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1. Introduction

Human cancers are heterogeneous due to combined effects of genetic instability and selection,
where the accumulation of the most advantageous set of genetic aberrations results in
the expansion of cancer cells (Pinkel & Albertson, 2005). There are many different types
of instability that occurs during tumor development, such as point mutation, alteration
of microsatellite sequences, chromosome rearrangements, DNA dosage aberrations and
epigenetic changes such as methylation. These abnormalities acting alone or in combination
alter the expression levels of mRNA molecules. However, the genetic history of tumor
progression is difficult to decipher. Because it is only a sufficiently protumorigenic aberration
or obligate products of a crucial alteration that results in tumor development (Pinkel &
Albertson, 2005).

Genomic DNA copy number variations (CNVs), kilobase- or megabase-sized duplications
and deletions, are frequent in solid tumors. It has been shown that CNVs are useful diagnosis
markers for cancer prediction and prognosis (Kiechle et al., 2001; Lockwood et al., 2005).
Therefore, studying the genomic causes and their association with phenotypic alterations is
emergent in cancer biology. The underlying mechanism of CNV related genomic instability
amongst tumors includes defects in maintenance/manipulation of genome stability, telomere
erosion, chromosome breakage, cell cycle defects and failures in DNA repairs (Albertson,
2003). Consequential copy number aberrations of the above mentioned malfunctions will
further change the dosage of key tumor-inducing and tumor-suppressing genes, which
thereby affect DNA replication, DNA damage/repair, mitosis, centrosome, telomere, mRNA
transcription and proliferation of neoplastic cells. In addition, microenvironmental stresses
play a role in exerting strong selective pressure on cancer cells with amplification/deletion
of particular regions of the chromosome (Lucas et al., 2010). Recently, high-throughput
technologies have mapped genome-wide DNA copy number variations at high resolution,
and discovered multiple new genes in cancer. However, there is enormous diversity in each
individual’s tumor, which harbors only a few driver mutations (copy number alterations
playing a critical role in tumor development). In addition, CNV regions are particularly large
containing many genes, most of which are indistinguishable from the passenger mutations
(copy number segments affecting widespread chromosomal instability in many advanced
human tumors) (Akavia et al., 2010). Thus analysis based on CNV data alone will leave
the functional importance and physiological impact of genetic alteration ineluctable on the
tumor. Gene expression has been readily available for profiling many tumors, therefore, how
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2 Will-be-set-by-IN-TECH

to incorporate it with CNV data to identify key drivers becomes an important problem to
uncover cancer mechanism.

This chapter is laid out as follows: Section 2 covers a variety of CNV data topics, starting with
a range of different CNV measurement techniques, which includes a brief discussion of the
data format. Practical examples are used to show collecting, generating and assessing data,
plus several ways to manipulate data for normalization. In the end, different computational
approaches are introduced for analyzing CNV data. Section 3 focuses on an algorithm
for integrating CNV with mRNA expression data, which can be potentially extended to
incorporate multiple genomic data. Basic concepts of Bayesian factor analysis are briefly
mentioned. Case studies then provide detailed description for this particular approach.
Section 4 provides a brief wrap-up of the main ideas in the chapter. It illustrates the advantage
of our statistical models on studying cancer genomics, and discusses the significance of the
approach for clinical application.

2. Copy number analysis

2.1 Copy number analyses techniques

Comparative genome hybridization (CGH) is a recently developed technology and profiles
genome-wide DNA copy number variations at high resolution. It has been popular for
molecular classification of different tumor types, diagnosis of tumor progression, and
identification of potential therapeutic targets (Jonsson et al., 2010; McKay et al., 2011). The
use of CGH array offers many advantages over traditional karyotype or FISH (fluorescence in
situ hybridization). It can detect microduplications/deletions throughout genome in a single
experiment.

BAC Array

The CGH array using BAC (bacterial artificial chromosome) clones has been widely used.
The spotted genomic sequences are inserted BACs: two DNA samples from either subject
tissue (target sample) or control tissue (reference sample) are labeled with different fluorescent
dyes–for example, with the test labeled in green and reference in red. The mixture is
hybridized to a CGH array slide containing hundreds or thousands of defined DNA probes.
The probes targeting regions of the chromosome that are amplified turn predominantly green.
Conversely, if a region is deleted in the test sample, the corresponding probes become red.
However, given the resolution limitation on the order of 1Mb and array size of 2400 to ∼30000
unique elements, the BAC array data is relatively low density.

cDNA/oligonucleotide Array

cDNA and oligonucleotide arrays are designed to detect complementary DNA "targets"
derived from experiments or clinics. It allows greater flexibility to produce customized arrays,
and reduces the cost for each study. Since commercial arrays are often more expensive and
contain a large number of genes that are not of interest to the researchers. The shorter probes
spotted on these new arrays are less robust than large segmented BACs. But they provide
higher resolution in the order of 50-100kb, where oligonucleotide array is a particular case.

Tiling Array

Tiling arrays are available now for finer resolution of specific CNV regions. These arrays
are designed to cover the entire genome or contiguous regions within the genome. Number
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of elements on the array ranges from 10000 to over 6000000. This relatively high resolution
technique allows the detection of micro-amplifications and deletions.

SNP Array

SNP (single nucleotide polymorphism) arrays are a high-density oligonucleotide-based array
that can be used to identify both loss of heterozygosity (LOH) and CNVs. LOH is the
loss of one allele of a gene, which can lead to functional loss of normal tumor suppressor
genes, particularly if the other copy of the gene is inactive. LOH is quite common in
malignancies. Therefore, utilization of SNP arrays to detect LOH provides great potential
for cancer diagnosis.

Array CGH

Array comparative genomic hybridization (array CGH, or aCGH) is a high-resolution
technique for genome-wide DNA copy number variation profiling. This method allows
identification of recurrent chromosome changes with microamplifications and deletions, and
detects copy number variations on the order of 5-10kb DNA sequences. In the rest of this
chapter, we will use the CNV data generated from the general Agilent Human Genome CGH
microarray 244A.

2.2 Array CGH data

The CNV data is obtained from The Cancer Genome Atlas (TCGA) project. TCGA is a
joint effort of the National Cancer Institute and the National Human Genome Research
Institute (NIHGRI) to understand genomic alterations in human cancer. It aims to study the
molecular mechanisms of cancer in order to improve diagnosis, treatment and prevention.
The importance of DNA copy number variations has been demonstrated in many tumors.
TCGA targets to perform high-resolution CNV profiling in a large-scale study, using diverse
tumor tissues and across different institutes. In this section, we will show an example from
TCGA project.

Sample collection

Biospecimens were collected from newly diagnosed patients with ovarian serous
cystadenocarcinoma (histologically consistent with ovarian serous adenocarcinoma
confirmed by pathologists), who had not received any prior treatment, including
chemotherapy or radiotherapy. Technical details about sample collection and quality
control are described in (Integrated genomic analyses of ovarian carcinoma, 2011). Raw copy
number data was generated at two centers, Brigham and Women’s Hospital of Harvard
Medical School and Dana Farber Cancer Institute, using the Agilent Human Genome
Comparative Genome Hybridization 244A platform.

Data process

After the array CGH is constructed and tumor DNA samples hybridized to the platform,
several steps need to be completed for detecting regions of copy number gains or losses:
image scanning, image analysis (including gridding, spot recognition, segmentation and
quantification, and low-intensified feature removal or mark), background noise subtraction,
spot intensity ratio determination, log-transformation of ratios, signal normalization and
quality control on the measured values. For Agilent 244K array, there are specific details
on the data generation (Comprehensive genomic characterization defines human glioblastoma genes
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and core pathways, 2008). First of all, the raw signal is obtained by scanning images using
Agilent Feature Extraction Software (v9.5. 11), followed by image analysis steps mentioned
above. Background correction: The background corrected intensity ratios for both channels
are calculated by subtraction of median background signal values (median pixel intensities
in the predefined background area surrounding the spot) of each channel from the median
signal values (median pixel intensities computed over the spot area) of each probe in the
corresponding channel. Since there are multiple copies of probes on an array, the final
background corrected values are computed by taking the median across the duplicated
probes. The log2 ratios of the above results are then estimated based on the background
corrected values of sample channel over that of the reference channel. Normalization of
logarithmic ratio: The normalization procedure involves the application of LOWESS (locally
weighted regression and scatterplot smoothing) algorithm on log2 ratio data. This method
assumes that the majority of probe log2 ratios do not change, and are independent of
background corrected intensities of the probes. To develop the LOWESS model, a 21-probe
window is applied for smoothing process after sorting the chromosome positions. It corrects
the log2 ratio data so that the corresponding central tendency after normalization lies along
zeros, assuming an equal number of up- and down- regulated features in any given intensity
range. In addition, the artifact of the difference in the probe GC content on log2 ratios is
considered for correction, in which case, the probe GC%, regional GC % (GC% of 20KB of
genome sequence containing the probe sequence) and log2 ratio are used in the LOWESS
model. Quality control: There are several criterions taken into account for quality assurance at
various stages. 1) Probes that are flagged (marking spots of poor quality and low intensity)
or saturated by the Agilent feature extraction software are eliminated; 2) Screening of the
array image is conducted to exclude probes whose median signal values are lower than that
of the background intensity; 3) Arrays with over 5% probes flagged out or being faint are
considered as low quality; 4) The square root of the mean sum squares of variance in log2
ratio data between consecutive probes are calculated for quality assessment. Arrays with the
value over 0.3 are considered as low quality.

The final result after these processes forms a data set containing 227614 probes with
normalized log2 ratio values for every sample. The logarithmic ratios are computed as
log2(x) − log2(2), where x is the copy number inferred by the chip. Thus, ratios should be
0 for double loss, 1

2 for a single loss, 1 for the normal situation, 3
2 for a single gain, and n

2
for n copies. TCGA provides an Array Design Format file with annotation data, including
information on chromosomal location and gene symbol for each probe.

Algorithms for CNVs detection

The main biomedical question for studying CNVs and downstream research is to accurately
identify genomic/chromosomal regions that show significant amplification or deletion in
DNA copy number. Satisfactorily solving this problem requires a method that reflects the
underlying biology and key features of the technological platform. The array CGH data has
particular characteristics: The status of DNA copy number remains stable in the contiguous
loci, and the copy number of a probe is a good predictor for that of the neighboring
ones, whereas for probes located far apart, it provides less information to predict the likely
state of its neighboring probes (Rueda & Díaz-Uriarte, 2007). However, widely used array
CGH platforms, such as cDNA/oligonucleotide arrays, do not have equally spaced probes,
making it less informative based on consecutive probes. Furthermore, the identification of
disease causal genes sometimes requires examining the amplitude of CNVs, especially when
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high-resolution technologies are available, it can be valuable to distinguish between moderate
copy number gains and large copy number amplification.

A number of well-known methods have been developed to carry out automatic identification
of copy number gains/loss, and correlate that with diseases. These approaches are designed
to estimate the significance level and location of CNVs. Models differ in distribution
assumption and incorporation of penalty terms for parameter estimation. Subsequently,
smoothing algorithms were derived for denoising and estimating the spatial dependence,
such as wavelets (Hsu et al., 2005) and lowess methods (Beheshti et al., 2003; Cleveland, 1979).
Later on, a binary segmentation approach, called circular binary segmentation (CBS) (Olshen
et al., 2004), was proposed that allows segments in the aCGH data in each chromosome, and
computes the within-segment means. CBS recursively estimates the maximum likelihood
ratio statistics to detect the narrowed segment aberrations. A more complicated likelihood
function was used with weights chosen in a completely data adaptive fashion (Adaptive
weights smoothing procedure, AWS) (Hup et al., 2004). A different kind of modeling
approach involves the hidden Markov model (HMM ) (Fridlyand, 2004), which assigns
hidden states with certain transition probabilities to underlying copy numbers. Thus, it
adequately takes advantage of the physical dependence information of the nearby fragments.
However, questions arise on how to appropriately select the number of hidden states. The
sticky hidden Markov model with a Dirichlet distribution (sticky DD-HMM) (Du et al.,
2010) was then developed to infer the number of states from data, while also imposing
state persistence. Alternatively, the reversible jump aCGH (RJaCGH) (Rueda & Díaz-Uriarte,
2007) was introduced to fit the model with varying number of hidden states, and allow for
transdimensional moves between these models. It also incorporates interprobe distance.

3. Joint analysis on copy number variation and gene expression

3.1 Overview

With the increasing availability of concurrently generating multiple different types of high
throughput data on single samples, there is a lot of interest to jointly analyze this information
and refine the generation of relevant biological hypotheses. This will lead to a greater, more
integrated understanding of cellular mechanism, and will allow the identification of genomic
regulators as well as suggest potentially synergistic drug targets for those regulators, which
will lead to potential combination therapies for the treatment of human cancer. A number
of approaches have demonstrated an ability to select specific genes from joint analysis and
test specific hypotheses regarding the regulation of cellular responses, which is a tremendous
advantage over the pathway analyses that can be obtained from gene expression or CNVs
alone.

Recently, there are publications that highlight the impact of combining other types of DNA
modification and gene expression. (Parsons et al., 2008) have identified a number of potential
driver mutations in Glioblastoma through an analysis of mutation, copy number variation and
gene expression. Their approach is designed around the use of currently available methods
for the analysis of individual data types to create a compressed set of features which are then
used independently in predictive models. They utilize tree models, however the compressed
features are independent variables that can, in principle, be used in any type of predictive
model. The approach does make use of correlation within each type of data, but not across
different data types.

27Uncover Cancer Genomics by Jointly Analysing Aneuploidy and Gene Expression
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A similar approach to the integration of disparate types of data is outlined in (Lanckriet et al.,
2004), but in this case features are compressed through the use of kernel functions. These
must be predefined for each data type, but once that is done all of the different data types are
mapped to the same vector space allowing joint analysis. The approach is particularly suited
to the use of support vector machines, rather than tree models, for the generation of models
from all of the different data types. The approach is remarkably general in that almost any
type of data may be incorporated, and in the paper they include compelling examples of the
integration of expression and protein sequence data. It, however, does suffer from the same
flaws as (Parsons et al., 2008) in that there is no provision for dealing with correlation across
data types.

Another approach to integrative analysis is through the use of data from different assays to
filter lists of genes sequentially. (Garraway et al., 2005) describe such an approach, in the
context of the identification of MITF as a genomic determinant in malignant melanoma. The
algorithm first identifies genomic regions that show copy number variation in the condition of
interest, and then searches for genes that are significantly over or under expressed in samples
that have duplications or deletions in that region. This is a very powerful approach in cases
where there are few genes that pass the filtering criteria and where the relationship between
gene expression and CNV is direct. Through our own experimentation, we find that there are
often many genes that pass both filtering criteria. Additionally, the approach is dependent on
the order in which the data types are used to perform the filtering. This is because the filtering
criterion on the second data set is determined by the behavior observed on the first.

The version of integrative genomic analysis that is most similar to our own proposal is
CONEXIC, detailed in (Akavia et al., 2010). CONEXIC is based on gene modules, which was
initially developed for the analysis of gene expression data in isolation. Gene modules consist
of groups of genes that are coexpressed, and these are embedded as leaves in a binary tree
structure where the nodes are populated by putative gene expression regulators. In its original
incarnation, the approach was intended to identify important regulators of groups of genes
in the context of experimental interventions. As such, expression is assumed to be constant
within any particular experimental group. Also, the original approach depends on a list of
putative regulators, which can be tricky to generate. With CONEXIC, the identification of lists
of potential regulators is generated from regions of the genome that demonstrate consistent
copy number variation, and the gene module algorithm is largely retained. Fundamental to
a binary tree model is the assumption that the expression pattern of a leaf, conditional on the
expression pattern of its parent node, is independent of all other elements in the tree. This
is a shortcoming of the CONEXIC approach. It is quite reasonable to expect that there are
many ways that a cell has available to control the expression of a particular gene, including
CNV, methylation, inactivation of promoters, and RNA interference, and multiple different
regulators may combine to ultimately regulate gene expression. Because each node of the tree
contains only one putative regulator, the model assumes that only one regulator is responsible
for the observed expression pattern of a module.

3.2 Bayesian factor analysis

Bayesian factor analysis is a dimension reduction method to decompose variability among
observations into a lower number of unobserved, uncorrelated factors. It has been widely
applied in microarray analysis (Carvalho et al., 2008; Lucas et al., 2009), where the data usually
comes with a much higher dimension than the number of observed samples. Therefore, it
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is desirable to select important genes that should bear some biological meanings. Recent
developments in Bayesian multivariate modeling has enabled the utility of sparsity induced
structure in genomic studies (Lucas et al., 2006). Such a sparse factor model implies that only
those genes with non-zero loadings on those factors are relevant, and higher values indicate
more significant gene-factor relationship.

3.3 Sparse regression model of Bayesian factor analysis

Our statistical framework utilizes high-dimensional sparse factor model, and is extended to
incorporate gene expression, CNVs and other high-throughput genomic data. The underlying
hypothesis is that the gene signatures of expression variation can be represented by the
estimated factors. Furthermore, given the potential contribution of chromosomal aneuploidy
and CNVs to the altered mRNA expression of relevant genes during oncogenesis, we could
use the factor model to test for the association between gene expression signatures and CNVs.
The model assumes that the input data are from the same organism. Suppose the data
structure is given as X = [x1, . . . , xn] with dimension n × px, where n denotes the sample
size, px the number of genes, and xi the fluorescence level from probes of gene expression
measurements. The CNV data is represented by Y = [y1, . . . , yn] with similar strucutre.
Therefore, the linear regression model for sample i can be expressed as

xi = Bhhi + BFi + ǫi (1)

yi = Ahhi + AGi + ζi (2)

with the following components:

• B is the px × k factor loadings matrix for sample xi, with elements βg,j for g = 1, . . . , px and
j = 1, . . . , k.

• Fi = [fC
i ; f

(r)
i ]T. fi is a k-dimension vector of factor scores, where f

(r)
i , the r-th factor for

sample i, are specific to data xi, and fC
i consists of the factors common between both data.

• Bh is the px × r regression matrix for dataset xi, with elements bg,j for g = 1, . . . , px and
j = 1, . . . , r.

• hi =
[

h1,i, . . . , hq,i

]T
is the q design factors of sample i.

• ǫi =
[

ǫ1,i, . . . , ǫpx ,i

]T
is the idiosyncratic noise vector with dimension px.

The priors for each parameters are defined as follows:

βg,j ∼ (1 − ρj)δ0(βg,j) + ρjN (βg,j; 0, τj) (3)

ρj ∼ Beta(ρj; s0, l0); τj ∼ Gamma(τj
−1;

aτ

2
,

bτ

2
) (4)

bg,j ∼ (1 − πj)δ0(bg,j) + πjN (bg,j; μ0,j, σ0
2) (5)

πj ∼ Beta(πj; t0, v0) (6)

f
(r)
i ∼ N (f

(r)
i ; 0, I) fC

i ∼ N (fC
i ; gC

i , Σ) (7)

ǫ
(r)
i ∼ N (ǫ

(r)
i ; 0, Φ); Φ = diag(φ1, . . . , φpx ); φg ∼ Gamma(φg;

aφx

2
,

bφx

2
) (8)
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The parameters and prior structures are similar for copy number data yi.

Prior Choices

• βg,j: The regression coefficient. Here we consider the long-standing problem of variable
selection in a multivariate linear regression model. That is, in gene expression analysis the
number of gene features is huge (usually larger than 20,000) compared with the number of
samples available. A direct way is to use regression model on the high-dimensional genomic
data and impose sparseness on the coefficients. In this way, most of the coefficients will
be shrunk towards zero. Bayesian spike and slab approaches (George & McCulloch, 1993;
Ishwaran & Rao, 2005; Mitchell & Beauchamp, 1988) have been proposed to address the
variable selection problem. As indicated in 3, it sets up a two-component mixture distribution
with the spike part centered at zero and the slab part distributed diffusely without informed
prior knowledge.

• ρj: This parameter controls the prior probability of a coefficient being non-zero. We assume
coefficients that are promising have posterior latent variables ρ̂j = 1 (the slab). The opposite
occurs when ρ̂j = 0 with a delta function δ0(·) indicating the point-mass at zero (the spike).
Here we use beta priors, defining the probability ρj distributed on the interval (0,1). The
hyperparameters s0 and l0 determine the domain of the beta distribution. Small values of ρj

reflect high prior skepticism about the coefficients, while large ρj means the knowledge of
more theoretical importance of the variables and more skeptical about the sampling of the
data.

• τj: the variance for the slab part of the mixture prior for βg,j. This gamma distribution is
the conjugate prior for the precision of the normal distribution N (βg,j; 0, τj). In addition, it
allows the Markov chain to identify and adjust the appropriate sample space for updating
coefficients. Different combinations of ρj and τj prior choices are usually required to obtain
desirable mixing and shrinkage in βg,j.

• fi: Unknown latent factors for sample i. For factors unique for each data, we use a
diffuse, conjugate prior distribution such that f j,i ∼ N (0, 1), in order to alleviate issues
with identifiability of fi and β due to scaling. On the other hand, since high-throughput
data can vary in size by orders of magnitude, e.g. CGH data is approximately ten times
larger than gene expression. Thus one data set may dominate the factor model given a large
size discrepancy. Therefore, rather than utilizing the uninformative prior, we link individual
factors from each data using fC

i ∼ N (gC
i , Σ) based on the hypothesis that gene expression is

directly influenced by CNVs. This will prevent difference in data size from overwhelming the
information available on associations between them. In addition, the systematic error between
two data sets will be considered by estimation of the covariance matrix Σ.

Updated Distributions

• p(βg,j|−) :

For factor j, let x∗g,j = xg,j − ∑
r
j=1 bg,jhj,i − ∑

k
l �=j βg,l fl,i, so that x∗g,j ∼ N (βg,j f j,i, φg). In order to

be mathematically identifiable for B, we assume the regression coefficients a lower triangular
matrix with positive diagonal elements (Carvalho & West, 2006). This gives the following
posterior updates where g �= j:
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p(βg,j|−) ∝
n

∏
i=1

p(x∗g,j|βg,j f j,i, φg)p(βg,j)

=
n

∏
i=1

N (x∗g,j; βg,j f j,i, φg)((1 − ρj)δ0(βg,j) + ρjN (βg,j; 0, τj))

= (1 − ρ̂j)δ0(βg,j) + ρ̂jN (βg,j; μg,j, Ωg,j)

where Ωg,j = (τ−1
j + ∑

k
j=1 f 2

j,i/φg)−1, μg,j = Ωg,j(∑
n
i=1 x∗g,i f j,i)φ

−1
g and βg,j �= 0 with

probability

ρ̂j =
ρj

ρj + (1 − ρj)
N (0;0,τj)

N (0;μg,j ,Ωg,j)

For the constrained diagonal elements of B, the posterior conditional distribution is given as

p(β j,j|−) ∼ N (μj,j, Ωj,j)I(β j,j > 0)

with similar forms of μj,j and Ωj,j.

• p(ρj|−):

p(ρj|−) ∝
k

∏
j=1

p(βg,j|ρj)p(ρj) = (1 − ρj)
px−j−Sj ρ

Sj

j Beta(ρj; s0, l0)

∼ Beta(s0 + Sj, l0 + px − j − Sj)

with Sj = ∑
px

g=j I(βg,j �= 0).

p(τj|−) ∝

px

∏
g=1

p(βg,j|ρj, τj)p(τj) =
px

∏
g=1

N (βg,j; 0, τj)Ga(τj
−1;

aτ

2
,

bτ

2
)

∼ InvGamma(τj;
aτ + ωj

2
,

bτ + ∑
px

g=1 β2
g,j

2
)

with ωj = ∑
px

g=j I(βg,j �= 0).

• p(fi|−), p(gi|−):

Let F = [f1, . . . , fn]. The posterior distribution of F can be updated as:

p(F|−) ∝ p(X|F, B, Φ)p(F) =
n

∏
i=1

p(xi|fi, B, Φ)p(fi)

=
n

∏
i=1

N (xi − BhHi; Bfi, Φ)N (fi; gi, Σ)

∝
n

∏
i=1

N (fi; E1i, V1i)
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where V1i = (Σ−1 + B′
Φ

−1B)−1, E1i = V1i(B
′
Φ

−1(xi − BhHi) + GiΣ
−1).

Similarly p(gi|−) takes the form

p(G|−) ∝
n

∏
i=1

N (gi; E2i, V2i)

where V2i = (I + A′
Ψ
−1A)−1, E2i = V2i(A

′
Ψ
−1(yi − AhHi)). Ψ is the covariance matrix of

yi.

• p(φg|−):

p(φg|−) ∝
n

∏
i=1

p(xg,i|βg fi, φg)p(φg)

=
n

∏
i=1

N (xg,i −
r

∑
j=1

bg,jhj,i; βg fi, φg)Ga(φg
−1;

aφx

2
,

bφx

2
)

∼ InvGamma(φg;
aφx + n

2
,

bφx + ∑
n
i=1(xg,i − bghi − βg fi)

2

2
)

3.4 Example: joint analysis of ovarian cancer gene expression and CNVs

We applied our joint factor model on ovarian cancer gene expression and CNV data from
TCGA project. This study is aimed to detect correlations between them, which will lead
to the identification of pivotal genomic determinants of cancer phenotypes. We adopted
74 ovarian cancer individuals and 1 disease-free patient’s data. In order to capture genes
with differential expression patterns and their association with the CNVs in the narrowed
chromosomal regions, we established a filtering criteria: 1) select Affymetrix HT_HG-U133A
probes with sample mean above 8, and standard deviation above 0.6; take out probes without
matched gene symbols. It results in a gene expression data set downsized from 22277 to
921 probes; 2) apply the basic Bayesian factor model 1, i.e., the one that only analyzes
one data set, and generate signature expression factors; 3) remove CNV segments (Agilent
Human Genome CGH 244A probes) not showing significant correlation (p-value < 0.01 after
Bonferroni correction) with the gene expression factors. It reduced the CNV data dimension
from 227613 to 7278. Therefore, we fitted our joint factor model 1 and 2 to the shrunk data.

We obtained 11 factors in the two data sets, i.e., F11∗75 and G11∗75, and selected the most
strongly associated pair using Pearson correlation. It turns out that the largest factor loadings
in the corresponding CNV factor come mostly from the long arm of chromosome 8 (figure
1A), that the factor correlates well with the paired gene expression factor (figure 1B), and that
the gene expression factor correlates with individual SNP observations in the long arm of
chromosome 8 (figure 1C). Based on these results, we further examined the genes loaded
on this correlated CGH factor and gene expression factor. By ranking the squared factor
loadings, we selected the top 16 Affymetrix probe sets (Table 1) and 178 CGH probe sets,
because the variance in these probes are best explained by the corresponding factors compared
with all other data. Pearson correlation between the values of mRNA expression levels and
copy number variations were calculated on these heavily loaded genes. We noted that the
copy number gains of EBAG9 (CGH probe position: 8q23.2, size 60 bp; mean copy number
2.63 (1-6)) and MTDH (CGH probe position: 8q22.1, size 60 bp; mean copy number 2.38
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(1-6)) significantly accompanies their overexpression of mRNAs in the corresponding regions,
where correlation coefficients indicate a good linearity between CNVs and gene expression
with r = 0.758 for EBAG9 and r = 0.806 for MTDH. Interestingly, in the same factor, 3 CGH
loci with duplicated DNAs show significant correlation with MTDH overexpression (r>0.8,
p-val<0.01) and are located 0.2M upstream, 5M and 12M downstream of MTDH CGH locus,
respectively; and 11 CGH loci are identified with copy number gain and 3Mb upstream of
EBAG9 CGH clone (r>0.75, p-val<0.01). These findings may provide evidence for distant
regulatory of transcription elements or interactions within a potential gene network.

Gene symbol Gene
MTDH LYRIC/3D3 (UID: 92140)
EBAG9 estrogen receptor binding site associated, antigen, 9 (UID:9166)

YWHAZ tyrosine 3-monooxygenase (UID:7534)
LAPTM4B lysosomal protein transmembrane 4 beta (UID:55353)

ESRP1 epithelial splicing regulatory protein 1 (UID:54845)
NBN nibrin (UID:9048)

RAD21 RAD21 homolog (S. pombe) (UID:5885)
RNF139 ring finger protein 139 (UID:11236)
ZNF706 HSPC038 protein (UID:51123)
AZIN1 antizyme inhibitor 1 (UID:51582)
DERL1 Der1-like domain family, member 1 (UID:79139)
ENY2 enhancer of yellow 2 homolog (Drosophila) (UID:56943)
EXT1 exostoses (multiple) 1 (UID:2131)
CTSB cathepsin B (UID:1508)

DECR1 2,4-dienoyl CoA reductase 1, mitochondrial (UID:1666)
PTDSS1 phosphatidylserine synthase 1 (UID:9791)

Table 1. Genes on chromosome 8 showing significantly differential expression in ovarian
cancer. The list is ranked by the squared factor loadings.

The product of EBAG9 has been identified as an estrogen receptor binding site associated
antigen 9 identical to RCAS1 (Nakashima et al., 1999). Overexpression of EBAG9/RCAS1
inhibits growth of tumor-stimulated host immune cells and induces their apoptosis
(Nakashima et al., 1999). Furthermore, it has been reported that RCAS1 is expressed with
high frequency in ovarian and lung cancers (Akahira et al., 2004; Iwasaki et al., 2000), and the
copy numbers of the region increase in breast cancer (Rennstam et al., 2003). These lines of
evidence, together with the results obtained above, imply that overexpression of EBAG9 in
ovarian serous cystadenocarcinoma may be triggered by increased gene copy number, which
is likely to play an important role in the immune escape of tumor cells and causing cancer
progression.

In addition, MTDH, also known as AEG1, is an oncogene cooperating with Ha-ras as well
as functioning as a downstream target gene of Ha-ras and may perform a central role in
Ha-ras-mediated carcinogenesis (Lee et al., 2007). Overexpression of this gene has been
reported in various cancers including breast, brain, prostate, melanoma and glioblastoma
multiforme (Emdad et al., 2007; Kikuno et al., 2007). In particular, it has been revealed
that MTDH overexpression is associated with 8q22 genomic gain in breast cancer, and has
been considered as an important therapeutic target for enhancing chemotherapy efficacy and
reducing metastasis risk (Hu et al., 2009). Therefore, we believe that, our results along with the
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Fig. 1. Factor analytic relationship between CNV and gene expression. Panel A shows the
factor loadings from the first factor of the joint factor model fit to CNV data. Panel B shows a
scatterplot of significant correlation between gene expression factor and the CNV factor, of
which it is linked to. Panel C shows the significance of correlation between the expression
factor and each individual SNP from the high-density CGH array. The y-axis shows the
-log(p-value) of the Pearson correlation between CNVs and gene expression factor. The
horizontal line shows the threshold of p-value less than 0.01 after Bonferroni correction for
multiple testing.

above findings suggest the copy number gain activated MTDH overexpression is a potential
indicator in epithelial ovarian cancer.

Validations on the above hypotheses regarding critical genes in cancer progression and
their regulation mechanisms can be carried out in several directions. A number of
databases can be used to validate these hypotheses. For instance, GATHER and GOrilla
are good resources to annotate gene functions; Tumorscape helps interpret copy number
variations; DAVID Bioinformatics provides pathway analysis for genes identified by the
model. In addition, experimental validation can be performed to quantitatively justify
that the activation/inactivation of identified genes are caused by copy number variations.
Moreover, we could identify drug susceptibilities of these candidates by searching against
reference information from DrugBank (http://www.drugbank.ca), then using these results
for experimental validation. The general approach is to grow cell lines in the presence of
a particular treatment, whose genomic drivers are disrupted by the introduction of RNA
inference and transfection with viral plasmids. Similar strategy can also been applied to
predict potential therapies by the identification of new drug targets. Therefore, these will lead
to a greater understanding of cancer progression, and allow the identification of combined
therapies for individual tumors.

Tumor segmental aneuploidy association with gene expression factors has been demonstrated
in a previous study (Lucas et al., 2010) that it makes significant contributions to variation
in gene signature of breast cancer under the stress of lactic acidosis or hypoxia. We are
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interested to test if this is consistent in other tumor tissues, which will provide potential
treatment choices for different cancers. We used a similar approach (Lucas et al., 2010) by
projecting the breast expression factors into TCGA ovarian and glioblastoma gene expression
data and identified correlated CNVs under the same interventions of lactic acidosis/hypoxia.
The ability of projecting the factor model into other data sets allows the possibility of
comparing new experimental data to different genomic information, such as CNVs from
aCGH. The underlying assumption is that genes showing shared expression patterns in
tumors of different origins can be represented by the same loadings matrix. Therefore, in
order to estimate the factor scores for the new data, this translates into a well known problem
of inverse regression Fy = (Ik + B′

Φ
−1B)−1B′

Φ
−1Y, where B is the loadings matrix and

Φ the diagonal matrix containing the gene by gene variance estimators in the original data,
Y the new set of expression data and Fy the factor scores on the new data set. With this
approach, we estimated factor scores for the TCGA data and calculated their correlations with
CNVs. In our analysis, about half of the breast expression factors are also associated with
copy number variations in ovarian cancer and that about a quarter are associated with CNVs
in glioblastoma. For example, the CNV activated expression pattern in breast cancer (not
shown) is also discovered in both ovarian cancer and glioblastoma within the same region

Fig. 2. Panel A and B show the the association between gene expression factor and CNVs
across tumors of different origins. Each scatter plot indicates the evidence of association
between the same factor that was learned on breast cancer data and copy number changes of
different tumor tissues. Plot A shows correlation between the factor, projected onto ovarian
cancer expression data, and ovarian CGH data. Plot B shows the same for Glioblastoma.
Each point corresponds to one of the SNPs measured in the high-dimensional CGH array.
The y-axis shows the -log(p-value) of the Pearson correlation between CNVs and gene
expression factor. The horizontal line shows the threshold of p-value less than 0.01 after
Bonferroni correction for multiple testing.
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(figure 2A and 2B). Therefore, it is likely that similar CNVs might be selected under the same
pressure of hypoxia/ lactic acidosis in difference cancers.

4. Conclusion

This chapter has built upon a basic understanding of a layout on the correlation between copy
number variations and gene expression to deepen knowledge of key concepts and methods.
By introducing and comparing a diverse range of techniques for measuring CNVs, we provide
the scope of localizing cancer related genes using different platforms. By describing an
appreciation of the use of several statistical methods to assist the positioning of CNV regions,
we are aimed to better identify cancer driven mutations within the copy number gain/loss
regions. Moreover, we have also included examples from TCGA project to show the unique
features of CNV data.

The key challenge of finding candidate drivers is to distinguish it from passenger genes,
which are physically located close to the driver mutations and whose variations are not
causal to convey growth advantage on cancer cells. In our analysis, we focus on genes
with cis-regulated CNVs, and postulate that cancer driven mutation is associated with the
expression of a group of genes, and it is likely to localize in DNA amplified or deleted regions
in tumors. Since DNA dosage variations may result in functional changes of affected genes
and cause expression change of downstream genes. We have proposed a generic framework
to jointly analyze disparate data sets, which is extendable to incorporate diverse information
such as proteomics data. This will allow for more robust analysis of the relationship between
mRNA expression and protein abundance. Our results not only identify candidate genes
whose mRNA expression is statistically significantly correlated with their CNVs, but also
successfully recover the region where similar gene expression pattern is triggered by the
same genomic program across tumors of different organ systems. This approach is able
to estimate the probability of each gene regulated by genomic sources and the relative
importance of each source. Additionally, two genes, EBAG9 and MTDH, suggest that
abnormal abundance in their DNA copy numbers may contribute to proliferation in ovarian
serous cystadenocarcinoma. For these two predicted drivers, we also find many CNVs in the
same region but poorly correlated with their gene expression, thus consider them no apparent
effect in cancer. Copy number variation is only one of many ways that gene expression can
be altered. We believe that a number of complementary approaches are needed to validate
possibly driving alterations, as illustrated in the previous section. Therefore, We envision that
our model is used as screening guidance to assist the identification of potential cancer drivers
with possibly therapeutic importance.

Our work presents a framework toward a broad understanding of the genomic determinants
of cancer. With this approach, we anticipate to generate testable biological hypothesis
regarding the regulation of cellular responses, which is a tremendous advantage over any
single data analyses that can be obtained from gene expression or CNVs alone. This will
lead to a greater, more integrated understanding of cellular mechanism, and will allow the
identification of genomic regulators as well as enhancement of anticancer drug specificity
targeting those regulators. This is key to the discovery of potential combination therapies for
the treatment of human cancer. Moreover, genomic patterns related to therapeutic response
and clinical outcomes can be identified as biomarkers, which will improve early cancer
detection, prognosis and outcome prediction as well as treatment selection. All in all, this
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will create a comprehensive picture of heterogeneity in tumor genomes, and offer a valuable
starting point for new therapeutic approaches.
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