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1. Introduction 

Discovered in 1991(Iijima, 1991), carbon nanotubes (CNTs) have attracted considerable 
attention in many fields of science and technology because of their unique structural, 
mechanical, and electronic properties. Their potential seemed paramount in the fields of 
materials science, including conductive and high-strength composites, energy storage and 
energy conversion devices, sensors, field emission displays and radiation sources, hydrogen 
storage, nanometer-sized semiconductor devices, probes and interconnects (Dresselhaus et 
al., 2004). Thus their studies progressed rapidly during the last two decades. 

The chemistry of CNTs grew out from the efforts to open and fill the tubes (Ruoff et al., 
1993; Sloan et al., 1998 as cited in Harris, 2009) and, indeed, to functionalize their sidewalls 
(J. Chen et al., 1998; Y. Chen et al., 1998). The first approach was driven partly for the study 
of matter in confined spaces and partly in order to use the tubes as templates for nanowires 
(Harris, 2009).  

On the other hand, CNT functionalization was needed to disperse (“to solubilize”) the tubes 
in aqueous media (Hirsh, 2002). Then, functionalization with biomolecules has become in 
vogue and many research groups have begun to investigate biological uses of these new 
types of nanostructures. According to some authors, CNTs could be possibly used as 
biosensors (Balavoine et al., 1999; Bekyarova et al., 2005; Lin et al., 2004; Richard et al., 2003; 
J. Wang et al., 2003; S. Wang et al., 2003), substrates for neuronal growth (Hu et al., 2004; 
Mattson et al., 2000; Lovat et al., 2005), supports for adhesion of liposaccharides to mimic 
cell membranes (X. Chen et al., 2004), delivery systems (Bianco et al., 2005), medical imaging 
agents (Ashcroft et al., 2007; Hartman et al., 2008; Sitharaman et al., 2005) and 
radiotherapeutics (Hartman et al., 2007a). Such potential uses remind those proposed for 
fullerenes and derivatives in the nineties (Jensen et al., 1996). 

The growing use and mass production of CNTs raised concerns about their safety and 
environmental impact soon after the announcement of the national nanotechnology 
initiative by the US president in 2000 (http://www.nano.gov/). First toxicity studies 
addressed their safety at workplace (Oberdorster et al., 2005). Since then, the 
investigations of their toxicity first in vitro and then in vivo were reported in countless 
publications but their results remain contradictory (Kolosnjaj et al., 2007). As mentioned 
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by most authors, this is due to several factors including surface defects, sizes, and degree 
of aggregation of the tested material, and exposure protocols (Oberdorster et al., 2005, 
Kolosnjaj et al., 2007). 

In this chapter we will try to present an uptake of the current knowledge on CNT toxicity as 
a function of the route of administration. Because of the great number of papers devoted to 
this subject, we are quite aware that we will miss quoting a number of works and we 
apologize to forgotten colleagues. 

For a better understanding of biological behaviour of CNTs we will first describe their main 
general characteristics. 

2. General characteristics 

Carbon nanotubes are mainly composed of sp² bonds, similar to graphite, and are 
categorized as single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).  

2.1 Structure 

2.1.1 Single-walled carbon nanotubes (SWNTs) 

Single-walled carbon nanotubes, composed by a rolled monolayered graphene sheet (that 
might be end-capped by half a C60 molecule), exist in a variety of structures 
corresponding to the many ways a sheet of graphite can be wrapped into a seamless tube. 
Each structure type has a specific diameter and chirality, or wrapping angle (α). The 
“armchair” structures (Fig.1 a), with α = 30°, have metallic character. The “zigzag” tubes 
(Fig.1 b), for which α = 0°, can be either semi-metallic or semiconducting, depending on 
the specific diameter. Nanotubes with chiral angles intermediate between 0 and 30° (Fig.1 
c) include both semimetals and semiconductors. The terms “armchair” and “zigzag” refer 
to the pattern of carbon–carbon bonds along a tube’s circumference (Dresselhaus et al., 
2004). 

 

Fig. 1. Schematic representations of SWNTs in a variety of structures: (a) “armchair” (b) 
“zigzag” stricture (c) “intermediate” structure. 
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The diameter of the tubes generally varies from 0.4 to 20 nm, while the length usually 
reaches several micrometers. The tubes are often entangled and the ropes (Fig. 2) of SWNTs 
are held together by van der Waals forces (Popov et al., 2004). 

 

Fig. 2. Transmission electron micrograph of ropes of SWNTs  

2.1.2 Multi-walled carbon nanotubes (MWNTs) 

Multi-walled carbon nanotubes possess several graphitic concentric layers (Fig.3), made 
either by a single rolled graphene layer (resembling a scroll of parchment) or, more 
commonly, encased within one another (as Russian nesting dolls). The distance between 
each layer of graphene in a MWNT is about 0.34 nm (Iijima, 1991). 

 

Fig. 3. Transmission electron micrograph of a bundle made of individual entangled 
MWNTs. 

2.2 Impurities 

Carbon nanotube powder often contains up to 30% metal (mainly iron and nickel) catalyst 
particles, as we can see on figure 2 (note the little round electron-dense particles present on 
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nanotube ropes), and some amorphous carbon. Carbon nanotubes should be purified prior 
to their administration, in order to avoid any metal catalyst-related toxicity (Valko et al., 
2005). 

Several techniques of purification have been reviewed elsewhere (Sinha & Yeow, 2005) and 
the most commonly used technique appears to be the oxidation using strong acid 
treatments, which allows solubilisation and removal of a large part of the metallic 
impurities. Nevertheless, this methodology has an impact on the tubes. Strong acid 
conditions cut the tubes in shorter pieces and generate carboxylic functions at the tips and 
around the sidewalls where the curvatures of the tubes present a higher strain (Ziegler et al., 
2005). 

2.3 Dispersibility 

Pristine (chemically unmodified) CNTs are insoluble and hardly dispersible in water. In 
order to disperse CNTs several groups proposed covalent and non-covalent 
functionalization, which will be described in this chapter in terms of in vivo interactions. 

3. Interfacing pristine carbon nanotubes with living organisms 

The interaction of CNTs with cells has been described by many research groups and has 
been reviewed by several authors, all converging to the conclusions that the toxicity of 
CNTs in vivo depends on the type of CNTs, including the method of production, impurities 
and purification process (which might affect the sidewalls), length, aggregation state, 
surface coating, and chemical modification. Moreover, special care is needed for the choice 
of reagents used to evaluate the viability of the cells (Kroll et al., 2009), as these 
nanoparticles may interact with assays and even dispersion agents, potentially resulting in a 
secondary rather than primary toxicity (Casey et al., 2007). 

These physical and chemical characteristics are, indeed, important in in vivo studies. 
However, we should also consider other phenomena that may occur in complex living 
systems, such as interaction of CNTs with several different cells at a time, biotransformation 
and innate foreign body reactions, etc. 

Organism-CNT interactions were first described in in vivo toxicity studies, which were 
performed in order to assess the exposure risks to CNTs at workplace. Airborne CNTs 
might represent a danger to people handling these materials on daily basis either by 
crossing their skin barrier or entering and residing in their lungs. However, in recent years, 
potential applications of CNTs in the biomedical field intensified the research on the in vivo 
behaviour of these materials and increased the number of studies devoted to the evaluation 
of their potential toxicity after non-pulmonary routes of administration. 

3.1 Pilot studies on carbon nanotubes in regards to workplace safety 

In 2001 the potential of CNTs to induce skin irritation was evaluated by performing two 
routine dermatological tests (Huczko & Lange, 2001). Initially, 40 volunteers with allergy 
susceptibilities were exposed for 96 h to a patch test consisting in a filter paper saturated 
with a water suspension of unrefined CNTs synthesized by the arc discharge process. 
Secondly, a modified Draize rabbit eye test using a water suspension of unrefined CNTs 
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was conducted with four albino rabbits monitored for 72 h after exposure. Both tests 
showed no irritation in comparison to a CNT-free soot control and it was concluded that “no 
special precautions have to be taken while handling these nanostructures’’ (Huczko & 
Lange, 2001). 

In a second two-part study, other investigations have been made to seek for exposure routes 
and toxicity of SWNTs (Maynard et al., 2004). The study was undertaken to evaluate the 
physical nature of the aerosol formed from SWNTs during mechanical agitation. This was 
complemented by a field study in which airborne and dermal exposure to SWNTs was 
evaluated while handling unrefined material. Although laboratory studies indicated that 
unrefined SWNT material could release fine particles into air under sufficient agitation, 
concentrations generated while handling material in the field were very low. Estimates of 
the airborne concentrations of nanotube materials generated during handling suggest that 
concentrations were lower than 53 μg/m3 in all instances. In another way, glove deposits of 
SWNTs during handling were estimated at between 0.2 mg and 6 mg per hand (Maynard et 
al., 2004). 

3.2 Respiratory exposure: Pulmonary toxicity 

Carbon nanotubes are very light and could become airborne and potentially reach the lungs; 
therefore the earliest in vivo studies tried to assess their pulmonary toxicity (Lam et al., 2004; 
Warheit et al., 2004). 

For this purpose three kinds of SWNTs were studied, namely raw and purified HiPco and 
CarboLex CNTs. The first material is rich in iron impurities and the last one contains nickel 
and yttrium impurities. The particles were dispersed by brief shearing (2 min in a small 
glass homogenizing tube) and subsequent sonication (0.5 min) in heat-inactivated mouse 
serum. Mice were then intra-tracheally instilled with 0, 0.1, or 0.5 mg of CNT or carbon 
black or quartz particles used as negative and positive control, respectively. Seven and 90 
days after this single treatment the animals were sacrificed for histopathological 
examination of the lungs. All CNT treatments induced dose-dependent epithelioid 
granulomas and, in some cases, interstitial inflammation in the animals euthanized after 7 
days (Lam et al., 2004). These lesions persisted and were more pronounced in the group 
euthanized after 90 days. The lungs of some animals also revealed peri-bronchial 
inflammation and necrosis that had extended into the alveolar septa. The lungs of mice 
treated with carbon black were normal, whereas those treated with high-dose quartz 
revealed mild to moderate inflammation. These results show that, under these conditions 
and on an equal- weight basis, if carbon nanotubes reach the lungs, they are much more 
toxic than carbon black and can be more toxic than quartz, which is considered a serious 
occupational health hazard in chronic inhalation exposures (Lam et al., 2004). 

In a similar way, a parallel pulmonary toxicity assessment of pristine SWNTs was described 
(Warheit et al., 2004). The aim of the study was to evaluate the acute lung toxicity of 
intratracheally instilled SWNTs in rats. The applied CNTs were produced by laser ablation 
and contained about 30 to 40% amorphous carbon (by weight) and 5% each of nickel and 
cobalt. The lungs of rats were instilled either with 1 or 5 mg/kg of the following control or 
particle types: SWNTs, quartz particles (positive control), carbonyl iron particles (negative 
control), and the vehicle - phosphate buffered saline (PBS) and 1% Tween 80, or graphite 
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particles (Warheit et al., 2004). Following exposure, the lungs of treated rats were assessed 
using bronchoalveolar fluid biomarkers and cell proliferation methods, as well as by 
histopathological examination of lung tissue at 24 h, 1 week, 1 month, and 3 months post-
instillation. Exposures to high-dose (5 mg/kg) of SWNT produced mortality in 
approximately 15% of the instilled rats within 24 h post-instillation. This mortality resulted 
from mechanical blockage of the upper airways by the instilled particulate SWNT. In the 
surviving animals, SWNT produced temporary inflammatory and cell injury effects. Results 
from the lung histopathology indicated that pulmonary exposures to SWNT in rats 
produced a non-dose-dependent series of multifocal granulomas, which were evidence of a 
foreign tissue body reaction. However, they were non-uniform in distribution and not 
progressive beyond one month of post-exposure. The observation of SWNT-induced 
multifocal granulomas was inconsistent with the following: lack of lung toxicity by 
assessing lavage parameters, lack of lung toxicity by measuring cell proliferation 
parameters, apparent lack of a dose response relationship, non-uniform distribution of 
lesions, the paradigm of dust-related lung toxicity effects, and possible regression of effects 
over time. The observation of granulomas, in the absence of adverse effects measured by 
pulmonary endpoints was surprising, and did not follow the normal 
inflammogenic/fibrotic pattern produced by fibrogenic dusts, such as quartz, asbestos, and 
silicon carbide whiskers (Warheit et al., 2004). 

While the first authors (Lam et al., 2004) concluded that SWNT were more toxic than quartz 
nanoparticles and crystalline silica particles, the second ones (Warheit et al., 2004) observed 
only a transient pulmonary inflammation and granuloma formation after SWNT exposure, 
contrarily to sustained lung inflammation, cytotoxicity, enhanced lung cell proliferation, 
foamy macrophage accumulation and lung fibrosis after exposure to quartz particles. The 
differences between these findings may be related in part to species differences (mouse vs. 
rat), but are more likely due to the differences in the experimental designs of the two studies 
(Warheit, 2006).  

Respiratory toxicity of MWNTs has been also evaluated after intra-tracheal administration 
of MWNTs or ground MWNTs suspended and sonicated in sterile 0.9 % saline containing 1 
% of Tween 80, at doses of 0.5, 2.0 or 5.0 mg, corresponding to approximately 2.2 mg/kg, 8.9 
mg/kg and 22.2 mg/kg body-weight (bw) to Sprague-Dawley rats (Muller et al. 2005). The 
applied CNTs were still present in the lungs after 60 days (80% and 40% of the lowest dose) 
and both induced inflammatory and fibrotic reactions (Muller et al. 2005). At 2 months, 
pulmonary lesions induced by MWNTs were characterized by the formation of collagen- 
rich granulomas protruding in the bronchial lumen, in association with alveolitis in the 
surrounding tissues. These lesions were caused by the accumulation of large MWNT 
agglomerates in the airways. Ground CNTs were better dispersed in the lung parenchyma 
and also induced inflammatory and fibrotic responses. Both MWNTs and ground MWNTs 
stimulated the production of TNF-α in the lung of treated animals (Muller et al. 2005). 

The physiological relevance of intra-tracheal instillation of CNTs is debatable since 
physiologically inspired particles would probably encounter several barriers in the upper 
respiratory tract before reaching the trachea and the lungs. Nevertheless, purified SWNTs 
elicited inflammation, fibrosis and granulomas formation in C57BL/6 mice even when 
administered by pharyngeal aspiration (Shvedova et al., 2005). The nanotubes used in this 
study were produced by HiPco and where further purified by acidic treatment. The analysis 

www.intechopen.com



 
In vivo Toxicity Studies of Pristine Carbon Nanotubes: A Review 

 

43 

also proved that CNTs accounted for more than 99% of carbon. The animals were treated 
with either SWNT (0, 10, 20, 40 μg/mouse) or two reference materials (ultrafine carbon 
black or SiO2 at 40 μg/mouse). The animals were sacrificed at 1, 3, 7, 28, and 60 days 
following exposures. A rapid progressive fibrosis found in mice exhibited two distinct 
morphologies: 1- SWNT-induced granulomas mainly associated with hypertrophied 
epithelial cells surrounding dense micrometer-scale SWNT aggregates and 2- diffuse 
interstitial fibrosis and alveolar wall thickening likely associated with dispersed SWNTs. 
These differences in fibrosis morphology were attributed to the distinct particle 
morphologies of compact aggregates and dispersed SWNT structures. Importantly, 
deposition of collagen and elastin was also observed in both granulomatous regions as well 
as in the areas distant from granulomas. Increased numbers of alveolar type II (AT- II) cells, 
the progenitor cells that replicate following alveolar type I (AT-I) cell death, were also 
observed as a response to SWNT administration. Moreover, functional respiratory 
deficiencies and decreased bacterial clearance (Listeria monocytogenes) were found in mice 
treated with SWNT (Shvedova et al., 2005). 

In a mechanistically oriented study, the physicochemical determinants of the MWNTs’ 
toxicity mechanism were investigated (Muller et al., 2008). In this experiment the toxicity of 
MWNTs was evaluated after the tubes were heated at 600°C (which allowed loss of 
oxygenated carbon functionalities and reduction of oxidized metals) or at 2400°C (which 
annealed structural defects and eliminated metals) or after the MWNTs heated at 2400°C 
were grinded (introduction of structural defects in a metal-deprived framework). The 
MWNTs were suspended in 1% Tween 80 and physiological saline and administered intra-
tracheally (2 mg/rat). The results show that pulmonary toxicity (and genotoxicity of 
MWNTs, determined in vitro) were reduced upon heating but restored upon grinding, 
indicating that the intrinsic toxicity of the tubes was mainly mediated by the presence of 
defective sites in their carbon framework (Muller et al., 2008). 

Finally, in order to check the hypothesis linking lung toxicity to CNT aggregates (Mutlu, 
Budinger et al., 2010), the authors instilled intratracheally unpurified aggregated or highly 
dispersed SWNTs in 1% Pluronic F 108NF to mice. As-produced HiPco SWNTs were either 
dispersed in PBS or highly dispersed in Pluronic solution in a dose of 40 µg, which was 
chosen to match or exceed those previously reported to cause pulmonary fibrosis in mice 
(Mutlu, Budinger et al., 2010; Shvedova et al., 2005). According to the authors, lung 
inflammation induced by SWNTs is minimal compared to that induced by urban particulate 
matter or asbestos fibers (used as positive control). Aggregated SWNTs in PBS caused areas 
of chronic inflammation, while highly dispersed SWNTs do not cause any inflammation or 
fibrosis. Moreover, nanoscale dispersed SWNTs are taken up by alveolar macrophages and 
cleared from the lung over time (Mutlu, Budinger et al., 2010). Besides, by administering 
unpurified CNTs, the authors (Mutlu, Budinger et al., 2010) avoided a potential effect due to 
surface defects of tube sidewalls (Ziegler et al., 2005), which might contribute to an increase 
in collagen deposition (Mercer et al., 2008). 

In a study where rats were instilled with 0.04, 0.2, or 1 mg/kg of individually dispersed 
MWNTs in Tween 80 (Kobayashi et al., 2010), it has been observed that pulmonary 
inflammatory responses occur only in the lungs of the group treated with the highest dose. 
Moreover, the authors did not find any evidence of chronic inflammation, such as 
angiogenesis or fibrosis, induced by MWNT instillation (Kobayashi et al., 2010). Light 
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microscopic examination indicated that MWNT aggregates deposited in the lungs were 
phagocytized by alveolar macrophages and were accumulated in the lungs until 6-month 
post-exposure. These aggregates were located in the alveolar or interstitial macrophages, but 
individual MWNTs were not present in the cells of the interstitial tissue (Kobayashi et al., 
2010). However, in the light micrograph panels, provided by the authors (Kobayashi et al., 
2010) MWNTs seem to extend outside the macrophages in several directions, which is 
commonly referred to as incomplete or frustrated phagocytosis that is known to be a pro-
inflammatory condition (Balkwill & Mantovani, 2001). According to the authors, the 
MWNTs used in this study were less than 20 µm long, but after measuring the tubes inside 
the alveolar macrophages, they concluded that median length was approximately 1.5 µm, 
although some tubes were measuring up to 6 µm (Kobayashi et al., 2010).  

In contrast, a recent study reported that highly dispersed MWNTs could, depending on the 
way of administration (i.e. intratracheal instillation or inhalation) and dose, produce 
pulmonary lesions (Morimoto et al., 2011). The MWNTs that were used in this study were 
ground in a fructose mold - the fructose was rinsed afterwards with water and hydrogen 
peroxide. According to the authors this process slightly oxidized the tubes, which were 
subsequently dispersed in a 0.05% Triton X-100 solution (Morimoto et al., 2011). Triton X-
100 is often used in cell biology to digest the cell membrane and cytoplasm to access the cell 
nucleus (http://fr.wikipedia.org/wiki/Triton_X-100). In the experiment of intratracheal 
instillation, two single doses (0.2 mg or 1 mg, 1.1 μm of mean particle length) were 
administered to rats and the study was conducted up to 6 months. While only a transient 
infiltration of inflammatory cells was observed for 0.2 mg treated animals, the high dose 
caused small granulomatous lesions and transient collagen depositions. In parallel, the 
authors conducted an inhalation study of dispersed MWNTs in a daily average mass of 0.37 
± 0.18 mg/m3 (Morimoto et al., 2011). The rats were exposed to aerosol particles for 6h per 
day, 5 days a week for 4 weeks. At the end of the experiment, the dispersed MWNTs with 
the average length of 1.1 μm caused only a minimal transient inflammation, which did not 
cause neutrophil infiltration into alveolar space. Moreover granulomatous lesions or 
collagen depositions were not observed (Morimoto et al., 2011). 

In conclusion, the studies performed thus far indicate that due to van der Waals interactions 
individual SWNTs are prone to form large aggregates, in air or in aqueous solutions, which 
can be more than one hundred micrometers in diameter. While accidental industrial 
exposure is the most probable risk and might have a serious impact at workplace, toxicity 
was not observed after the intratracheal instillation of nanoscale dispersed SWNTs at a dose 
of 1.6 mg/kg (Mutlu, Budinger et al., 2010), or nanoscale dispersed MWNTs at a dose of 0.66 
mg/kg (Morimoto et al., 2011). It is worthy to note that these doses would be the equivalent 
to a single instilled dose of approximately 112 g or 46 g, respectively, in an average 
weighting human. 

3.2.1 Respiratory exposure and health risks 

The analogy between CNTs and asbestos fibres was pointed out in the late nineties (Service, 
1998). The term asbestos refers to a variety of fibrous silicates, which were exploited 
commercially in past for their desirable physical properties, such as sound absorption, 
average tensile strength, and resistance to fire, heat, electrical and chemical damage 
(http://en.wikipedia.org/wiki/Asbestos). Asbestos fibres have a high aspect ratio and they 
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are characterized by high chemical stability in physiological environment (Kane & Hurt, 
2008). The pathologies related to asbestos exposure, especially lung fibrosis (asbestosis) and 
lung cancer (mesothelioma) that most often originates in the pleura, the outer lining of the 
lungs, have caused a major worldwide occupational health disaster (Donaldson & Poland, 
2009) and founded reasonable fear of these airborne fibres. 

Each lung is invested by a membrane, the pleura, which is arranged in the form of a 
closed invaginated sac. The membrane lining on the lung with its ‘visceral’ mesothelial 
layer is the visceral pleura and the membrane attached to the chest wall, covered by a 
continuous ‘parietal’ mesothelial cell layer is the parietal pleura. The pleural mesothelium 
is the primary mesothelial target for inhaled fibres (Donaldson et al, 2010). The space 
between the visceral and the parietal pleura contains the pleural fluid and a population of 
pleural macrophages. Pleural liquid is derived mainly from capillaries in the parietal 
pleura and is principally removed by lymphatic stomata in the parietal pleura (Lai-Fook, 
2004), which drains the pleural fluid to the lymph nodes. This turnover is important for 
clearance of particles and fibres that reach the pleural space (Donaldson et al, 2010). While 
the exact mechanism of fibre deposition in the pleural mesothelium remains unclear, 
research indicates that retention of biopersistent fibres at the parietal pleura initiates 
mesothelial injury and inflammation that, overtime, lead to mesothelioma. When the fibre 
diameter is small, the fibre will align with the flow and deeply penetrate the lungs. The 
fibres are more or less cleared by macrophages, depending on their length. If the fibers are 
too long they cannot be entirely phagocytized. This unachieved – ‘frustrated’ 
phagocytosis is pro-inflammatory condition, characterized by the release of inflammatory 
mediators into the environment. These mediators may recruit other cells (for example 
collagen synthesizing fibroblasts) or cause DNA damage and mutations to proliferating 
cells, which may in term cause tumour development (Balkwill & Mantovani, 2001). 
Carbon nanotubes are fiber-shaped, however, for what concerns SWNTs, they are flexible 
and bendable, and often entangled. These particle-sized tangles would not obey the fibre 
toxicity paradigm because of their non-fibrous geometry (Donaldson et al, 2010; Kane & 
Hurt, 2008). Multi-walled carbon nanotubes, on the other hand, are much stiffer and 
generally less entangled; therefore, if long enough, they might present a risk (Donaldson 
et al, 2010). 

A study performed with nickel containing milled pluronic-suspended MWNTs (Ryman-
Rasmussen et al., 2009) with a length ranging between 100 nm and 10 μm showed that the 
nanotubes are observed inside the sub-pleural tissue macrophages after a single 6 h 
inhalation exposure of 30 mg/m3. Fibrotic lesions, which increase 2 and 6 weeks after 
exposure, remain focal and regional. This effect did not occur after exposure to a dose of 1 
mg/m3, which according to the authors corresponds to 0.2 mg/kg. While the authors did 
not find MWNTs-loaded macrophages inside the pleura, they did notice an increased 
number of pleural mononuclear cells. 

A study published about the same time reported that MWNTs could reach the pleura after 
pharyngeal aspiration (Porter et al., 2010). The inflammation extended from lungs to pleura in 
half of the MWNT-exposed mice. At 56 days post exposure, MWNTs penetrated the pleura in 
two out of four mice treated with the highest MWNT dose. The inflammation induced by the 
nanotubes was transient at low doses but persistent through day 56 at a dose of 40 μg. 
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In another study performed by the same group (Mercer et al., 2010), the authors reported an 
initial high density of penetrations into the sub-pleural tissue and the intra-pleural space 
one day following aspiration of MWNTs (80 μg per mice). The kinetics of penetration 
decreased due to the clearance by alveolar macrophages by day 7 and reached steady state 
levels in the sub-pleural tissue and intra-pleural space from days 28 to 56. The majority of 
the tubes (62% of the dose) resided in alveolar macrophages, while 0.6% of tubes, reached 
the visceral pleura region (sub-pleura and intra-pleural space). 

As it has been already emphasized (Donaldson et al, 2010), the question that we should ask 
with regard to any fibre in relation to mesothelioma is not “Do fibres reach the pleura?” but 
“Are fibres retained in the parietal pleura”, which is the site of origin of pleural mesothelioma. 

When long and short CNTs (as well as long and short asbestos fibres) were injected directly 
into the pleural space, the authors found (Murphy et al., 2011) evidence of length-related 
inflammation, with no significant inflammation when short tubes (fibres) were administered. 
While no short samples were visible at day 1 or day 7, the mesothelium, that was thicker on 
day 1, returned to its normal thickness by day 7. While short tubes and fibres cleared from the 
pleura through stomatal openings, long tubes and fibres remained inside the pleura near 
stomata, where they persisted and caused inflammation and progressive fibrosis. 

3.3 Effects of carbon nanotubes after intra-peritoneal administration 

While pulmonary toxicity studies clearly indicate that inhalation of CNTs aggregates 
represents a possible occupational health hazard, the toxicity of CNTs after in vivo 
administration through bio-medically relevant routes is still a matter of debate. Among 
different routes of administration, the intra-peritoneal way has several advantages, firstly it 
offers the possibility to administer larger doses of suspended nanoparticles and secondly, 
the peritoneal cavity has a recognized particle-clearance mechanism. Particles leaving the 
peritoneal cavity pass via the retrosternal route through stomata (pore like structures) to the 
parathymic (mediastinal) nodes to the upper terminal thoracic duct or right lymphatic duct 
(Abu-Hijleh et al., 1995). Moreover, the peritoneal cavity and its mesothelium-covered 
viscera were recognized as a convenient substitute for pleural cavity mesothelium in fibre 
toxicity studies (Donaldson et al., 2010). 

The first study of in vivo toxicity of CNTs after intra-peritoneal administration was 
conducted in our laboratory in collaboration with the Department of Chemistry of Rice 
University (Hartmann et al., 2007b). We compared the acute toxicity of full-length and ultra-
short CNTs suspended in a Tween 80 aqueous solution, under the same conditions we used 
since 1996 to study the acute and sub-acute toxicity of [60]fullerene in mice (Moussa, F. et al, 
1996). Our preliminary results showed that irrespective of the length of the administered 
CNT material, CNT aggregates induced a granulomatous response inside the organs like 
that which occurs in lungs after inhalation or intra-tracheal instillation (Hartmann et al. 
2007). 

One year later, in a comparative study of MWNTs and asbestos fibres, it was reported that 
MWNTs exhibit a length-dependent pathogenic behaviour (Poland et al., 2008) including 
granuloma formation and inflammation. In order to assess the role of fibre length, samples 
of long and short asbestos fibres and MWNTs with length ranges less than 5 μm, less than 
20 μm- referred to as short, tangled MWNTs; and long tubes of the mean of 13 μm (24% of 
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them were larger than 15 μm) and maximum 56 μm have been suspended in bovine serum 
albumin and saline and administered intra-peritoneally to mice in a dose of 50 μg per 
mouse. The MWNTs samples differed in the source, preparation and purification method 
(the short ones being purified by acid treatment). At day 7 after injection, the authors 
reported that only the samples containing long fibres (asbestos or MWNTs) caused 
significant polymorphonuclear leukocyte infiltration, protein exudation and granulomas. 
However, the mesothelial lining on the pleural side of the diaphragm was normal in every 
case (Poland et al., 2008) and the inflammation decreased by day 7. Short fibres of any kind 
did not cause significant inflammation, neither at day 1 nor at day 7 after administration, 
except for one mouse out of three in the group treated with short tangled MWNTs of the 
length < 20 μm. The overall conclusion of the study was that short MWNTs do not mimic 
the behaviour of long asbestos, but that their data cannot preclude the possibility that short 
MWNTs may be by some other mechanism that was not assessed in this study. Long 
MWNTs produced inflammation, foreign body giant cells and granulomas that were 
qualitatively and quantitatively similar to the foreign body inflammatory response caused 
by long asbestos. However, for the specimen treated with shorter MWNTs that did exhibit 
granuloma, the authors concluded that it was maybe due to the fact that the sample they 
injected was contaminated with long fibres, caused by some other unidentified component 
specific for the precise MWNTs sample, or the granulomas could have arisen spontaneously 
by chance (Poland et al., 2008). 

In our laboratory (Kolosnjaj-Tabi et al., 2010) we administered Tween-suspended ultra-short 
(20-80 nm long) and full length SWNTs in a dose up to 1000 mg/kg. Our results indicated 
that regardless of the administered dose (50-1000 mg/kg b.w.), length, or surface state of the 
administered material, large aggregates of CNTs (>10 μm) irremediably induce granuloma 
formation (Fig. 4). 

 

Fig. 4. Light micrograph after hematoxylin-eosin staining of a liver section from mice i.p. 
injected with a single dose of ultra-short SWNTs at 90 days post-administration showing a 
US-tube-laden granuloma. (Magnification = 10). 
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The administered doses were high, yet necessary to ascertain a sufficient circulating dose of 
administered material. The bolus dose was responsible, in set terms, for granulomas that 
were formed after aggregation of intra-peritoneally administered tubes. Smaller 
agglomerates (< 300 nm), on the other hand, did not induce granuloma formation nor did 
they cause any major life-threatening condition under our experimental conditions. A large 
portion of well-dispersed CNTs was eliminated through the kidney and the bile ducts. 
However, the aggregated part of the administered dose was not cleared from the body and 
persisted inside cells 5 months after administration (Fig. 5). 

 

Fig. 5. Transmission electron micrograph of bundles of SWNTs in a Kuppfer cell, found in 
the liver of a mouse 5 months after treatment 

The persistence of the nanotube aggregates inside the cells was probably due to the slow 
disaggregation and slow elimination of larger aggregates. 

3.3.1 Carbon nanotubes and mesothelioma 

The ability of MWNNTs to induce mesothelioma, a deadly cancer, in experimental models 
in rodents is still a matter of debate. This cancer is a highly specific response to bio-
persistent fibres and may occur in the pleura (outer lining of the lungs and internal chest 
wall), peritoneum (the lining of the abdominal cavity), pericardium (a sac that surrounds the 
heart), or tunica vaginalis (a sac that surrounds the testis) (Moore et al., 2008). 

N

www.intechopen.com



 
In vivo Toxicity Studies of Pristine Carbon Nanotubes: A Review 

 

49 

In 2008, a Japanese team observed for the first time that MWNTs could induce 
mesothelioma after intra-peritoneal administration to p53 heterozygous mice (Takagi et al., 
2008a). This type of mice are, however, more sensitive and have a shorter tumour onset rate 
than standard wild-type rodents. Indeed, different groups contested this study (Donaldson 
et al., 2008, Ichihara et al., 2008), but Takagi et al. explained and justified their experimental 
choices letting other studies to confirm mesothelium threats (Takagi et al., 2008b, c). The 
authors administered intra-peritoneally 3 mg of CNTs per mouse suspended in 1% Tween 
80 and 0.5% methyl cellulose- aqueous solution. While the samples of crocidolite asbestos 
were evenly dispersed, MWNTs contained aggregates and fibres. The mice were monitored 
until one of the groups (MWNTs treated group) reached 100% mortality, which happened 
on day 180. The mice treated with MWNTs exhibited moderate to severe fibrous peritoneal 
adhesions, slight ascites, fibrous peritoneal thickening and a high incidence of macroscopic 
peritoneal tumours. Similar, but less severe findings were noted in the asbestos group. As 
the authors emphasized, it is important to limit the significance of this study to the 
monitoring of biological activity of a compartment of MWNTs longer that 5 μm. There is no 
information that this study method would be sensitive to pure nanometer-sized particles 
within the same timeframe (Takagi et al. 2008a). 

An analogous study was made, in time, on wild-type rats (Muller et al., 2009) in a two years 
exposure period, where up to 20 mg of MWNTs with and without sidewall defects (induced 
by grounding of the raw material) suspended in phosphate buffer were intraperitoneally 
injected to a large number of rats. After 24 months, crocidolite induced mesothelioma in 
34.6% animals whereas mesothelioma occurred only in 3.8% in the vehicle-treated rats. 
MWNTs with or without structural defects did not induce significant mesothelioma in this 
study, as mesothelioma occurrence was detected in up to 6% of MWNT-treated rats, which 
is in line with the spontaneous incidences of mesothelioma in rats (up to 6%). The incidence 
of tumours other than mesothelioma was not significantly increased across the groups 
(Bignon et al., 1995). 

In contrast to what was observed after intra-peritoneal administration to wild type rats 
(Muller et al., 2009), MWNTs injected in a single intra-scrotal dose to rats, induced 
mesothelioma 37 to 40 weeks after treatment (Sakamoto et al., 2009). In the latter 
experiment, MWNTs were suspended in a 2% carboxymethyl cellulose aqueous solution 
and administered to rats at a dose of 0.24 mg/animal. According to the authors this dose 
corresponds to the maximal value recommended by the guideline for man-made mineral 
fibers (Bernstein & Riego Sintes, 1999, as cited in Sakamoto et al., 2009).  

In conclusion, these findings also show that under some experimental conditions, MWNTs 
may induce mesothelioma formation. Thus, further investigations are urgently needed. 

3.4 Effects of carbon nanotubes after sub-cutaneous administration 

Subcutaneous implantations of clusters of MWNTs of different lengths (220 nm and 825 nm) 
in rats showed that the degree of inflammatory response around the shorter MWNTs was 
slighter than that observed around the longer ones, thus indicating that macrophages could 
envelop the shorter nanotubes more readily than the longer ones (Sato et al., 2005). 
However, no severe inflammatory response such as necrosis, degeneration or neutrophils 
infiltration was observed around both types of MWNTs. 
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These biological responses have also been described after subcutaneous implantations in 
mice of 2 mg/animal of SWNTs, two different types of MWNTs (20 and 80 nm of average 
diameter) and cup-stacked carbon nanotubes (CSNTs made with stacked truncated cones), 
for up to 3 months (Koyama et al., 2006). The nanotubes used in this study were purified by 
thermal treatment process during which the metal particles evaporate. After 1, 2, 3 weeks, 1 
month, 2 months and 3 months post-implantation, the animals were sacrificed, blood was 
collected for CD4+ and CD8+ T-cells counting by flow-cytometry and tissue of skin 
(including muscle layers) were collected for histo-pathological examination. All mice 
survived, and no large changes in their weights were observed during the experimental 
period. After one week of implantation, only SWNTs activated the major histocompatibility 
complex (MHC) class I pathway of antigen-antibody response system (higher CD4+/CD8+ 
value), leading to the appearance of an oedematous aspect. After two weeks, significantly 
high values of CD4+ without changes in CD8+ signified the activation of MHC class II for 
all samples. The authors noted that antigenic mismatch becomes less evident with time, 
notably one month post-implantation, indicating an establishment of granuloma formation. 
Furthermore, the toxicological response of CNTs was absolutely lower than that of asbestos. 

3.5 Effects of carbon nanotubes after intra-venous administration 

3.5.1 Effects of SWNTs 

The first report on the effects of SWNTs after intravenous administration to mice (3 mg/kg) 
monitored over four months indicated normal blood chemistries and normal histological 
examinations (Schipper et al., 2008). The animals did not show significant inflammatory 
lesions and SWNTs accumulated in liver and spleen as evidenced by Raman spectroscopy. 
The CNTs used in this study were highly dispersed with polyethylene glycol (PEG). CNT 
aggregates were eliminated with ultracentrifugation before administration to the animals. 

Another study used highly dispersed pristine HiPco SWNTs with different PEGylated 
phospholipids (Liu et al., 2008). Big bundles and impurities were removed by centrifugation, 
and individually suspended tubes or small bundles were administered intravenously at a 
dose of approximately 20 μg or 100 μg per mouse. Blood, tissue and organ distribution and 
elimination in urines and faeces were evaluated by Raman spectroscopy, by assessment of 
the tangential graphite-like phonon mode (G band). Administered SWNTs accumulated 
mainly in liver and spleen, however the quantity decreased over a 3-month period. The 
authors concluded that SWNTs were mainly eliminated by the biliary pathway; only a small 
portion of short tubes (< 50 nm in length) was eliminated in the urines. Finally, the authors 
did not report any obvious sign of toxicity. 

Other authors also reported low toxicity of SWNTs in mice over a 3-month period (Yang et 
al., 2008). Purified SWNTs were suspended in 1% Tween 80 aqueous solution and sonicated 
for 30 minutes prior administration to animals at various doses from 40 μg to 1 mg per 
mouse. Some of the serum biochemical parameters (ALT, AST and LDH) were higher in 
SWNT-treated animals compared to the control group 90 days post-exposure, indicating 
that induced hepatic injury and tissue breakdown were dose-dependent. The long-term 
accumulation of aggregated SWNTs was evidenced in histological sections of lungs, livers 
and spleens and was confirmed by Raman spectroscopy and transmission electron 
microscopy in organ lysates. However, no fibrosis was detected in the organs. 
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Embriotoxicity was recently reported as an effect caused by intravenous administration of 
SWNTs in mice (30 μg/mouse) (Pietroiusti et al., 2011). The authors used pristine, oxidized 
or ultra-oxidized by acid treatment SWNTs. Cobalt was the only impurity that was released 
in the medium in which the tubes were dispersed (DMEM cell culture medium with fetal 
bovine serum). Before the end of gestation, the animals were sacrificed, and uteri, placentas, 
and foetuses were examined. A high percentage of early miscarriages and foetal 
malformations were observed in females exposed to oxidized SWNTs, while lower 
percentages were found in animals exposed to the pristine material. The lowest effective 
dose was 100 ng/mouse. Extensive vascular lesions and increased production of reactive 
oxygen species (ROS) were detected in placentas of malformed but not of normally 
developed foetuses. Increased ROS levels were likewise detected in malformed foetuses. No 
increased ROS production or evident morphological alterations were observed in maternal 
tissues (Pietroiusti et al., 2011). 

3.5.2 Effects of MWNTs 

MWNTs dispersed in mouse-serum (10 min of sonication) and injected to mice at a dose of 
200 or 400 μg per mouse showed no severe acute response, 24 hours after administration 
(Lacerda et al., 2008). However, mice treated with aggregates of pristine MWNTs exhibited 
subdued behavior, hunched posture, and signs of respiratory distress. While serum 
biochemistry data did not show significant increase, optical microscopy revealed aggregate 
accumulation, mostly in livers and lung vessels, which were probably responsible for 
respiratory distress. Nevertheless, no tissue degeneration, inflammation, necrosis or fibrosis 
occurred 24 hours after injection. 

The effect of Tween-suspended pristine MWNTs and PBS-suspended acid oxidized MWNTs 
up to 2 months were investigated after administration to rats at a dose level of 10 or 60 
mg/kg (Ji et al., 2009). The authors reported an impact on body weight gain of the highest 
dose. Severe inflammatory cell infiltration in the portal region, cellular necrosis and focal 
necrosis were seen at a dose of 60 mg/kg in the MWNT-treated group 15 and 60 days 
following the treatment. Moreover, severe mitochondrial swelling, bile canaliculi expansion, 
mitochondrial destruction, loss and lysis of mitochondrial crest were also observed. In the 
acid treated (oxidized) MWNTs group only slight inflammatory cell infiltration was 
observed after 2 months. A slight increase of AST activity used as biochemical marker of 
liver injury was also reported in treated animals, but it did not increase more than twofold. 
Interestingly, 329 genes were up-regulated and 31 genes that were down-regulated more 
than twofold in MWNT-treated mice and 1139 genes were up-regulated and 505 genes were 
down-regulated over twofold in the mice treated with oxidized MWNTs. 

In order to avoid mechanical blockage by the administered material, it is of capital 
importance to administer only individually suspended, short CNTs. Thus, further studies 
with individually suspended CNTs have to be made in order to confirm the direct effect of 
these materials after administration by the intravenous route. 

3.6 Effects of carbon nanotubes after oral administration 

Oral administration of 1000 mg/kg of body weight of SWNTs to mice (Kolosnjaj-Tabi et al.) 
resulted in neither animal death nor behavioral abnormalities. Compound-colored stool was 
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found 24 h after gavage in all treated groups. Two weeks after treatment, regardless of the 
length or of the iron content, the nanotube materials did not induce any abnormalities after 
pathological examination, indicating that under these conditions, the lowest lethal dose 
(LDLo) is greater than 1000 mg/kg b.w. in Swiss mice. 

The potential effects of MWNTs after oral administration were also investigated on 
pregnant dams and embryo-fetal development in rats (Lim et al., 2011). MWNTs were 
administered to pregnant rats by gavage at 0, 40, 200, and 1,000 mg/kg/day. All dams were 
subjected to Cesarean section on day 20 of gestation, and the foetuses were examined for 
morphological abnormalities. A decrease in thymus weight was observed in the high dose 
group in a dose-dependent manner. However, maternal body weight, food consumption, 
and oxidant-antioxidant balance in the liver were not affected by treatment with MWNTs. 
No treatment-related differences in gestation index, foetal deaths, foetal and placental 
weights, or sex ratio were observed between the groups. Morphological examinations of the 
foetuses demonstrated no significant difference in incidences of abnormalities between the 
groups. 

Intriguingly, it has also been reported that CNTs may be involved in oxidative stress with 
oxidative damage of DNA in the colon mucosa, liver, and lung of rats after oral 
administration of SWNTs in a dose of 0.064 or 0.64 mg/kg b.w. suspended in saline solution 
or corn oil (Folkmann et al., 2009). Suspensions of particles in saline solution or corn oil 
yielded a similar extent of genotoxicity. However, corn oil per se generated more 
genotoxicity than the particles (Folkmann et al., 2009). 

4. Conclusion 

Considered together, these diverging results highlight the difficulties in evaluating the 
toxicity of CNT materials. While the toxicity is certainly governed by the state of 
aggregation, length and stiffness of CNTs, other parameters might be involved. Most of 
them probably depend of the method of production of the sample, the method of 
purification and the method of preparation of the tested formulations. As the reactivity and 
the general behaviour of CNTs in biological media are not completely understood, assessing 
the safety of these nanoparticles should also include a careful selection of appropriate 
experimental methods. Thus, more studies are needed in order to determine the safety of 
CNTs. For the time being, precaution is necessary notably in case of CNT-exposure at 
workplace. 
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