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1. Introduction  

We can flexibly process and make decisions regarding multiple types of information in daily 

situations such as driving and cooking. However, human error is increased in complex or 

combined tasks (relative to simple tasks) because our information processing capacity is 

limited. This limited cognitive function is associated with working memory (WM), which is 

proposed to be a higher-level human ability to memorize, maintain, and manipulate mental 

representations in the mind for a short time (Baddeley, 1986). Most theorists think that WM 

function includes active manipulation as well as passive short-term maintenance. An often-

used metaphor for working memory is "the blackboard of the mind." For example, imagine 

that you are rearranging the furniture in your room. You can move around the furniture in 

your mind, that is, transform the imagination any number of times. To guide behavior and 

make decisions about what to do next, WM temporarily selects and retains task-relevant 

information such as recently processed sensory input, retrieved information from long-term 

memory, or mentally manipulated images. Thus, WM is directly linked to any and all other 

brain functions, including perception, movement, emotion, and problem solving.  

Baddeley & Hitch (1974) proposed a basic psychological model in which WM is divided into 

separate components, the “storage system” and the “central executive“. The “storage 

system“ consists of 2 temporary storage buffers for visual information (visuospatial sketch 

pad, i.e., visual working memory) and auditory-verbal information (phonological loop, i.e., 

verbal working memory) and an episodic buffer for long-term memory, whereas the 

“central executive“ controls the allocations of attention, selects relevant information, and 

manipulates information held in the storage systems (Baddeley, 1986; Baddeley & Hitch, 

1974; Phillips, 1974; Baddeley, 2000). Extensive experimental evidence from behavioral 

performance of normal subjects, lesion studies, and neuroimaging studies supports this 

view. For example, performance in dual tasks requiring 2 separate perceptual domains (i.e., 

a visual and a verbal task, or a mental processing task and a maintenance task) is nearly as 

efficient as performance of individual tasks (for a review, Cowan, 2001; Della Sala & Logie, 

1993). These findings indicate that the visual and verbal WM are separated.  

Both visual and verbal WM have 3 phases: encoding, which imports the relevant 

information in memory; maintenance, which stores the encoded information; and retrieval 

(or rehearsal), which briefly uses the information for a task. To investigate the neural 

substrate for WM, previous electrophysiological studies in nonhuman primates and human 
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neuroimaging studies have shown sustained neural activity over the retention interval in 

distributed brain regions including frontal, parietal, occipital, and temporal areas during 

maintenance of relevant information (e.g., Chafee & Godman-Rakic, 1998). If these brain 

regions are actually involved in maintaining mental representations, their activities are 

thought to be correlated with WM capacity. In fact, brain activity has been reported to 

increase with increasing number of objects to be remembered and saturated below the 

limited WM capacity (Todd & Marois, 2004; Vogel & Machizawa, 2004). Frontal regions also 

represent the limitation of executive functions, since activity there is increased during 

engagement in dual tasks (Marois & Ivanoff, 2005). These results suggest that frontal regions 

are associated with executive functions and posterior regions are involved in maintenance of 

mental representations. Thus, although much is known concerning the brain areas involved 

in various WM functions, understanding how these brain areas temporally communicate is 

more difficult.  

To address this issue, measuring electrophysiological (EEG) data during WM tasks and 

analyzing the synchronizations in local areas and between different areas has proved 

particularly useful (Varela et al., 2001). Our previous EEG studies used mental calculation as 

the auditory WM task and mental spatial manipulation as the visual WM task (Kawasaki et 

al., 2010). The EEG results clearly demonstrated that the frontal theta (4–6 Hz) activity 

increased during the manipulation periods on both WM tasks, and the parietal and 

temporal alpha activities were enhanced only during the maintenance periods on the 

auditory and visual WM task, respectively. Phase synchronization analysis revealed 

significant theta synchronizations between the frontal and parietal regions for visual WM 

and between the frontal and temporal regions for auditory WM. These results indicated that 

long-range theta synchronizations could connect the different brain regions to manipulate 

task-relevant representations. Interestingly, the concurrent theta and alpha phases were 

significantly synchronized in task-relevant storage areas, which suggests the presence of 

gating mechanisms to extract stored information. Theta and alpha activities thus play an 

important role in several WM functions; however little is known regarding how these 

oscillations represent WM limitations.  

This chapter describes investigations into the neural dynamics of EEG oscillatory activities 

that underlie the capacity limitations for executive functions and storage buffers in WM, 

particularly for visual infomation. To advance understanding of the detailed brain networks 

involved, the use and interpretation of EEG time-frequency analyses such as wavelet 

analysis and the role of each EEG oscillatory activity in WM functions is discussed, and 2 

experiments are described. Visual storage systems were investigated using delayed-

matching-to-sample tasks with visual stimuli, and a dual WM task with visual and auditory 

representations was used to identify the bottleneck of the central executive function. These 

EEG findings may contribute to understanding the causes of human error. 

2. Capacity limitations of working memory 

To investigate the limitation of visual WM (VWM) storage capacity, previous behavioral 

and neuroimaging studies used a change detection paradigm, namely, delayed matching to 

sample (DMS) tasks with a visual stimulus. In this paradim, multiple visual items are 

presented (sample display) and participants are required to memorize and retain these items 

www.intechopen.com



 
Human Oscillatory EEG Activities Representing Working Memory Capacity 

 

251 

over retention intervals. The number of items within the sample display is manipulated. 

Following the retention interval, one probe item (test display) or multiple probe items 

(whole display) are presented at one location within the sample array, and participants are 

then required to judge whether a change has occurred or not. These 2 tests have shown 

different performance scores, since VWM storage capacity is vulnerable to visual 

interference created during the encoding period (Wheeler & Treisman, 2002). Therefore, 

many behavioral and neuroimaging studies have applied the single-probe test. To avoid the 

possibility of using verbal strategies, most studies involving the DMS task used very short 

exposure duration for the sample display (about 150 ms), and require participants to engage 

in phonological tasks simltaneously, e.g., repeating a word during the sample display and 

retention intervals (Baddeley, Lewis & Vallar, 1984). 

Many previous studies have proposed a VWM capacity of 3 or 4 items (Luck & Vogel, 1997) 

because the accuracy rates for many DMS tasks systematically decrease as the number of 

items increases beyond 3 or 4. More recently, one study demonstrated that VWM capacity 

decreases as object complexity increases, and proposed that VWM capacity varies by the 

type of features (Alvarez & Cavanagh, 2004). The authors used complex items, Chinese 

characters, which are thought to be a combination of simple shapes. Although the issue 

retains some controversy, many studies have demonstrated consensus on the existence of 

large individual differences in VWM capacity.  

To estimate the capacity of VWM in terms of objects stored in DMS tasks, Cowan (2001) has 

proposed a model that takes both hit rates (accurately detecting a change) and correct 

rejection rates (accurately reporting no change when none occurred) into account. The 

model estimates hit rates and correct rejection rates with the following equations: 

 
( )K N K

H g
N N


    (1) 

 
( )

(1 )
K N K

CR g
N N


     (2) 

where K denotes the estimated number of items stored in VWM, N is the total number of 

items presented in the sample display, H is the probability of a hit rate, CR is the probability 

of a correct rejection rate, and g is the guessing rate for coincidentally giving a correct 

answer. The theory assumes that when one of the items within the VWM capacity (K/N; Fig. 

1 purple area) changed, subjects could detect whether the change occurred. In contrast, they 

could not detect whether a change occurred in objects exceeding the capacity ((N – K)/N; 

Fig. 1 green area).  

However, in some cases subjects happened to answer correctly on some portion of the trials 

(g) under an alternative forced-choice paradigm or, in another portion of the trials (1 – g), 

coincidently report correctly that no change occurred in the no-change trial, although they 

could not detect this. This guessing rate could not be estimated from the performance of the 

DMS tasks. Thus, given the hit rates and correct rejection rates for a particular set size, these 

equations (1) and (2) can be solved for the set size:  

 ( 1)K N H CR     (3) 
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The Cowan's K value is obtained from the set size of each sample display as each subject's 

VWM capacity for a given material.  

 

Participants’ response

VWM capacity
 

Fig. 1. Combination of participants' response and trial type (change or not) in change 
detection paradigm (left) and a model of Cowan's formula (right). 

Unlike VWM, the WM capacity for executive functions has been evaluated using dual WM 
tasks. Although no interference exists between independent storage components such as 
visual and verbal storage, simultaneously processing more than 2 information sources that 
require mental manipulation and reactions is thought to be difficult. Previous studies have 
revealed a psychological refractory period, in which a second task elicits a longer reaction 
time when the interval between the first and second tasks (i.e., stimulus onset asynchrony; 
SOA) is short (Marois & Ivanoff, 2005). That is to say, if the 2 tasks seem to be processed 
simultaneously, the performance is degraded. This phenomenon is known to be a bottleneck 
of the central executive function.  

3. Neural substrates for working memory 

Over many years, numerous researchers have attempted to localize and characterize the 
neural implementation of VWM and dissociate its functions. Lesion studies have reported 
that damage to the prefrontal cortex (PFC) in monkeys impairs performance on DMS tasks 
with a short delay, but not on visual discrimination tasks that do not require maintenance of 
information (Goldman-Rakic, 1987). Likewise, electrophysiological recording studies of 
nonhuman primates have revealed sustained neuronal firing in the PFC during the retention 
interval of DMS tasks, and interpreted the activity as maintaining the previously presented 
representations (Fuster & Alexander, 1971; Kubota & Niki, 1971). Therefore, the PFC was 
believed to be the neural substrate for VWM over a longer period. Since then, numerous 
physiological studies have shown neurons specifically active during the delay period in a 
vast network of brain regions including the PFC (e.g., Funahashi, Bruce, & Goldman-Rakic, 
1989), the posterior parietal cortex (e.g., Chafee & Godman-Rakic, 1998), and visual 
processing cortices (Bisley & Pasternak, 2000; Miyashita & Chang, 1988).  
Consistent with this interpretation, human neuroimaging studies have also revealed that the 
blood flow in these regions continually increased during the retention interval (Courtney et 
al., 1997, 1998; Postle & D'Esposito, 1999). Although considerable evidence supports the 
sustained delay-period activity, DMS tasks include many requirements (e.g., preparation of 
actions) in addition to maintenance. Therefore, recent fMRI studies have assumed that the 
blood oxygen level-dependent (BOLD) signal captures a population of neuronal activity that 
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may reflect the representation of multiple items to be maintained, and have indeed shown 
that a subset of the distributed network demonstrated delay-period activity sensitive to the 
number of items in the sample display (Diwadkar et al., 2000; Glahn et al., 2002; Jha & 
McCarthey 2000; Linden et al., 2003). The VWM load-sensitive network includes the frontal, 
parietal, and visual cortices. Notably, some studies have revealed that activity in the 
posterior parietal cortex is correlated with the number of items to be remembered (Cowan's 
K value) and indicated that this area actually stored the representations (Kawasaki et al., 
2008; Todd & Marois, 2004, 2005; Vogel & Machizawa, 2004; Xu & Chun, 2006).  
In contrast to the posterior parietal and visual cortices, anterior regions including the frontal 
cortex have also been associated with executive processes such as attentional selection and 
manipulation of information (Curtis & D'Esposito, 2003). For instance, in studies using a 
spatial WM task that requires participants to memorize the spatial locations of simultaneous 
or sequentially presented items and, after a delay, select one relevant location, the prefrontal 
cortex has been reported to show transient activity during the selection period and no 
sustained activity during the retention interval (Rowe et al., 2000). Furthermore, the frontal 
cortex is particularly sensitive to the number of listed items to be maintained in VWM in the 
n-back task, which requires participants to maintain a series of items and their order, select a 
relevant item from VWM, and compare it with the earlier item (Smith & Jonides, 1999). 
Moreover, the frontal cortex is proposed to serve in maintaining task-specific goals (Miller & 
Cohen, 2001; Passingham & Sakai, 2004) and assist in maintaining high loads and/or long 
retention intervals (Braver et al., 1997; Linden et al., 2003).  
Although, thus far, many neuroimaging studies have identified the neural substrate for the 
storage systems and central executive of WM, they have not dealt with how these brain 
areas temporally communicate. To address this issue, some studies have investigated the 
dynamic relationships governing brain activity by focusing on electroencephalograph (EEG) 
oscillations, which are closely related to synchronization of a large number of neurons 
underlying a particular function (Varela et al., 2001). Previous human scalp-recorded EEG 
studies have revealed modulated theta (about 4–8 Hz) and alpha (about 9–12 Hz) rhythms 
in distributed brain regions and phase synchronization between them during various WM 
tasks (Jensen & Tesche, 2002; Kawasaki & Watanabe, 2007; Klimesch et al., 2008; Mizuhara et 
al., 2004; Sauseng et al., 2005). Frontal theta activity in particular has been associated with 
the mental manipulation of WM, because these oscillations were enhanced in tasks such as 
mental calculation and image transfomation (Kawasaki et al., 2010). In contrast, posterior 
alpha activities are thought to be involved in the WM storage systems, because these 
oscillations are mainly observed in the retention intervals of many WM tasks. However, 
whether these oscillatory activities are increased or decreased during each WM period 
remains controversial. Furthermore, little is known regarding how these oscillations 
represent WM limitations; therefore, their detailed mechanisms have not yet been identified.  
To clarify the functional role of the theta and alpha oscillations in WM, the study described 
in the following 2 sections used EEG data measured during DMS and dual WM tasks to 
demonstrate 2 types of EEG activity that were correlated with the WM capacities for visual 
storage and central executive systems.   

4. EEG oscillations for visual storage capacity 

This section describes the investigation of EEG oscillatory activity correlated with VWM 
capacity, which aimed to identify the roles of different oscillations in the VWM storage 
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systems (e.g., maintenance of high or low VWM demands). EEG data was measured during 
the DMS task.  

4.1 Delayed matching to sample task 

Fourteen healthy, right-handed volunteers (10 male and 4 female; mean age = 25.6 ± 4.2 
years, range 21–38 years) with normal or corrected-to-normal visual acuity, normal hearing 
acuity, and normal motor performance took part in the delayed matching to sample tasks. 
All participants gave written informed consent, which was approved by the Ethical 
Committee of the RIKEN (in accordance with the Declaration of Helsinki), before the 
experiments were performed.  
Participants faced a computer screen and were asked to memorize the colors of 3 or 6 
colored disks (size, 1° × 1°; color, white, red, green, blue, yellow, magenta, cyan, or orange) 
that were distributed at random locations within an invisible 3 × 3 cell matrix in a black 
rectangle (size, 10° × 10°) for 0.2 s (Fig. 2, sample display). After a 2-s retention interval, one 
disk was presented at one location within the sample array (test display), and participants 
were asked to judge whether its color matched the disk at the same location in the sample 
display via a button press while the fixation point was red for 2 s. In one trial, the color of 
the probe disk matched the sample disk, and in a second trial, the color of the probe disk did 
not match. After the judgment, a feedback stimulus indicating whether the answer was 
correct (O) or incorrect (X) was presented. The duration of the inter-trial interval (ITI) was 2 
s. Each participant completed 4 separate sessions which consisted of 48 trials. A behavioral 
training session before the EEG-measurement sessions was provided for all participants.  
 

 

Fig. 2. Task procedure for 1 trial of the delayed-matching-to-sample task.  

4.2 EEG measurements and analyses 

An EEG was continuously recorded using 60 scalp electrodes embedded in an electrode cap 
in accordance with the extended version of the International 10/20 System of Electrode 
Placement. The sampling rate was 500 Hz. Reference electrodes were placed on the right 
and left earlobes. Artifacts due to eye blinks and movements were detected by electro-
oculogram (EOG) electrodes placed above and below the left eye to monitor eye blinks and 
vertical eye movements, and electrodes placed 1 cm from the right and left eyes to monitor 
horizontal eye movements. Trials in which the amplitude of any electrode of an EEG epoch 

exceeded plus or minus 100 V were rejected from the offline analysis. These EEG data were 
amplified using NeuroScan equipment (Compumedics NeuroScan Corp., Charlotte, NC) 
and filtered with a band-pass range from 0.1 Hz to 50 Hz. 
We analyzed the EEG data for the correct trials. These epochs were subjected to infomax 
independent component analysis (ICA) with the use of EEGLAB (Delorme & Makeig, 2004; 
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Institute for Neural Computation, University of California, San Diego, CA) running under 
Matlab (Mathworks, Natick, MA). ICA components that were significantly correlated with 
vertical or horizontal EOGs were regarded as components related to eye movement or other 
artifacts and were reduced or eliminated from the data. The ICA-corrected data were 
recalculated using regressions on the remaining components. 
To accurately evaluate cortical activity under the scalp EEG electrodes without error due to 
volume conduction, we used a current source density analysis at each electrode position. 
The spherical Laplace operator was applied to the voltage distribution on the surface of the 
scalp using the following parameters: the order of the spline, m = 4, and the maximum 
degree of the Legendre polynomial, n = 50, with a precision of 10–5 (Perrin et al., 1989). 
Time-frequency (TF) amplitudes and phases were calculated by wavelet transforms based 

on Morlet’s wavelets, having a Gaussian shape in the time domain (SD t) and frequency 

domain (SD f) around a center frequency (f) (Tallon-Baudry et al., 1997). The TF amplitude 
E(t, f) for each time point of each trial was the squared norm of the result of the convolution 
of the original EEG signal s(t) with the complex Morlet’s wavelet function w(t, f): 

 1/2 2 2( , ) ( ) exp( / 2 )exp( 2 )t tw t f t i ft       (4) 

 
2

( , ) ( , ) ( )E t f w t f s t   (5) 

where f = 1/(2t). The wavelet used was characterized by a constant ratio (f/f = 7), with f 
ranging from 1 Hz to 40 Hz in 0.5-Hz steps. The TF amplitude was averaged across single 
trials for events and conditions. The event-related TF amplitude was calculated by subtracting 
the baseline data measure in the ITI for each frequency band. For all statistical analyses, a 
nonparametric Wilcoxon signed-rank test was used across the events or conditions because the 
distributions of the TF amplitude populations were far from Gaussian. 

4.3 Results 

Accuracy rates (percent correct) for lower numbers of presented objects were higher than 

those for larger numbers of presented objects (3 objects: 90.2 ± 2.0%; 6 objects: 72.6 ± 2.8%). A 

one-factor analysis of variance (ANOVA) revealed a main effect of the number of objects  

(F1, 26 = 24.3, P < 0.01) and the accuracy rates demonstrated a significant difference 

(Wilcoxon signed-rank test; Z = 3.71, P < 0.01).  

The VWM capacity was estimated by Cowan’s K formula (see Section 2; 3 objects: K = 2.41 ± 
0.12; 6 objects: K = 2.71 ± 0.33). A one-factor ANOVA revealed no main effect of the number 
of objects (F1, 26 = 0.64, P = 0.43), and no significant difference between K-values was 
detected between 3 and 6 objects (Z = 1.18, P = 0.24). These results suggested that the VWM 
capacity in our experiments was limited to approximately 2.7 objects.  
Brain activity was evaluated using the averaged time-frequency amplitudes of the EEG data 
obtained during the DMS task. The EEG results demonstrated that parietal alpha 
amplitudes (about 12 Hz) sustainably and significantly increased during the retention 
intervals (POz electrode: Z = 2.11, P < 0.04), whereas enhancement of the frontal theta delay-
period amplitudes (about 6 Hz) was not observed (Fz electrode: Z = 0.18, P = 0.85). Frontal 
theta activity during maintenance of 6 objects was significantly higher than that for 

maintenance of 3 obejcts (3 objects: -0.28 ± 0.21 V; 6 objects: 0.55 ± 0.40 V; Z = 2.12, P < 
0.04). In contrast, parietal alpha activity demonstrated an opposing pattern (3 objects: 2.06 ± 
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0.66 V; 6 objects: 0.45 ± 0.45 V; Z = 1.97, P < 0.05). Interestingly, frontal theta activity was 
significantly and positively correlated with the VWM capacity of the individual (Fz 
electrode: r(14) = 0.39, P < 0.05), whereas the parietal alpha activity was negatively 
correlated with the VWM capacity (Poz electrode: r(14) = -0.44, P < 0.05).  

4.4 Discussion 

The observed VWM capacity was about 3 objects, which is consistent with many previous 
findings using simple visual features (Luck & Vogel, 1997). In relation to the behavioral 
results, the EEG results revealed that the frontal theta and parietal alpha amplitudes were 
sustainably enhanced during the retention interval of the DMS task. Interestingly, frontal 
theta activity demonstrated a positive correlation with individual WM capacity, whereas 
parietal alpha activity demonstrated a negative correlation.  
In addition to confirming previous reports that these oscillations are involved in VWM (; 
Klimesch et al., 2008; Jensen & Tesch, 2002; Jensen et al., 2002), the present study was able to 
dissociate their functions. Frontal theta activities have been associated with central executive 
functions including mental manipulation and calculation tasks (Kawasaki et al., 2010) and in 
supporting VWM storage during high-VWM loads and demands (Curtis & D’Esposito, 
2003; Kawasaki & Watanabe, 2007; Sakai et al., 2002). Parietal alpha activity has been 
proposed to reflect simple WM storage. Indeed, many neuroimaging studies using the DMS 
task with simple visual features (e.g., color) have shown that parietal activity was correlated 
with VWM capacity and decreased beyond the limit of VWM capacity, unlike increased 
frontal activity (Linden et al., 2003; Rypma et al., 2002). These results suggeted that parietal 
alpha activity may be involved essentially only in the maintenance of limited visual 
information, whereas the frontal theta activity seems to assist in VWM storage under high 
VWM demand, as if instead of the suppressed alpha activity. 

5. EEG oscillations for central executive 

This section describes the investigation of EEG oscillatory activities that represent the WM 
limitations for executive functions by comparing dual and single WM tasks. The dual tasks 
required 2 separate perceptual domains: mental manipulation with visual stimuli and the 
mental calculations with auditory stimuli.  

5.1 Dual WM task for visual and auditory representations 
Fourteen healthy volunteers (10 male and 4 female; mean age = 27.92 ± 6.76 years, range 21–
41 years; 13 right-handed) with normal or corrected-to-normal visual acuity, normal hearing 
acuity, and normal motor performance took part in the single visual and dual WM tasks. All 
participants gave written informed consent, which was approved by the Ethical Committee 
of the RIKEN (in accordance with the Declaration of Helsinki), before the experiments were 
performed.  
For the single VWM task, at the beginning of each trial, 5  5 gridded squares and a red 
circle included within one of those squares were presented on the computer screen as the 
visual stimulus for 1 s (Fig. 3A). The participants were required to memorize and then 
maintain the position of the red circle for 2 s after the visual stimulus disappeared. Awhite 
arrow designating a direction (up, down, right, or left) to which the participants should 
move the red circle in their minds was then presented at the center of screen for 1 s. The 
participants manipulated the mental representations for 2 s. Like the auditory working 
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memory condition, the participants were required to repeat the mental manipulation 4 
times, and then determine whether the position of the red circle which they mentally moved 
matched a probe visual stimulus (test display). In half of the trials, the probe stimulus 
matched the mental representation. In the remaining trials, the wrong probe was presented 
by changing only the fourth direction of movement from the initial position. The 
participants were asked to indicate via button press whether the probe stimulus was correct 
or not while the fixation point was red for 2 s. The duration of the ITI was 2 s. The size of the 
red circle and gridded squares was 1º  1º and 5º  5º (1º  1º per square), respectively.  
For the dual WM task, the participants were asked to complete an auditory WM task 
simultaneously to the visual tast (Fig. 3B). When the visual stimuli described above were 
presented on the computer screen, a word indicating a one-digit number was 
simultaneously presented as the auditory stimulus through the headphones of both ears for 
1 s (sample display). The auditory WM task requried the participants to memorize and 
maintain the presented number with rehearsal in their minds and, after a 2-s retention 
interval, to update the number by adding the another presented one-digit number for 2 s. 
After this a total of 4 incidences of auditory and visual manipulation, auditory and visual 
stimuli were simultaneously presented again, and participants were required to judge 
whether or not they were identical to the manipulated mental representation for both 
auditory and visual tasks (test display). In half of the trials, both the auditory and visual 
probe stimulus matched the mental representations. In the remaining trials, the incorrect 
probe for either the auditory or visual stimulus was presented, similar to the single VWM 
condition. The button press, duration of the inter-trial interval, and creation of the stimuli 
were identical to the single WM condition. 
 

 

Fig. 3. Task procedure for one trial of the single visual WM (A) and dual WM (B) tasks.  

5.2 EEG measurements and analyses 

The same methods were used as described in Section 4.2.  

5.3 Results 

All participants performed all the WM tasks with high accuracy rates (mean accuracy rate (± 
s.d.), 97.3 ± 4.7% and 91.1 ± 7.1% for visual and dual WM conditions, respectively). 
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Significant differences in performance were detected between the single and dual WM 
conditons (Wilcoxon signed-rank test; Z = 2.87, P < 0.01), suggesting the presence of dual-
task interference, that is, degraded performance of 2 simultaneous tasks relative to a single 
task (e.g., psychological refractory period) (Logan & Gordon, 2001; Pashler, 1994).  
Time-frequency analyses of the recorded EEG data revealed enhanced theta amplitudes (4–6 
Hz) of the 4 manipulation periods relative to those of the ITI in the frontal and parietal 
regions in both the single visual and dual WM conditions (single WM: AF3 electrode, Z = 
3.53, P < 0.01; Pz electrode, Z = 2.04, P < 0.05; dual WM: AF3 electrode, Z = 3.71, P < 0.01; Pz 
electrode, Z = 3.01, P < 0.01). The increased frontal theta amplitudes during the dual WM 
conditions were significantly higher than those during the single VWM condition (AF3, Z = 
2.24, P < 0.03), whereas this difference was not observed in the parietal theta activities (Pz, Z 
= 0.68, P = 0.49).  
In addition to the theta amplitudes, alpha amplitudes (9–12 Hz) were increased only in the 
parietal regions during manipulation periods in the single visual WM condition (single WM: 
AF3, Z = 1.15, P = 0.25, Pz, Z = 2.19, P < 0.05; dual WM: AF3 electrode, Z = 1.11, P < 0.27; Pz 
electrode, Z = 2.39, P < 0.02). Parietal alpha amplitudes demonstrated no significant 
difference between the single and dual WM conditions (Pz, Z = 1.78, P = 0.08). Moreover, 
enhanced parietal alpha activity was observed during the retention intervals as well as the 
manipulation periods (Pz, Z = 0.49, P = 0.62).  

5.4 Discussion 

The EEG results concerning oscillatory amplitudes demonstrated the bottlenecks of central 
executive function in WM. In our recent study using single visual and auditory WM tasks, the 
frontal theta activity was mainly observed during the manipulation period and not the 
maintenance periods, whereas posterior alpha activity was enhanced both in the manipulation 
and maintenance periods (Kawasaki et al., 2010). Building upon those previous findings, the 
present study demonstrated that frontal theta activity further increased in the dual WM task in 
comparison to the single VWM task, whereas parietal alpha activity did not differ between the 
single and dual WM tasks. In this study, the dual WM task required a large amount of mental 
manipulation compared to the single WM task. However, the amount of visual representations 
to be remembered for the dual WM task was almost same that required for the single VWM 
task. Therefore, these results indicate that the bottlenecks for central executive function are 
represented by frontal theta activity, which is supported by the earlier evidence that the frontal 
cortex is associated with active manipulation, and the posterior regions are involved in simple 
maintenance (Curtis & D’Esposito, 2003; Postle et al., 1999; Rowe et al., 2000; Smith & Jonides, 
1999; Wager & Smith, 2003). These results suggest that concurrent frontal theta and alpha 
activity is associated with the hierarchical control structures of the multiple operations 
involved in dual WM tasks.  

6. Conclusion 

Using data from 2 EEG experiments, this study has demonstrated the brain oscillations that 
are related to WM capacities for visual storage and central executive function. Frontal theta 
and parietal alpha activities represented the storage limitations under conditions of high 
and low WM demands, respectively. Moreover, frontal theta activity was also related to 
bottlenecks in central executive function, which is necessary to perform dual WM tasks. In 
addition to confirming previous findings concerning regional dissociations between WM 
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functions, the present study further suggests important roles for these brain oscillations, 
which reflect different local synchronizations within specific cell assemblies, in the WM 
process: theta for manipulation and alpha for maintenance.  
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