromagnetic noise, compactness of 

modules, independence of space orientation, ability to carry out of considerable mechanical 

overloads. Despite obvious advantages of thermoelectric conversion it has the important 

lack – rather small value of the efficiency η; in the best cases η = (5 – 8) %. Therefore 

thermoelectric generators are used today, as a rule, only in «small power», where it is 

impossible or is economically inexpedient to bring usual electric mains: for power supply of 

space missions, at gas and oil pipelines, for power supply of sea navigating systems, etc. 

Nevertheless, the thermoelectric method of utilization of waste heat from units of cars and 

vessels is unique technically possible. It appears the thermoelectric generators can save up 

to 7 % of automobile fuel. The thermoelectric coolers become economically justified at 

enough small cooling power Qc as a rule no more than 10 – 100 W. However the 

thermoelectric coolers are widely applied in the most different areas: domestic refrigerators, 

water-chillers, picnic-boxes; coolers for medicine and biology, for scientific and laboratory 

equipment, refrigeration systems for transport facilities. Very important area connects with 

strong up-to-date requirements for the thermal management of micro- and optoelectronics 

elements, including microprocessors and integrated circuit; the requirements have 

essentially increased owing to the increase in their speed and miniaturization. And the 

desired value of local heat removal from concrete spots of chips can be realized only by 

means of the thermoelectric cooling.  
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It is known, that the efficiency of thermoelectric generators and the coefficient of 
performance (COP) of thermoelectric coolers are defined by the dimensionless parameter of 

a thermoelectric material 
2

ZT T





, where T  – is the absolute temperature,  

Z  – thermoelectric figure of merit, , ,    – accordingly electric conductivity, thermal 

conductivity and Seebeck coefficient (thermoelectric power) of a used material.  

Today the best commercial thermoelectric materials (thermoelectrics) has the efficiency 

ZT =1.0. Let us underline that ZT increased from 0.75 only to 1.0 during lust five decades. 
Obviously, competitiveness of thermoelectric generators and coolers will rise if it will be 
possible to increase the figure of merit. Thus the thermoelectric generation and cooling can 
provide a weighty contribution to a decision of the problem of utilization of renewed energy 
sources, a recycling of a low potential heat, and maintenance of storage of a foodstuff. 
Recently the increasing attention is involved to the thermoelectric refrigeration and the 
electric power generation as to environmentally clean methods. It is caused by several 
reasons. The main of them is caused by new scientific results on improve of the 
thermoelectric figure of merit. Important results in the development of highly effective 
nanostructured thermoelectric materials have been published last decade; see for example 
the reviews (Dresselhaus et al., 2007; Minnich et al., 2009; Dmitriev & Zvyagin, 2010; Lan et 
al., 2010). The thermoelectric efficiency ZT = 2.4 has been reached at T = 300K in the p-type 
semiconductor Bi2Te3/Sb2Te3 in superlattices with quantum wells (Venkatasubramanian et 
al, 2001); the estimation indicates that the value ZT ~ 3.5 has been received at T = 575 K in 
nanostructured n-type PbSeTe/PbTe with quantum dots (Harman et al., 2000, 2005). It is 
possible also to include thermotunnel elements (thermal diodes) to nanostructured 
thermoelectrics in which there exists the electron tunneling through a narrow vacuum or air 
gap (Tavkhelidze et al., 2002). The efficiency ZT=1.7 at the room temperature was received 
experimentally in thermoelements with cold junctions, consisting from the semiconductor 
branches of p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.9Se0.1 (Ghoshal et al., 2002a, 2002b). Let us 
note also the important results received in a set of papers, for example (Shakouri & Bowers, 
1997), which specify in perspectives of the use of the emission nanostructures for creation of 
effective thermoelectric energy converters and coolers. The nanostructuring gives a new 
way of improvement of the thermoelectric efficiency because the governance of the sizes of 
nanostructured elements is a new important parameter for influence on the thermoelectric 
properties of a material.  

Unfortunately the best values of ZT that were specified in nanostructures based on 
superlattices with quantum wells and quantum dots have not been reproduced in one 
laboratory of the world. On the other hand fabrication of such superlattices uses very 
expensive technologies; therefore industrial manufacture of such nanostructures is very 
problematic from the economical point of view. Good values of the thermoelectric figure of 
merit in thermotunnel devices and in thermoelements with point contacts also have not 
been reproduced. Therefore the special interest represents a creation of thermoelectric 
nanostructures by means of an adaptable to streamlined production and a cheap technique. 
An example of such technology is fabrication of bulk nanostructured thermoelectric samples 
by ball milling of initial materials with subsequent hot pressing (Poudel et al., 2008; Bublik 
et al., 2009; Bulat et al., 2008a, 2008b, 2009, 2011b; Minnich et al., 2009; Lan et al., 2010), spark 
plasma sintering (Bublik et al., 2010a, 2010b) or extrusion (Vasilevskiy et al., 2010). In Ref. 
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(Poudel et al., 2008) the value ZT = 1.4 have been received at T=1000С and ZT = 1.2 at the 
room temperature in such bulk nanostructured thermoelectrics fabricated from the solid 
solutions based on p-type Bi-Sb-Te.  

Thus from the set forth above it can be concluded that the following reliable preconditions 
of the obtaining of the high thermoelectric figure of merit in the nanostructured 
thermoelectrics take place: (a) the experimental results specify a possibility for the 
achievement of a high thermoelectric figure of merit in nanostructured thermoelectrics of 
various types; (b) in particular some experimental results confirm the possibility of the 
obtaining of high figure of merit in bulk nanostructured semiconductors. Experimental and 
theoretical results that obtained by the authors during lust few years on investigation of 
bulk nanocrystalline thermoelectrics based on Bi-Sb-Te solid solution including 
nanocomposites are summarized, systematized and analyzed in the present chapter. 

2. Experiment 

2.1 Fabrication of bulk nanocrystalline thermoelectrics 

Two stages should be executed for preparation of bulk nanocrystalline materials. At first a 
powder from nanoparticles should be fabricated, and then it should be consolidated into a 
bulk sample. A crystalline thermoelectric material with high thermoelectric efficiency 
should be chosen as an initial material for the nanopowder preparation. In our case the solid 
solution based on p-type BixSb2-xTe3 was selected as the initial material (Bublik et al., 2009, 
2010a; Bulat et al., 2008a, 2008b, 2009a, 2009b, 2011b). It was grown up by zone melting 
method; and the dimensionless figure of merit ZT = 1.0 was measured along the С axis at 
the room temperature in primary samples. The initial crystalline material was grinded and 
purifying. The mechanoactivation process (the ball milling) is the most convenient and 
cheap way for fabrication of a nanopowder. We used the high-speed planetary mill AGO-2U 
to achieve the further superthin crushing and to prepare the nanopowder. Other types of 
mills: the Activator 2S, Retsch PM 400 also were applied at different stages of the 
nanopowder preparation. The processing of the powders fabrication in the mill is made by 
steel spheres which were collided with acceleration up to 90g. Tightly closed containers of 
the mill rotate in flowing water that protects a material from a warming up. It is necessary to 
provide absolute absence of the oxidation of the nanopowder. Therefore all operations were 
spent in the boxing filled with argon. 

The duration of the mechanoactivation processing was varied from 30 min till 2 hours. The 

diffraction analysis has shown that the main sizes of nanoparticles of the powder are 8-10 

nm. The following methods of pressing for fabrication of compact samples from highly 

active ultradisperse powder have been used (Bublik et al., 2009, 2010a; Bulat et al., 2009a): 

cold pressing of powders with the subsequent sintering in inert gas; sintering in graphite 

compression moulds; sintering in steel compression moulds (at more high pressure in 

comparison with the previous variant). Hot pressing of the nanopowder was made under 

the pressure in the range from 35 MPa to 3.3 GPa in the range of temperatures from 250 to 

490 °С. To prevent the oxidation of nanoparticles all basic operations are made in the 

atmosphere of argon. As a result, series of compact p-type BixSb2-xTe3 samples were 

produced. The method of spark plasma sintering (SPS) with the equipment SPS511S for 

preparation of bulk nanostructure was also used (Bublik et al., 2010b, 2010c).  
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2.2 Methods of experimental investigation 

For investigation of thermoelectric properties it is necessary to know values of four 
material parameters: Seebeck coefficient (thermoelectric power), electric conductivity, 
heat conductivity and thermoelectric figure of merit. The heat conductivity measurement 
of small samples is the most difficult because all traditional techniques of direct 
measurement are based on passing of a calibrated thermal flow through a sample; but a 
thermal flow measurement with sufficient accuracy and consideration of all losses on 
small samples is very complicated. Therefore we had been used the Harman method 
(Bublik et al., 2009, 2010a) which allows to fulfill the measurement of thermoelectric figure 
of merit Z directly by measurement of only electric parameters, not mentioning about 
thermal flows. Besides, the technique allows receiving in the same cycle of the 
measurement the values of Seebeck coefficient and the electric conductivity also. Then the 
value of heat conductivity can be calculated using the known value of Z. A mathematical 
model for calculations of thermoelectric parameters on the Harman method measurement 
has been developed, and processing of results of the measurement was carried out under 
specially developed soft. 

For determining of the speed of longitudinal acoustic waves and for subsequent calculation 

of modules of elasticity and the modulus of dilatation the modified echo-pulse method with 

application of focusing system of an acoustic microscope has been used. The mode of 

ultrashort probing impulses has been utilized; it has given the opportunity to register 

separate signals caused by the reflexion of the impulse from walls of a sample. The 

microstructure of samples was investigated at metallographic sections made on grinding-

and-polishing machine "Struers". Microhardness was measured on microhardness gauge 

PMT-3М by the method of cave-in of diamond tips. The microscope Olympus BX51 was 

used for the metallographic analysis. 

The working capacity and reliability of thermoelectric devises are substantially caused by 

their strength characteristics. The strength at the extension occupies a special place among 

them. However for investigated materials the method of direct test for the extension is the 

extremely inexact for some reasons. Therefore the method of diametrical compression of 

disk or cylindrical samples was used; the advantage of the method consists that the 

extension pressure destruction begins inside a sample instead of its surface. Determination 

of the density of samples was made by the method of hydrostatic weighing. Laboratory 

analytical electronic scales "KERN", model 770-60 were used. The option "Sartorius" was 

applied for determination of the weight of a solid in a liquid. 

The X-ray diffractometer methods were used for investigation of structure of nanopowder 
and bulk samples. The phase analysis was carried out by the method of X-rays diffraction 
with the diffractometer Bruker D8, equipped by the scintillation detector Bruker. The lattice 
constant of a solid solution of a thermoelectric material was determined by shooting of a 
diffractograms in the standard symmetric scheme of reflexion. A composition of the solid 
solution on the basis of measurements of the lattice constant was estimated. Values of 
nanograins were estimated by sizes of coherent dispersion areas (CDA) determined by the 
method of X-ray diffractometry on broadening of diffraction maxima. Calculation of CDA 
and estimation of microdeformation were spent by means of Outset program. The received 
values of CDA size were compared with the data received by a method of high resolution 
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transmission electron microscopy (HRTEM). The structure of a sample was analyzed by 
means of creation of return polar figures. They were carried out by shooting of 
diffractograms in the standard symmetric scheme of reflexion. The following microscope 
equipment was used: the scanning electron microscope JSM-6480LV with the option for the 
energy-dispersive analysis INCA DRY; transmission electron microscope JEM 2100 with 
ultrahigh resolution and X-ray photoelectron spectroscope. 

2.3 Structure and mechanical properties of nanopowder 

Different types of nanopowder from BixSb2-xTe3 solid solutions with different value of x 

were prepared with the following duration of the mechanoactivation process (the ball 

milling): 15 min, 30 min, 60 min and 120 min. For each type of powder the X-ray 

diffractograms, a distribution of CDA size and HRTEM images were received. A typical 

diffractogram of Bi0,5Sb1,5Te3 powder is presented in (Bulat et al., 2009b). Examples of 

distribution of CDA size of the nanopowder prepared from Bi0,5Sb1,5Te3 during 60 min ball 

milling and the correspondent HRTEM image are shown in Fig.1.  

 

Fig. 1. Distribution of CDA size and TEM image of nanoparticles for Bi0,5Sb1,5Te3  
(60 min ball milling) 

The nanopowder is the single-phase solid solution of Bi0,5Sb1,5Te3 at each duration of the 

mechanoactivation process. Microdeformations of nanoparticles did not reveal. The electron 

microscopic data on the average size of nanoparticles confirm the calculation of CDA size 

determined by broadening of the diffraction maxima. In particular for 2 hours of ball milling 

the average value of nanoparticles was 8.5 nm and the greatest size was 35 nm. The 

distribution of sizes is homogeneous enough. An insignificant increase of the average size of 

CDA in comparison with the powder passed processing during 60 min is observed. A 

monotonous reduction of the average size of CDA was observed according to increase of the 

duration of the ball milling processing from 15 min to 60 min, and the size distribution of 

nanoparticles became more homogeneous. However the further increase of duration of 

milling leads any more to a reduction but to an increase of the average CDA size. 

Microstrains have been found out in the powder after 120 min ball milling. The mean-square 

microstrains are equal to 0.144%. So small particles cannot contain a dislocation therefore 

the presence of microstrains in the powder can be connected with heterogeneity of a 

structure of the solid solution, arising at long processing. 
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The lattice constants of the solid solution for all duration of processing are: а=0.4284 nm and 
с=3.0440 nm. 

2.4 Structure and mechanical properties of bulk nanocrystalline samples 

Taking into account set forth above the 60 min duration of the milling have been chosen for 
prepare of bulk samples. Therefore the average size of nanoparticles in the starting powder 
from Bi0,5Sb1,5Te3 was equal to 8 – 10 nm. The cold and hot pressing and SPS method were 
applied for preparation of the bulk nanostructures.  

The cold pressure under 1.5 GPa was carried out within 60 min (without sintering). The 

correspondent diffractogram shows that the sample is single-phase one, and it does not 

contain an exudation of moisture of another phase. The diffraction peaks belong to threefold 

solid solution of Bi0,5Sb1,5Te3 with the lattice constants: а=0.4284 nm and с=3.0440 nm. The 

diffraction streaks remained strongly blurring as well as in a powder after the milling. The 

distribution of CDA size after the cold pressure illustrates Fig.2. The average size of CDA 

after the cold pressure is equal to 12 nm. As follows from Fig.2 at the cold pressing CDA size 

does not increase practically, and also uniformity of the nanoparticles size distribution 

increases. Microdeformations did not reveal. 

 

Fig. 2. Distribution of CDA size for bulk Bi0,5Sb1,5Te3 after cold pressure; (a) – without 
sintering, (b) – after sintering 

The investigation has shown that the sintering after cold pressing at temperatures ~ 3000С 

and above leads to two effects: (a) to occurrence of the second phase (tellurium) and (b) to 

origination of microdeformations. For example after the cold pressing a sample was sintered 

at the temperature 3500С within 25 min in argon atmosphere. It contains two phases 

Bi0,5Sb1,5Te3 and tellurium. The lattice constants of the solid solution а=0.4296 nm and 

с=3.0447 nm are increased in comparison with the lattice constants in the initial sample 

before sintering. Root-mean-square microdeformation was equal to 0,086 %. Increase of the 

lattice constants of the solid solution as well as occurrence of microdeformations are 

apparently results of the excretion of tellurium from the solid solution. Thus as it was 

marked above microdeformations can be caused by heterogeneity of the solid solution 

arising at the raised temperature. 

Fig.2 shows also the distribution of CDA size for the cold pressed bulk sample of 
Bi0,5Sb1,5Te3 with the subsequent sintering. The average size of CDA is equal to 230 nm and 
the maximum size – 900 nm. Character of the size distribution in comparison with the cold 
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pressing without the sintering has not changed, but the curve was displaced towards the big 
size. The increase of the CDA size testifies that there have passed processes of 
recrystallization during the sintering at 350 0С. 

The SEM images of the sample received by cold pressing are characterized by high porosity 

(Fig.3). Pores are dark formations as they do not reflect electrons. The size of pores reaches 5 

m. It is visible at a big resolution that pores are not spherical; and coagulation of small 

pores takes place, therefore a facet is formed. The pores are faceted as a result of the 

diffusion processes during the sintering. 

 

Fig. 3. The SEM images of the bulk Bi0,5Sb1,5Te3 (cold pressing with sintering). The resolution 
is 500 and 10000 accordantly  

The CDA size and structure of samples fabricated by the hot pressing are defined by three 

factors: a temperature of pressing, duration of stand-up under the loading and a value of 

pressure. But in any case the hot pressing as like as the cold pressing with the subsequent 

sintering leads to an occurrence of the second phase and to microdeformations. The increase 

of the CDA size due to the processes of recrystallization also takes part at the hot pressing. 

Fig.4 shows a typical distribution of CDA size for the hot pressed bulk sample; it was 

pressed during 20 min at 0.2 GPa and 289 0С. The sample contains two phases: Bi0,5Sb1,5Te3 

and tellurium. The lattice constants are increased in comparison with the lattice constants in 

the initial nanopowder. Root-mean-square microdeformation was equal to 0,055 %, the 

average CDA size ~ 85 nm, the biggest CDA has the size ~ 300 nm.  

 

Fig. 4. Distribution of CDA sizes of the bulk Bi0,5Sb1,5Te3 (hot pressing) 
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The SEM images of the surfaces of this sample are shown at Fig.5. A relief specified to 
different speed of dissolution arises after chemical polishing. The observable elements of 
structure: consertal formation, micropores, cracks, allocation of a second phase, 
microdeformations of CDA, connected with a method of hot pressing, are the factors 
reducing thermoelectric properties of the sample, first of all, the electric conductivity. 

 

Fig. 5. The SEM images of the sample of bulk Bi0,5Sb1,5Te3 (hot pressing). The resolution is 
500 and 10000 accordantly  

The samples for SPS were prepared by the cold pressure from the nanopowder at the room 
temperature. Then the SPS processing in a graphite press mould was made by passing of a 
pulse electric current under the pressure 50 MPa and the temperature 250-400 0C up to 
achievement of the hundred-percent density (from theoretical value for the given material). 
The correspondent SEM immerges can be seen in Fig.6.  

At the temperatures of sintering 350 0C and 400 0C the grains grow and facet; that testifies 
about the active process of recrystallization. For samples that were sintered at a lower 
temperature the finely divided structure is typical, fragments of the fracture surface are not 
faceted, i.e. the grains have not recrystallized yet.  

The average density of the samples fabricated from Bi0,5Sb1,5Te solid solution by cold and 
hot pressing (plus 4 mass % of Te) are presented in table 1; the accuracy is ±0.02 g/cm3. We 
see that increase of the temperature and increase of the pressure lead to gain of the density 
almost to the density of initial samples. However according to the ultrasonic microscopy 
microdefects in the form of separate cracks are found out even in fabricated at the high 
temperature and pressure samples. Such defects can lead to the decrease of the strength of 
nanostructured samples and can lead to reduce of the density. The values of elastic modules 
are presented in table 2. 

 

Initial 
samples 

Cold pressing  
at 1.5 GPa 
without 
sintering 

Cold pressing  
at 1.5 GPa  

with subsequent 
sintering at 350ºС 

Hot pressing  
at 35 MPa  
and 470ºС 

Hot pressing  
at 250 MPa  
and 490ºС 

6.71 5.02 5.60 6.62 6.69 

6.45 5.00 5.67 6.41 6.64 

6.69 5.12 5.86 6.48 6.70 

Table 1. Density of samples fabricated under different modes, g/cm3  
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The change of the elasticity module Е (Young's module) can be caused by changes of the 
concentration and sizes of defects in the type of micro- and sub-microcracks, formed at 
consolidation of nanostructured materials. It proves to be true according to the direct 
supervision of the samples structure (Fig.6). 

 

 

Fig. 6. SEM fractographs of sintered Bi0,4Sb1,6Te3 samples at the pressure 50 MPa. SPS 
temperatures: a) 240 °C, b) 300 °C, c) 350°C, d) 400 °C.  

 

Mode of sample fabrication 
Elastic modules 

VL VT ρVL2 ρVT2 B E Σ 

Initial sample 3,26 1,77 71,84 21,1 43,7 54,5 0,292 

Cold pressing at 1.5 GPa with 
subsequent sintering at 350ºС 

2,94 1,75 58,17 20,61 30,7 50,5 0,226 

Hot pressing at 350 MPa  
and 470ºС 

3,46 2,16 80,09 31,21 38,48 
73,65 
73,71 

0,181 

Hot pressing at 250 MPa  
and 490ºС 

2,64 1,55 41,96 14,46 22,68 66,19 0,237 

Hot pressing at 250 MPa  
and 490ºС 

2,72 1,59 44,54 15,22 24,25 69,36 0,240 

Table 2. Elastic modules of samples fabricated under different modes, GPa 

The received by SPS method samples were strong mechanically at all temperatures of 
sintering. Pores were absent. Results of the samples testing on diametrical compression are 
presented in Table 3. 
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Samples cut out from an 
ingot 

Samples after cold pressing 
and sintering 

Samples after hot pressing at 
350 MPa and 470ºС 

6.8 20.3 27.3 

11.4 15.0 31.0 

4.5 22.6 29.5 

 19.7  

Table 3. Compressive at diametrical strength (MPa) 

2.5 Structure of bulk nanocomposites 

Thermoelectric properties of materials with nanocrystalline structure should depend 
essentially on the size of nanograins (CDA) in a bulk sample. In turn the size of grain is 
defined by a number of factors: a temperature of the sintering or the hot pressing, duration 
of the hot pressing, value of the pressure, composition of materials, including presence of 
nano-adding of a second phase in a composite material. It is possible to ascertain that 
fabrication of initial nanopowder is less complex technological problem than maintain of the 
bulk nanostructure during the hot pressing that is caused by growth of initial nanoparticles 
due to recrystallization. 

We see from Sec.2.4 that that the samples sintered after the cold as like as the hot pressure 

leads to increase of CDA size (or nanograins’ size). In general nanostructured material is 

nonequilibrium by its nature, therefore thermal influences (at a manufacturing or an 

operation) are usually accompanied with the recrystallization of a compact material and a 

degradation of its properties. A possible way to reduce the average size of nanograins can 

be an inclusion of nanoparticles from another chemical composition, it means fabrication of 

nanocomposites. To investigate the relative change of nanograin size we added another 

nanoparticle-phase to the same solid solution matrix. They were added before the 

mechanical activation process. Three types of the extra nanoparticles were used for 

fabrication of nanocomposites: (a) MoS2 with a laminated structure; (b) fullerene C60, and (b) 

thermally expanded graphite (TEG). Values of nanograins was estimated by sizes of 

coherent dispersion areas (CDA) determined by the method of X-ray diffractometry on 

broadening of diffraction maxima. The received values of CDA sizes were compared to the 

data, obtained by the method of high resolution transmission electron microscopy 

(HRTEM). Both methods have shown a good consent of results at least at the size of grains 

up to several tens in nanometer. Larger grains also will consist from CDA with various 

crystallographic orientations which still influence on physical properties. 

The content of MoS2 was varied from 0.1 to 0.4 mass %. Only the peaks belonging to the 
triple solid solution Bi0,4Sb1,6Te3 can be seen in the X-ray diffractogram of such a 
nanocomposite. The lattice constant of the nanocomposite does not change. Such a situation 
is repeated regardless of the pressing temperature. TEM study shows that MoS2 
nanoparticles are situated at the grain boundary, and do not dissolve in the matrix (Fig.7).  

The МоS2 particles have sizes ~ 20nm, and they have a crystalline structure. The 
introduction of МоS2 greatly reduces the average size of nanograins and makes their size 
distribution more uniform. The maximum size of the nanograins decreases from 180 nm (in 
the solid solution without additives) to 80 nm (at a content of 0.1 mass % of МоS2). The 
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increase of the contents of МоS2 up to 0.4 mass % leads to a future reduction of the average 
size of the nanograins and also leads to a more uniform size distribution. The toughness of 
the sample of the same composition was not less than 150 MPa. The addition of 0.1 mass % 
of MoS2 brought about an increase of the toughness of 20-30 %. 

 

Fig. 7. (a) - HRTEM image of Bi0.4Sb1.6Te3 nanoparticle covered by levels of MoS2; (b) - image 
of the Bi0.4Sb1.6Te3 sample fabricated at 350 MPa and 3500С with 0.1 mass % of МоS2 

The fullerene С60 (1,5 mass %) or the thermally expanded graphite (TEG) (0.1 mass %) were 
added to the micropowder from initial crystalline material Bi0,5Sb1,5Te3 of p-type. Then the 
mechanoactivation processing was made at different temperatures under pressure 350 MPa 
during 20 min in the argon atmosphere. The nanopowder received without carbon additives 
represented 100÷300 nm units consisting in turn from nanoparticles. The average CDA size 
was 8÷10 nm. 

The mechanoactivation of Bi0,5Sb1,5Te3 samples in the presence of TEG was accompanied 
by a stratification of the graphite and a formation of flakes with the size of few 
nanometers; layers from the graphite flakes cover the semiconductor nanoparticles. Fig.8 
shows the size and a the configuration of carbon layers. The received layered covers on 
the semiconductor nanoparticles had as the ordered (similarly as layer of graphite on a 
surface) and the disorder structure. Let us notice that formation in the same process of the 
ordered and the disordered carbon covers is undesirable as they have different type of 
conductivity. This factor can cause a bad reproducibility of the properties of 
thermoelectric nanocomposites. Unlike TEG the fullerenes possess strongly pronounced 
electrophilic properties; therefore it would be interesting to track a combination of this 
form of carbon with the semiconductors’ nanoparticles. The state of the interface 
«semiconductor – С60 – semiconductor» can make an essential impact on the transport 
properties at the expense of change of an electronic condition in thin layers of 
nanoparticles without chemical doping (Bulat et al., (2006). Nanoparticles from the 
semiconductor covered by layers with disorder structure from С60 molecules have been 
received by the mechanoactivated processing of Bi0,5Sb1,5Te3 together with the fullerenes. 
The typical structure of such particle is shown at Fig. 9. 

It has been determined, that at mechanoactivation processing of Bi0,5Sb1,5Te3 solid solution 
the additive of nanocarbon do not influence to the average size of CDA; in all cases it was 
8÷10 nm. However the application of nanocarbon has allowed to reduce essentially 
disorder of CDA size, and to reduce in 1.5÷2 times a share of concerning large (more then 
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30 nm) particles. Apparently the received carbon covers effectively break the 
recrystallization of nanoparticles: the CDA size have decreased in 1.7÷1.9 times at the 
temperature 400÷450˚С. 

 

Fig. 8. Carbon covers from mechanoactivated TEG on the surface of Bi0,5Sb1,5Te3 
nanoparticles: (a) – ordered and (b) - disordered structure 

 

Fig. 9. HRTEM images of a semiconductor particle in a cover from molecules С60: (a) - 
Bi0,5Sb1,5Te3; (b) - Bi0.4Sb1.6Te3  

The samples cut out from an initial ingot have shown a considerable disorder of the strength 

σр=0.5÷2.5 MPa. The nanostructures samples from Bi0,5Sb1,5Te3 had the strength σр=18.5÷20 

MPa, and for Bi0,5Sb1,5Te3 samples with TEG and with С60 the value of strength 26.3 and 31.0 

MPa accordingly have been received. 

Fig. 10 shows the consolidated data of the influence of different factors on the temperature 
dependencies of the average nanograins size for p-type nanocrystalline samples that were 
fabricated under different pressing mode (Bublik et al., 2009; Bulat et al., 2010b). We see that 
the main factors allowing slow growth of nanograins as a result of recrystallization are the 
reduction of the temperature and of the duration of the process, the increase of pressure, as 
well as the addition of small amount of additives (like MoS2, TEG or fullerenes). In the case 
of additives the accidental particles in a nanocomposite settle down on borders of particles 
of the basic solid solution creating the structure like “core – cover”. Let us underline that the 
CDA size coincides with the size of grains revealed on the SEM image of the break of 
surface in a compact sample at the sizes of grains to several tens nm. In the larger grains ~ 

1–2 m CDA are a part of the internal structure of a grain. 
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Fig. 10. Temperature dependence of the average size of nanograins of samples fabricated 
under different modes of pressing. 1 – in situ heating of Bi0,4Sb1,6Te3 samples pressed at 250C 
and 1.5GPa in the thermocamera of the diffractometer; 2 – vacuum annealing at different 
temperatures of Bi0,4Sb1,6Te3 samples pressed at 250C and 1.5GPa; 3 – Bi0,4Sb1,6Te3 samples 
hot pressed at 35MPa; 4 – Bi0,4Sb1,6Te3 samples hot pressed at 350MPa; 5 – Bi0,4Sb1,6Te3 
samples plus 0.1 mass% МоS2 pressed at 350MPa; 6 – Bi0,4Sb1,6Te3 samples plus 0.4 mass % 
МоS2 pressed at 350MPa 

As properties of a material to a great extent depend on its structure in micro- and nanoscale, 
the comparative analysis of the structure of the bulk samples received by SPS methods and 
traditional hot pressing has been carried out; these results are presented at Fig. 11, 12. The 
analysis of the received results shows that unlike the method of hot pressing the SPS 
method allows to receive at rather low pressure 50 MPa mechanically strong well sintered 
nanostructured materials. It does not contain pores even at temperatures more low then 
300˚С. The explanation of this result is that in SPS process the high density of allocated 
energy in contact zones between the powder particles causes the very strong local warming 
up (up to fusion of a grain blanket) whereas the basic volume of a the material remain at 
lower temperature. The CDA size for both methods of consolidating up to temperatures  

 

Fig. 11. Relative quantitative portion of different CDA size in nanostructured sintered 
Bi0,4Sb1,6Te3. SPS temperatures: 1 - 240 °C; 2 - 300 °C; 3 - 350 °C; pressure 50 MPa 
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Fig. 12. Relative quantitative portion of different CDA size in hot pressed nanostructured 
Bi0,4Sb1,6Te3 (350 MPa; 1-300°C &, 2- 400°C). a) Bi0,4Sb1,6Te3, b) Bi0,4Sb1,6Te3+0,1 mass % MoS2 

350˚С are comparable, whereas at sintering temperatures 400˚С and above (that in practice 
corresponds to temperatures of hot pressing) the CDA size in SPS method increases much 
less. 

2.6 Thermoelectric properties of bulk nanostructures and nanocomposites 

The main transport properties of nanocrystalline materials fabricated under different 

conditions were investigated. Dependences of the transport properties on average 

nanograins size were also analyzed.  

The temperature dependences of the thermoelectric parameters of typical hot pressed 

nanostructured p-Bi0,3Sb1,7Te3 sample was published and discussed in Ref. (Bulat et al., 

2010b). The correspondent maximum value ZT=1.12 takes place at the temperatures ~ 

350÷375 K. The same maximum efficiency ZT=1.1 in the same nanostructured material at the 

same temperature was measured in Ref. (Vasilevskiy et al., 2010) but the extrusion instead 

of hot pressing for consolidation of samples was used here.  

Let as consider more in detail our investigation of thermoelectric properties of samples 

fabricated by the SPS method. Thermoelectric properties were studied depending on 

sintering temperature on samples of p-type Bi0,5Sb1,5Te3 and Bi0,4Sb1,6Te3. All samples have 

been received by SPS method at pressure 50 MPa, temperature from 250 to 500 0С, the 

duration of sintering was 5 min (for Bi0,4Sb1,6Te3) and 20 min (for Bi0,5Sb1,5Te3). The samples 

sintered at 300 0С have the maximum value of thermoelectric power. A small distinction 

exists between values of thermoelectric power for samples of various compositions. The 
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electric conductivity increases with the raise of sintering temperature. The similar 

dependence is observed also for the heat conductivity; increase of the heat conductivity with 

rise of the temperature sintering is caused by increase in the electronic heat conductivity 

which is proportional to the electric conductivity. 

It follows from experimental results that the samples received by SPS method at sintering 

temperature 450 0С have the greatest value of the efficiency ZT. The samples fabricated from 

the 0.5 m powder have lower efficiency ZT in comparison with the nanostructured 

material. It was established that the pressure 50 MPa is the optimum one for obtain the high 

thermoelectric efficiency. Samples of Bi0,4Sb1,6Te3 composition obtained at the sintering 

temperatures ~ 350 0С have higher ZT than Bi0,5Sb1,5Te3 samples. The temperature 

dependence of thermoelectric parameters in nanostructured samples Bi0,4Sb1,6Te3 received at 

sintering temperature 400 0С and pressure 50 MPa is presented at Fig. 13. Peak efficiency is 

reached at 90 0С and makes ZT=1.22.  

 

Fig. 13. Thermoelectric properties of sintered bulk nanostructured materials Bi0,4Sb1,6Te3 as a 
function of measurement temperature: a) electrical conductivity, b) Seebeck coefficient, c) 
thermal conductivity, d) figure of merit, ZT.  

Some dependences of measured thermoelectric coefficients in bulk nanostructured materials 

on the grain size for solid solution BixSb2-xTe3 (Bulat et al., 2010c, 2011a) will be presented in 

Sec. 3.2 and 3.3. 

3. Theory 

Three mechanisms that can improve the thermoelectric efficiency are studied theoretically 

and compared with the experiment in Sec.3.  
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3.1 Electron tunneling 

One of the possible mechanisms of electric transport in nanostructured materials is the 

tunneling of charge carriers through the intergrain barriers. This effect is similar to the 

thermionic or field emission thought the vacuum gap. The studies of the thermionic 

emission applied to the field of energy conversion began in the 1960th (Anselm, 1951). 

Though the efficiency of thermionic generators can reach 20% their working temperatures 

are about 1000K because of the large values of work function in metals and semiconductors.  

To use thermionic devices at lower temperatures one should decrease the work function, 

e.g. by applying high electric field (Fleming & Henderson, 1940; Murphy & Good, 1956), by 

using special cathode coatings that can decrease the work function down to 0.8eV (Sommer, 

1980) or by utilizing the tunneling effect through the thin vacuum gap (Hishinuma et al., 

2001; Tavkhelidze et al., 2002). As was shown by Mahan (Mahan, 1994) to use thermionic 

devices for refrigeration at room temperature one needs to decrease the work function down 

to the values of 0.3-0.4eV that are not available at the present time. But in the case of 

nanoscale tunneling junction the tunneling probability increases and the noticeable cooling 

power can be reached even at the work functions of about 0.8eV (Hishinuma et al., 2001). 

One of the possible cooling applications of such device that consisted of metallic tip over the 

semiconducting plate was described in (Ghoshal, 2002b). Alternatively Schottky barriers or 

semiconductor heterostructures can be used instead of vacuum barriers (Mahan & Woods, 

1998; Mahan et al., 1998). In such structures the barrier energy height can be as low as 0.1eV 

but the phonon thermal conductivity of semiconducting barrier will increase the total 

thermal conductivity and produce negative influence on the figure of merit. 

In this section the bulk nanostructured material that consists of grains separated by 

tunneling junctions is considered. The influence of the charge carrier tunneling on the 

thermoelectric figure of merit of such material is theoretically investigated. The shape of 

nanoparticles is modelled by two truncated cones with the same base (Fig. 14) that allows 

one to perform calculations in an analytical way (Bulat & Pshenai-Severin, 2010a). The 

calculations of the heat flow inside the nanoparticles take into account the difference 

between the electron and phonon temperatures in the limiting case of vacuum gap when 

phonons cannot tunnel through the barriers. 

 

Fig. 14. The cross section of nanoparticle modeled by two truncated cones with the same 

base. 2a is the size of nanoparticle, is the cone aperture angle, the radius r0 determines the 

size of truncated part, d is the tunneling junction width. Dashed rectangle represents the 

single period of the whole structure. 
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In order to estimate the thermoelectric figure of merit of such material the transport 

coefficients were calculated. The use of the linear approximation for tunneling coefficients in 

bulk nanostructured materials seems to be quite reasonable. Indeed if the typical size of 

samples are several millimeters and the grain size is about 10-40 nm then the voltage drop 

on single junction is 105 times smaller than on the whole sample. So even at several 

hundreds of volts bias on the sample the voltage drop on the single junction will 

be 310 VV ~  . Similarly the temperature difference on single junction is about 10-3K at the 

total temperature difference of 100K. So at the room temperature if the barrier energy height 

0 1eVb ~ .  than 0|k T|  and 0|q V|  are much less than both the thermal energy 0k T  and 

barrier height b . In this case one can use linear transport coefficient theory for the tunneling 

junction. The total current density through the tunneling junction is determined by the 

difference of emission currents from two electrodes (Burstein, 1969) 
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In this expression x-axis is directed at the right angle to the junction cross section (Fig. 14),   

is the total energy of electron with the wave vector k ,   is the chemical potential of the left 

electrode, 0f  is the Fermi-Dirac distribution function, xv  and x  are velocity and kinetic 

energy of electron corresponding to its motion along x direction and xD( )  is the tunneling 

probability. In order to obtain linear transport coefficients the expression for the total 

current density (1) was linearized with respect to small voltage V  and temperature T  

differences. Finally the barrier electric conductivity can be obtained as b xj / V     

(Bulat & Pshenai-Severin, 2010a) 
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where energy *
x  and chemical potential *  with asterisks are measured in 0k T  units and 

the effective mass of electron m is assumed to be the same inside nanoparticle and barrier. 

The Seebeck coefficient can be obtained from the zero current condition 

  0x
b j

V / T       and it was expressed as b b b/    , where (Bulat & Pshenai-Severin, 

2010a) 
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and the following notation was introduced * *
xu     . 

The expression for electronic heat flow through the junction can be obtained from (1) after 

replacing 0 xq v  with x( )v   . The value of barrier thermal conductivity measured at zero 

current b  can be expressed through the thermal conductivity at zero voltage 

drop 0b, V  as (Bartkowiak & Mahan, 1999) 
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2

0b b, V b b T       ,  (4) 

where (Bulat & Pshenai-Severin, 2010a) 
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and the dilogarithm function is denoted as  2Li x . It is worth to note that the barrier 

electrical and thermal conductivities are determined with respect to voltage  

and temperature difference instead of their gradients as in the bulk case. Hence for the  

case of comparison with the bulk values it is more convenient to use the values of 

b d and b d .  

In the present calculations the intergrain barrier shape was assumed to be rectangular. In 
linear operating region the change of the tunneling barrier shape under applied field can be 
neglected. So the well-known expression for tunneling probability of rectangular barrier 
was used 
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where 2x xk m /    and 2b b xk m( ) /     . Note that if x b    the wave vector 

became pure imaginary b bk i|k |  and hyperbolic sine should be changed to bsin(|k |d) / i . 

Very often instead of exact expression for tunneling probability the WKB approximation is 

used WKB 2x bD ( ) exp( k d)   . In WKB approximation tunneling probability for x b   is 

equal to unity. In the following the values of tunneling transport coefficients calculated 

using these two approximations will be compared. 

Fig. 15-17 show the dependencies of barrier electrical conductivity, Seebeck coefficient and 

Lorenz number on the size of tunneling junction for different barrier heights 0.4 and 0.8eV. 

In these estimations the effective mass was equal to 00 7m . m  that corresponds to the 

typical hole effective mass in Bi2Te3 (Goltsman et al., 1972). Doping impurity concentration 

was equal to 1019cm-3 for chemical potential close to the band edge. The curves plotted using 

exact expression for tunneling probability (6) and obtained in WKB approximation illustrate 

noticeable difference of two approaches. For metallic electrodes electron energies close to 

the Fermi level are important and WKB approximation can be used for small tunneling 

probabilities 1xD( ) / e   as was stated in (Stratton, 1962). For semiconducting electrodes 

when the charge carrier energies are close to the band edge the preexponential factor can 

also be important because it approaches zero for small carrier energies. When the tunneling 

junction width becomes larger these difference decreases because the contribution of small 

energy carriers is less important. 

As can be seen from Fig. 15 at the junction thicknesses smaller than 2nm the Seebeck 

coefficient can reach the values of about 300-350V/K and slowly varies with the barrier 
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thickness. The electrical conductivity is small (Fig. 16) and decreases exponentially with 
the barrier thickness. At larger junction thicknesses d>2nm the thermionic emission 
becomes more important than tunneling. Charge carriers with small energies are filtered 
out of the current that leads to the sharp increase in Seebeck coefficient and Lorenz factor 
(Fig. 15, 17). The dimensionless figure of merit for single junction is rather high 

3 4ZT   . 

 

Fig. 15. The dependence of the barrier Seebeck coefficient on the tunneling junction size at 

room temperature for b  0.8eV (1, 1’) and 0.4eV (2, 2’) calculated using exact expression for 

tunneling probability (1, 2) and WKB approximation (1’, 2’). 

 

Fig. 16. The dependence of the barrier electrical conductivity on the tunneling junction size 
(see Fig. 15 for notation). 

In order to calculate effective transport coefficients in the whole structure charge and heat 

flow inside nanoparticles should be taken into account. As the approximation of zero 

phonon thermal conductivity of the barrier is considered the heat flow through the junction 

is only due to charge carriers. Hence the equations for the heat flow should take into 

account the differences in electron Te and phonon Tp temperatures (Ghoshal, 2002b; 
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Bartkowiak & Mahan, 1999). The electron-phonon scattering inside nanoparticle leads to the 

equilibrating of their temperatures on the length scale cl  which is called cooling length. The 

general solution for conical geometry was obtained in (Ghoshal, 2002b) where the limiting 

case cl a  was analyzed. In the considered materials based on bismuth antimony telluride 

solid solutions the values of cooling length are 66nm for Bi2Te2 and 156nm for  

Sb2Te3 (da Silva & Kariany, 2004). So for nanoparticle size of 10-20nm the limit of cl a  can 

be considered. For this case the heat transfer equations were solved for each of two 

truncated cones representing the nanoparticle in (Bulat & Pshenai-Severin, 2010a). As a 

result the equations for total resistance and thermal conductance of nanoparticle were 

obtained (Bulat & Pshenai-Severin, 2010a) 

 

Fig. 17. The dependence of the barrier Lorenz number on the tunneling junction size (see 
Fig. 2 for notation). 
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where 0 0 n(r a) / r L   , 2nL a  is the total length of nanoparticle in the x-axis direction, r0 

determines the size of truncated part (Fig. 14), 24 2sin /     is the cone solid angle and 
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From these equations it can be seen that in the limit of the small nanoparticle size compared 

to the cooling length the electrical resistance does not change due to the difference in Te and 

Tp. The correction to the thermal conductance due to this effect is only second order of 

magnitude with respect to small parameter ca / l  and nK  is determined mainly by electronic 

contribution. 

It is interesting to note that the transition to the layered geometry can be obtained if 0r   

and 0  in such a way that the area 2
0r is constant. In this limit 1nL  and from (7) it 

is easy to get corresponding equation for the layered system (Anatychuk & Bulat, 2001). 
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Though in real nanostructured material the size on nanoparticles and their positions are 
randomly distributed here for estimations of effective transport coefficient the material is 
modeled as an ordered set of primary cells outlined by dashed lines on the Fig. 14. In this 
case the total current flow is directed along x-axis and effective transport coefficients can be 
calculated based on equations for layered medium (see, e.g., Snarsky et al., 1997). The 
effective transport coefficients for the present case were calculated in (Bulat & Pshenai-
Severin, 2010a). The thermal conductivity can be obtained as a series connection of barrier 
and nanoparticle thermal conductivities 

 b e
eff t

b e

  
  

   
,  (9) 

where geometric factor 2 2
0 02t r (d a) / (r a)    was introduced. The effective Seebeck 

coefficient can be obtain as a sum of Seebeck coefficients of barrier and nanoparticle taking 
into account corresponding temperature differences on each part  

 n b b e
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b e
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 
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.  (10) 

In calculations of electrical conductivity the average sample temperature Tav is assumed to 
be constant. But due to Peltier effect the temperatures of neighboring contacts are different. 
So in the equation for effective electrical conductivity in addition to common expression for 
series resistance the factor due to Peltier effect induced thermopower should be taken into 
account 
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where avT is the average temperature of sample. 

The effective figure of merit of bulk nanostructured material can be calculated using 

equation (9)-(11) as 2
eff eff eff effZ /    . For estimations the typical room temperature 

parameter for Bi2Te3 from (Goltsman et al., 1972) were used: n=200 V/K, =830 -1cm-1 

and p=1 W/m K. Though Bi2Te3 is anisotropic material nanocrystals inside the sample are 
randomly oriented. So for the estimations the values of thermal and electrical conductivities 
were average over all directions.  

On Fig. 18 the dependencies of effective electrical conductivities on the tunneling junction 

thickness are plotted. It is interesting to note that effective transport coefficients are 

independent of cone aperture angle   because only cross-section areas depend on it and 

these dependences are canceled out. For larger r0 the electrical conductivity increases due to 

the increase of the smaller cross-section of the cone. As was noted above in the limit of large 

r0 the transport coefficients approach the values for layered geometry (compare i, i’ and i’’ 

with Li on Fig. 18 for i=1, 2). For considered parameter range the electrical conductivity of 

the tunneling junction is much less than the usual values in semiconductors. Hence the 

effective electrical conductivity is determined mainly by barrier part but it is related to the 
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total period of the structure. For example for layered geometry eff b n b( d)(L d) / d d       

(compare Li with Bi on the Fig. 18 for i=1, 2). For the case of conical geometry the factor t  

should be taken into account that diminishes eff for small r0. 

 

Fig. 18. The dependence of effective electrical conductivity on the tunneling junction 

thickness for barrier height b  0.8 (1, 1’, 1’’) and 0.4eV (2, 2’, 2’’) for cone-shaped 

nanoparticles. The same dependences for single barrier and layer structure are plotted as B1, 
B2 and L1, L2 correspondingly. The ratio r0/a=0.3 (1,2), 1 (1’, 2’) and 10 (1’’,2’’); 2a=20nm. 

On Fig. 19 the dependence of effective thermoelectric figure of merit on the tunneling 

junction thickness is plotted. The estimations showed that in the absence of the phonon 

thermal conductivity in the barrier for all considered ranges of tunneling junction 

parameters (see Fig.16, 17) the barrier thermal conductivity is much smaller than the thermal 

conductivity of nanoparticle. Hence relatively high values of the effective Seebeck coefficient 

are determined mainly by large b  (Fig. 15) and the ratio eff eff/   in effZ  is determined 

by the effective Lorenz number that has usual values for small d and begins to increase with 

the increase of d (see Fig. 17). So in the present case the large values of 2 5 4effZ T .   are 

determined by large barrier Seebeck coefficient and the decrease of effZ T for larger d is due 

to the increase of barrier Lorenz number. Simple estimations of the effect of phonon thermal 

conductivity of the barrier performed in one-temperature approximation showed that to 

increase the thermoelectric figure of merit compared to initial semiconducting material the 

phonon barrier thermal conductivity b,ph  should be about 4 time smaller than the 

electronic contribution. 

To conclude this section it can be said that the thermoelectric figure of merit of the 

structures with tunneling junctions can be quite large 2 5 4effZ T .   if the barrier phonon 

thermal conductivity is negligible. These large values are determined by the large values of 

the barrier Seebeck coefficient and greatly reduced in the presence of b ,ph . In addition 

irregularities in the tunneling junction width or the size of nanoparticles can also lead to the 

decrease of the figure of merit in real structure. The comparison with the experimental data 

from Sec.2.6 and Ref. (Poudel et al., 2008; Bulat et al., 2010b; Vasilevskiy et al., 2010) showed 

that the increase of the figure of merit in these materials is hardly connected with the 
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tunneling effect because of the large difference between measured electrical conductivity (of 

the order of 1 11000 cm  ) and estimated values that are much less than 1 1100 cm  .  

 

Fig. 19. The dependence of effective thermoelectric figure of merit on the tunneling junction 

thickness for barrier height b  0.8 (1) and 0.4eV (2). 

3.2 Boundary scattering 

In this section the influence of boundary scattering on the thermal conductivity of bulk 

nanostructured materials obtained by ball-milling with subsequent hot pressing is 

considered following (Bulat et al., 2010c). These materials are polycrystalline with small 

grain sizes in the range from 10 nm to several hundreds on nanometers depending on the 

temperature of hot pressing. The most common way to estimate the influence of grain 

boundary scattering on the thermal and electrical conductivities is to include additional 

scattering mechanism with the mean free path equal to the grain size Ln. The theory of this 

effect applied to thermal conductivity in different polycrystalline solid solutions was 

described in (Goldsmid et al., 1995) but due to relatively large grain size considered there it 

was predicted that the effect of boundary scattering on thermal conductivity in bismuth 

telluride alloys is negligible.  

Usually the grain boundary effect is considered to be important for thermal conductivity 

only at low temperatures when the probability of phonon-phonon scattering decreases. But 

it is related mainly to pure single crystals (Goldsmid et al., 1995). In solid solutions at high 

temperatures the contribution of short wavelength phonons to the thermal conductivity is 

reduced due to the point defect. So in solid solutions the contribution of long wavelength 

phonons to thermal conductivity is relatively more important than in pure crystals. This 

contribution can be effectively reduced by introducing boundary scattering. 

The estimations performed here are based on Debye model for acoustic phonons with linear 

spectrum up to Debye frequency D . The following scattering mechanisms are taken into 

account. In pure single crystals the most important scattering mechanism at room 

temperature is phonon-phonon umklapp scattering with the relaxation time 2
U UA /   . 

The thermal conductivity in this case can be written as (Goldsmid et al., 1995) 
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 0 0
1

3
V Dc v l  ,  (12) 

where 03V Vc k N  is the heat capacity associated with acoustic modes of the crystal 

containing VN  primary cells, Dv  is the mode averaged Debye speed of sound and 0l  is the 

mean free path associated with the umklapp scattering. Knowing the value of thermal 

conductivity in single crystal 0  the mean free path 0l  and the constant UA can be 

obtained. 

When the second component is added forming solid solution the thermal conductivity s  

becomes less than 0  due to the point defect scattering 4
P PA /   . The constant PA  can 

be deduced from experimental value of s  assuming that UA  is the same as in initial 

single crystal. Finally the boundary scattering is described by frequency independent 

relaxation time b n DL / v  . In the simplified treatment (Goldsmid et al., 1995) it was 

proposed to divide the total range of phonon frequencies into three parts. For each part of 

the spectrum only the most important relaxation time is considered: b , U  and P  for 

lower, medium and high frequency parts correspondingly. Then the simple equation for 

phonon thermal conductivity in polycrystalline material was obtained (Goldsmid et al., 

1995) 

 0
0

2

3 3
ph s

n

l

L
     .  (13) 

In order to compare the values of ph  with experiment for nanostructured material based 

on p-BixSb1-xTe3 (Bulat et al., 2010c) the hole contribution should be subtracted from 

experimental values of thermal conductivity. So the proper estimations of electrical 

conductivity and hole thermal conductivity are necessary. The electrical conductivity in 

initial solid solution is anisotropic but after ball-milling and hot pressing the samples 

became isotropic on average. To take the anisotropy into account it was assumed that it is 

connected mainly with the anisotropy of effective masses and the relaxation time is a 

scalar. Then using the effective medium theory for average electrical conductivity the 

effective mass of conductivity in polycrystalline material can be expressed as (Bulat et al., 

2010c) 

 11

11 33

4

1 1 8
c

c
c c

m
m

m / m


 
,  (14) 

where c iim are effective conductivity masses along main crystalline directions ( 1 2 3i , , ). 

The boundary scattering of holes was taken into account using relaxation time in the 

form b ,h nL / v  . The relaxation time energy dependence for acoustic scattering 

is 1 2/
a ~   . It is the same as that for point defect scattering or alloy scattering in solid 

solution. It appears that this energy dependence is the same also for boundary scattering of 

holes. So the change of mobility in nanostructured material can be describe as (Bulat et al., 

2010c) 
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1

n s
s

n s

L / l
u u

L / l



,  (15) 

where sl  and su  are the mean free path and mobility in initial solid solution. The Lorenz 

number and the Seebeck coefficient in this case are the same as for acoustical scattering due 

to the same energy dependencies of the relaxation times. 

The experimental values of electrical conductivity together with estimations based on 

equation (15) are shown on Fig. 20. In the initial solid solution Bi0.4Sb1.6Te3 the values of 

electrical conductivity in the cleavage plane and the Seebeck coefficient were equal to 
1 11000 cm   and 195 V/K  correspondingly. In Bi0.3Sb1.7Te3 these values were equal to 
1 11387 cm   and 187 V/K . The experimental values of mobility in Bi0.3Sb1.7Te3 were 

15% higher than in Bi0.4Sb1.6Te3. The values of effective masses were taken from two 

different sources (Luk’yanova et al., 2010) and (Stordeur et al., 1988). The effective masses of 

the density of state per one ellipsoid 1dm  and of conductivity cm  obtained using (14) were 

equal to 0.069m0 and 0.054m0 (Luk’yanova et al., 2010) and 0.305m0 and 0.186m0 (Stordeur et 

al., 1988). Due to the wide spread of the effective mass values the estimations of the mean 

free path in the initial solid solution Bi0.4Sb1.6Te3 were quite different la=23 nm and 4nm 

correspondingly. This is reflected on the Fig. 20 where the effect of boundary scattering is 

more prominent for the estimations with larger la (compare curves 1 and 1’).  

 

Fig. 20. The dependence of electrical conductivity of bulk nanostructured materials on the 

grain size for Bi0.4Sb1.6Te3 (circles– experimental data; 1, 1’ – estimations) and for Bi0.3Sb1.7Te3 

(squares – experimental data; 2, 2’ – estimations). Estimations use effective mass values from 

(Luk’yanova et al., 2010) - 1, 2 and from (Stordeur et al., 1988) – 1’, 2’. 

For estimations of the influence of boundary scattering on the phonon thermal conductivity 

the following material parameters were used. The lattice thermal conductivity in Sb2Te3 in 

the cleavage plane at room temperature is equal to 0 11,  1.9 W/m K (Goltsman et al., 

1972) and the anisotropy of the thermal conductivity is equal to 2.38 (Madelung et al., 1998). 

Averaging similar to (14) gives the thermal conductivity 0 = 1.47 W/m K. In Bi0.4Sb1.6Te3 

solid solution the thermal conductivity in the cleavage plane is 1.2 W/m K (Goltsman et al., 

1972) that after averaging using anisotropy value of 2.22 (Madelung et al., 1998) gives 
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0 94s .  W/m K. The Debye temperature in Sb2Te3 is about 160K, Debye velocity was 

estimated as 53 6 10Dv .  cm/s and the heat capacity at room temperature is close to usual 

value 24.9 J/mol K (Goltsman et al., 1972). This data allowed estimating the average mean 

free path in the pure crystal as 0 4 7l . nm.  

The comparison of the estimated thermal conductivity of nanostructured material with the 
experimental data is presented on Fig. 21. The electronic contribution to the thermal 
conductivity was subtracted using Lorenz factor calculated as described above. The results 
of estimations are quite well correlate with the experimental data. This allows one to 
conclude that the boundary scattering is important mechanism of reduction of phonon 
thermal conductivity in bulk nanostructured materials. The estimation of the decrease of the 
lattice thermal conductivity due to boundary scattering is shown on Fig. 22. It can be seen 
that the decrease can reach the values of 30-40% at the grain size of about 10-20 nm. 

 

Fig. 21. The dependence of phonon thermal conductivity of bulk nanostructured materials 
on the grain size for Bi0.4Sb1.6Te3 (circles – experimental data; 1 – estimations; 1’ – the value 
in initial solid solution).  

 

Fig. 22. The dependence of the relative decrease of lattice thermal conductivity on the grain 
size in nanostructured material based on Bi0.4Sb1.6Te3 solid solution. 
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3.3 Energy filtering 

In the previous section the influence of the boundary scattering on the electrical 

conductivity of nanostructured material was considered. The boundary scattering was 

described using constant mean free path equal to the size of grains nL . As was noticed 

above the energy dependence of the relaxation time for boundary scattering in this 

approximation is the same as for acoustical scattering. So the Lorenz factor and the 

Seebeck coefficient should not differ from that in initial solid solution if the concentration 

remains the same. On the other hand the experimental data (Bulat et al., 2011a) showed 

the increase of the Seebeck coefficient in the samples with smaller grain size. To describe 

this effect the more detailed study of the scattering process was performed. The energy 

dependence of the probability of carrier scattering on the potential barrier at the grain 

boundary was taken into account. As the charge carriers with smaller energy scatter more 

intensively their contribution to the electrical and heat current decrease. This energy 

filtering can lead to the increase of the Seebeck coefficient if the energy relaxation length 

l  is much greater than the momentum mean free path pl  (Moizhes & Nemchinsky, 1998). 

At the temperatures much higher than Debye temperature the estimations for typical 

parameters of semiconductors (Moizhes & Nemchinsky, 1998) showed that as 50nmpl ~  

the energy relaxation length is about 500 nm that is much greater than the grain size 

considered in the present section. 

There are several approaches that take into account the influence of the energy filtering on 
the transport coefficient. In (Ravich, 1995) the scattering on the single barrier was 
considered. In (Popescu et al., 2009) the exact expression for scattering probability was used 
but it was not taken into account that it should depend on the part of the kinetic energy 
corresponding to the motion normal to the boundary rather than the total energy. In 
(Mayadas & Shatzkes, 1970; Gridchin et al., 2005) the boundary scattering in polycrystalline 
thin films was considered but the relaxation time was anisotropic.  

In the bulk nanostructured samples considered in this section the electrical conductivity 

appears to be isotropic due to random grain orientation and the following approach for 

calculation of relaxation time was used (Bulat et al., 2011a). In this approach the boundary 

scattering is modeled through the specular scattering on the randomly oriented planes 

representing grain boundaries and the inter plane distance is equal to the grain size nL . The 

estimations of the mean free path in the previous section gave 20pl ~ nm. So the grain size 

is greater than the mean free path. In this case the multiple scattering can be taken into 

account through the summing up the probabilities of scattering rather than the matrix 

elements. In isotropic polycrystalline material with random grain orientation the summation 

of the probability of multiply scattering leads to the averaging over the boundary plane 

orientations. The total number of planes was estimated as 3 nL / L , where L  is the 

characteristic sample size. Due to the conservation lows only two final states in the 

individual scattering act are possible, namely forward scattering and reflection. In the 

relaxation time calculation only the second type gives contribution. For the probability of 

reflection the exact expression is used 1r n nW (k ) D(k )   where tunneling probability 

nD(k )  is defined by equation (6) and nk  is the wave vector normal to the grain boundary. 

As the number of incident electrons on the unit area of the boundary in one second is equal 
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to the density of electron flow i nj k / mL  , the number of reflections in the unit time is 

equal to i r nj W (k ) . Finally the relaxation time can be calculated as  

 
1

2
n

b r n
k

W ( k )
mL k

 
  n

n

k k
,  (16) 

where the summation over n  takes into account all possible boundary orientations. The 

summation can be replaced with the integration over polar and azimuthal angles   and   

determining the direction of normal vector n . Then the expression for relaxation time due to 

boundary scattering can be obtained in the following form (Bulat et al., 2011a)  

 

1
1 3

0

6
b r

n

k
W (k ) d

mL
    


,  (17) 

where cos   .  

The experimental data and theoretical estimations for electrical conductivity and Seebeck 

coefficient in the bulk nanostructured materials based on Bi2Te3-Sb2Te3 solid solutions are 

presented on Fig. 23, 24. The scattering on the grain boundaries including energy filtering 

(17) and the scattering on acoustic phonons were taken into account. Because the exact 

account of anisotropy in Bi2Te3 based materials is complicated in equation (17) the density of 

state effective mass 1dm  was used. The unknown parameters in calculations were the width 

d  and the energy height b of the intergrain barrier. The estimations showed that quite 

good agreement with the experimental data can be obtained at the reasonable values of 

these parameters equal to 5d  nm and 01 5b . k T  . The other parameters were the same as 

for the estimations of boundary scattering in the constant mean free path approximation 

discussed in the previous section. In order to check the applicability of relaxation time  

 

Fig. 23. The dependence of electrical conductivity of bulk nanostructured materials on the 
grain size for Bi0.4Sb1.6Te3 (circles– experimental data; 1, 1’ – estimations) and for Bi0.3Sb1.7Te3 
(squares – experimental data; 2, 2’ – estimations). Estimations use effective mass values from 
(Luk’yanova et al., 2010) - 1, 2 and from (Stordeur et al., 1988) – 1’, 2’. 
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approximation the estimation of typical values of the relaxation time were made. It is known 

that relaxation time approximation is applicable if 0/ k T    and if the temperature 

difference on the length of mean free path is small compared to average temperature. If the 

temperature difference on the sample with 0 1L ~ . cm is 100K, then the temperature 

difference of the length of the order of mean free path about 10 nm is 10-3K. The estimations 

gave 1310~  s and 14
0 2 5 10/ k T .    s at room temperature so the both criteria are well 

satisfied.  

Finally the conclusion can be made that the energy filtering effect quite well describes the 
change of both electrical conductivity and the Seebeck coefficient in nanostructured 
materials. The estimations showed that in the bulk nanostructured materials based on 
BixSb1-xTe3 the increase of the Seebeck coefficient due to this effect can reach 10-20% at the 
grain size of 20-30nm. If the lattice thermal conductivity decrease is the same as that for 
electrical conductivity this can give the 20-40% increase in the figure of merit. 

 

Fig. 24. The dependence of the Seebeck coefficient of bulk nanostructured materials on the 
grain size (see Fig. 23 for notation).  

4. Conclusion 

The nanopowder p-Bi-Sb-Te with particles ~ 10 nm were fabricated by the mechanical 
activation method (ball milling) using different technological modes. Cold and hot pressing 
at different conditions and also SPS process were used for consolidation of the powder into 
a bulk nanostructure and nanocomposites.  

Nanoparticles keep composition of initial solid solution BixSb2-xTe3. The change of the hot 
pressing temperature did not result in the change of phase composition and of the lattice 
parameter of samples. The main factors allowing slowing-down of the growth of nanograins 
as a result of recrystallization are the reduction of the temperature and of the duration of the 
pressing, the increase of the pressure, as well as addition of small value additives (like MoS2, 
thermally expanded graphite or fullerenes). The SPS processing is also an effective way for 
reduction of the CDA (or nanograins) size, and as consequence for improvement of the 
figure of merit. The best value of the efficiency ZT=1.12 (at the temperature ~ 350÷375 K) 
was measured in the hot pressed bulk nanostructures Bi0,3Sb1,7Te3, while it was reached 
ZT=1.22 (at 360 K) in the bulk nanostructure Bi0,4Sb1,6Te3 fabricated by SPS method. 
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The theoretical dependence of the electric and heat conductivities and the thermoelectric 

power as the function of nanograins size nL  in BixSb2-xTe3 bulk nanostructure are quite 

accurately correlates with the experimental data (see Sec. 3.2 & 3.3). It means that the 

phonons and holes scattering on the nanograin boundaries takes place. And the intensity of 

the scattering increases with reduction of nL , that results in simultaneous decrease both 

phonons heat conductivity and electric conductivity. Our study shows that reduction of 

CDA size really can lead to improvement of the thermoelectric figure of merit.  

Some theoretical results (Sec.3) on investigation of mechanisms of the thermoelectric 

efficiency improvement in bulk nanocrystalline semiconductors based on BixSb2-xTe3 are 

summarized in Table 4. 

 

Mechanism of 
improvement Z 

Ways of realization Probable value 
of increasing Z 

Additional phonon 
scattering 

nL < (10 – 20) nm (15 – 25)% 

Tunneling of carriers nL < (10 – 20) nm 

Vacuum gaps between nanograins ~ 1 – 2 
nm 

ZT – up to 3,0 – 
3,5 

Energy filtering of 
carriers 

nL < (20 – 30) nm 

Decrease of electrical conductivity and 
lattice thermal conductivity compensate 
each other 

(20 – 40)% 

Table 4. Comparison of mechanisms of the figure of merit improvement 

The increase of the thermoelectric power by 10-20 % at nL =20 - 30 nm can lead to significant 

(20 - 40 %) increase of the thermoelectric efficiency provided that the reduction of the 

electric conductivity and the lattice heat conductivity compensate each other. In the 

investigated samples the full indemnification does not occur, however the thermoelectric 

efficiency nevertheless managed to be increased up to the values ZT =1.1 - 1.2 (see Sec.2.6). 

Table 4 shows that it is necessary to provide the small nanograin size (be more exact – CDA 

size) ~ 10 – 20 nm for realization of all three mechanisms of the figure of merit 

improvement. It is difficult to create such nanostructure technologically; the reason is the 

growth of the initial nanoparticles due to the recrystallization processes. However 

technological conditions have been determined (see Sec.2.5) for fabrication of the bulk 

nanostructures and nanocomposites based on BixSb2-xTe3 solid solution from nanopowder 

by hot pressing and SPS methods which have given the reliable opportunity to obtain the 

CDA sizes nL  ~ 40 nm.  

Fabrication of the vacuum gap ~ 1 – 2 nm between the nanograins for realization of the 

tunneling mechanism of the improvement of the figure of merit and the cutting off the 

phonons transport hardly will be possible by the technology of ball milling with the hot 

pressing or SPS process. Moreover, the electronic microscopy research has not found out 

any gaps between grains (or CDA) in studied nanostructures - no vacuum, no oxide (Sec. 
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2.4, 2.5). The accomplishment of all listed in Table 4 requirements to the structure of the 

nano-thermoelectrics based on BixSb2-xTe3 solid solution should provide the increase of ZT 

up to 3,5 at the room temperatures. If the vacuum gaps ~ (1 - 2) nm between the grains can 

not be created technologically, but if the bulk nanostructure with the grain sizes ~ (10 - 20) 

nm can be realized, the increase of ZT up to 1.5 can be expected. 
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