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1. Introduction 

Over the last 20 years, SPECT and PET, along with CT and MRI have been the main 
methodologies used in studies investigating psychiatric disorders. The structural alterations 
in patients’ brains found by CT and MRI are usually quite subtle, while those found by the 
nuclear imaging modalities (PET and SPECT) are more pronounced. Partly for this reason, 
the latter methods have led to discoveries in a wide range of psychiatric disorders. In the 
90s, region of interest (ROI) method provided only sketchy results due to the low spatial 
resolution of the nuclear imaging, but rapid progression in analytic and statistical methods 
in the 2000s had led to more detailed and accurate determinations of the differences in 
regional cerebral blood flow (rCBF) and glucose metabolic ratios (rGMR) between patients 
and comparison subjects. On the other hand, whereas an improved understanding of the 
etiology of psychiatric disorders has led to significant progress in multiple research areas, 
SPECT and PET studies measuring only the rCBF/rGMR distribution at rest have come to 
face some limitations for elucidation of the disease pathophysiology. Accordingly, at resting 
studies using SPECT/PET have tended to focus on certain kinds of clinical information, 
such as symptomatology and treatment. This review summarizes the history of at rest 
SPECT and PET studies, and provides a comprehensive survey in psychiatric disorders 
including schizophrenia, major depressive disorder, bipolar disorder and obsessive-
compulsive disorder.  

2. Schizophrenia 

Functional neuroimaging has been used to elucidate patterns of increased or decreased 
activity within the brains of schizophrenic and normal subjects during rest and various 
assigned tasks, revealing that the affected parts of the central nervous system are not 
contained within a single brain region, but rather lie within neural networks over several 
brain regions. Numerous structural brain researches studies employing CT and MRI have 
demonstrated significant volume reductions in key brain regions such as the lateral 
prefrontal cortex, anterior cingulate cortex (ACC), superior temporal cortex, 
hippocampus/parahippocampus, striatum and thalamus in patients with schizophrenia 
relative to normal subjects (Shenton et al., 2001). In support of these structural alterations, 
functional neuroimaging studies have produced representations of abnormalities in and 
across these regions. Taking these results together, a variety of symptoms, including 
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hallucination/delusion and negative symptoms, have been attributed not to abnormalities 
in a single brain region but to abnormalities in a distributed network of spatially distinct 
regions. Furthermore, functional neuroimaging studies have demonstrated that 
antipsychotics have substantial effects on brain functions, and have helped to elucidate the 
differences in action mechanisms among them. 

2.1 Hypofrontality and negative symptoms in schizophrenia 

Ingvar and Franzen (1974) reported that patients with chronic schizophrenia showed 
significant reduction in the rCBF ratio of the frontal to occipital region compared to normal 
subjects and subjects with first-episode schizophrenia measured with 133Xe. This was the 
first study to report an abnormality in rCBF in schizophrenia. Following this work, several 
other studies examined the resting state blood flow and metabolism (Buchsbaum et al., 1982; 
Wolkin et al., 1985; Tamminga et al., 1992; Sachdev et al., 1997) and repeatedly reported 
significant decreases in patients with schizophrenia relative to normal participants. On the 
other hand, there have been studies showing no difference in this parameter between 
patients and normal controls (Gur et al., 1995; Sabri et al., 1997, Scottish Schizophrenia 
Research Group, 1998), or even an increase in rCBF/rGMR in patients compared to normal 
controls (Cleghorn et al., 1989; Ebmeier et al., 1993).  
Early studies on this issue have presented very disparate results with respect to not only the 

presence or absence of hypoperfusion/hypomtabolism, but also, in cases in which it was 

present, the degree, relevant regions and correlation with symptoms of 

hypoperfusion/hypometabolism. The reason for these differences is presumed to be the 

large number of confounding factors, such as disease heterogeneity, treatment with 

antipsychotics, imcompleteness of results derived from the ROI method, measured value of 

absolute or relative data, different reference regions for relative data, measurement 

conditions under varied physiological states, and so on. Therefore, additional explorations 

with a more sophisticated study design for the drug-naïve subjects group, the same 

scanning conditions and reliable analytic methods are needed to reach a definitive 

conclusion on this issue.  

As for the effects of antipsychotic medications, several studies on drug-naïve patients with 

first-episode schizophrenia demonstrated a significant reduction in blood flow and 

metabolism in the frontal cortex relative to age-matched normal controls under a resting 

condition (Buchsbaum et al., 1992a; Steinberg et al., 1995; Vita et al., 1995; Erkwoh et al., 

1997) and task-related activation (Andreasen et al., 1992, 1997; Ashton et al., 2000) and 

suggested that the abnormal reduction in the prefrontal region occurs from a very early 

stage of the disease. With respect to the problem of analytic methods, ROI methods have 

been a mainstream from the 80s to late 90s, but voxel-wise methods representative of 

Statistic Parametric Mapping (SPM) have prevailed from the mid-90s and are the standard 

modality at present. This voxel-wise methods have successfully addressed two important 

problems in brain analyses: individual structural differences between the brains of 

participants and examiners’ arbitress on target brain regions depending on a priori 

hypothesis. Numerical researches based on these methods have demonstrated a significant 

reduction in particularly the lateral, medial and orbital phases of the prefrontal cortex 

relative to normal controls (Andreasen et al., 1997; Ashton et al., 2000; Kim et al., 2000; 

Potkin et al., 2002; Lehrer et al., 2005; Molina et al., 2005a, 2005b, 2009), and these findings 

have shown that areas with hypoperfusion and hypometabolism were pervasive and further 
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accompanied by other areas with hyperperfusion/hypermetabolism within the frontal 

cortex (Andreasen et al., 1997; Kim et al., 2000). The measurement conditions used under 

rest or the performance of a given task should also be taken into consideration. Whereas 

most of the studies with SPECT have been conducted under a resting state, many studies 

using FDG-PET have performed the comparison under a cognitive task such as 

continuous performance task (CPT) or California verbal learning task (CVLT). This is 

because of the possibility that a spontaneous fluctuation of mental state under a resting 

condition during scanning could result in varied distribution of rGMR in the participant 

group as a whole. Indeed, several PET studies using CPT (Potkin et al., 2002; Molina et al., 

2005a, 2005b, 2009) or a visual attention task (Lehrer et al., 2005) showed a significant 

reduction of rGMR in the prefrontal cortex in patients compared to normal controls, very 

similar to the results obtained in almost all studies under a resting state. Then, reduction 

of rCBF/rGMR in the prefrontal cortex in patients relative to normal controls under a 

static state during the performance of cognitive tasks and under a resting state collectively 

indicates hypofrontality.  

Although earlier studies have dealt this issue with dichotomous problem; presence or 

absence of hypofrontality, afterward, improvements in research design and analytic 

methods provide more detailed information such as distributed patterns within the frontal 

lobe within patients’ brains or the degree of difference of the finding between patients and 

controls. In this context, in some meta-analysis studies (Davidson and Heinrichs, 2003; Hill 

et al., 2004), the finding of hypofrontality has been supported and thus established as a more 

convictive finding in the disease.  

The hypoperfusion and hypometabolism in the frontal lobe have been presumed to be 
closely linked with negative symptoms and cognitive impairments in schizophrenia. These 
notions were demonstrated by the negative relationship between negative symptoms and 
blood flow/metabolism (Liddle et al., 1992; Wolkin et al., 1992; Ebmeier et al., 1993; 
Schröder et al., 1996; Andreasen et al., 1997; Erkwoh et al., 1997; Sabri et al., 1997; Ashton et 
al., 2000) and the significant reductions of blood flow/metabolism in the patients group 
with profound negative symptoms (Potkin et al., 2002; Gonul et al., 2003a), although several 
negative studies have existed (Vita et al., 1995; Min et al., 1999). On the other hand, whereas 
the cognitive dysfunctions that have recently received so much attention are closely related 
with negative symptoms, the reports exploring the relationship between the impairments 
and at rest blood flow/metabolism are very restricted (Penadés et al., 2002; Molina et al., 
2009). A hypodopaminergic state in the prefrontal cortex is presumed to underlie the 
negative symptoms and cognitive impairments (Lynch, 1992; Remington et al., 2011) and 
thus, in this context, it is noted that hypofrontality strongly suggests an important part of 
core pathophysiology in schizophrenia.  

2.2 rCBF/rGMR patterns in key regions other than the frontal lobe 

As for brain regions other than the frontal lobe, a number of previous studies have 
demonstrated substantial variations between the patients with schizophrenia and normal 
controls, with some reports observing increases in various activities and other reports 
documenting decreases, and thus no convincing consensus has been reached.  
Both the lateral and medial phases in the temporal cortex have been closely related with 
positive symptoms, particularly hallucination and delusion. Based on accumulating 
evidence from fMRI studies, for example, the primary auditory cortex located in the 
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superior temporal cortex has been demonstrated to be closely related to auditory 
hallucination (Dierks et al., 1999; Lennox et al., 2000). Indeed, the first-episode and drug-
naïve patients with auditory hallucinations presented higher (Horga et al., 2011) and lower 
metabolism (Cleghorn et al., 1992; Vita et al., 1995) compared with normal controls. Further, 
activity in this region was reported to be negatively associated with disorganization as a 
form of thought disorders (Ebmeier et al., 1993; Erkwoh et al., 1997; Sabri et al., 1997). The 
hippocampal and/or parahippocampal gyrus are also related with hallucination/delusion 
and disorganization. PET studies have shown an increase (Gur et al., 1995; Molina et al., 
2005b) and decrease (Tamminga et al., 1992; Kim et al., 2000; Horga et al., 2011) in 
rCBF/rGMR of the regions in schizophrenia compared with normal controls, and positive 
(Liddle et al., 1992) and negative correlations (Schröder et al., 1996) between metabolism in 
the regions and hallucinations. Although these reports have very conflicting results and do 
not reach a definitive conclusion, they do suggest that both the lateral and medial parts of 
the temporal lobe are closely related with the positive symptoms.  
The findings of activity within other key brain regions in schizophrenia have been very 
controversial. As for the striatum, several reports on drug-naïve patients have shown a 
significant reduction relative to normal controls (Buchsbaum et al., 1987, 1992a; 
Shihabuddin et al., 1998), suggesting a relation with putative neurological soft signs in the 
very early stage (Dazzan et al., 2004). The thalamus has a function of filtering all sensory 
signals from input to the cortex, and is known to play a primary role in the etiology of 
schizophrenia- namely, dysfunction in the correct perception of information from the 
external world. The activity in the thalamus has been alternatively reported to increase 
(Andreasen et al., 1997; Jacobsen et al., 1997; Kim et al., 2000; Clark et al., 2001) or decrease 
(Vita et al., 1995; Hazlett et al., 1999, 2004; Buchsbaum et al., 1996; Lehrer et al., 2005). 
Moreover, increases of rCBF/rGMR in the cerebellum (Andreasen et al., 1997; Kim et al., 
2000; Desco et al., 2003) and the subcortical regions (Buchsbaum et al., 1998, 2007a; Desco et 
al., 2003) have been observed. As described above, attempts to clarify the pathophysiology 
of schizophrenia have focused on brain regions from the frontal and temporal cortex to the 
subcortical regions including the striatum, thalamus, hippocampus and cerebellum. It 
appears that the approach of elucidating the pathophysiology requires an integrative 
interpretation based on the putative aberrant networks and their correlation with 
symptoms. Taken together, these findings suggest that resting blood flow and metabolism 
studies contribute to the elucidation of the disease pathophysiology by macroscopic 
investigation over the whole brain and microscopic investigation focusing on key regions.  

2.3 Impacts of antipsychotics on blood flow and metabolism 

Antipsychotics have some significant effects on brain blood flow and metabolism, and are 
presumed to be closely related to the potency of neuroleptics. All antipsychotics commonly 
induce dopamine (DA) D2 receptor antagonistic actions, resulting in the most direct action 
for improvement of delusions and hallucinations. Traditionally, typical antipsychotics such 
as haloperidol, an almost pure DA D2 blocker, had been widely used. But more recently, 
atypical antipsychotics have become the mainstay in the clinical practice. These atypical 
antipsychotics can reduce the extra-pyramidal symptoms and improve the negative 
symptoms and cognitive impairments by an antagonistic action on the 5-HT 2A receptors. 
Functional neuroimaging studies have provided important insights about the differences in 
pharmacological action and treatment effect among a diverse range of antipsychotics, and 
the subsequent functional changes in the central nervous system.  
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A number of previous studies have shown that typical neuroleptics such as haloperidol 
reduce blood flow and metabolism in the frontal lobe. These effects were repeatedly 
replicated in studies of both acute (Bartlett et al., 1998; Lahti et al., 2005) and chronic 
administration (Bartlett et al., 1991; Buchsbaum et al., 1992b; Miller et al., 1997, 2001; Lahti 
et al., 2003). Further, whereas haloperidol was reported to be related with hypoperfusion 
and hypometabolism in the hippocampus in terms of amelioration of positive symptoms 
(Lahti et al., 2003), increases of rCBF/rGMR in the motor cortex induced by haloperidol 
were presumed to be related with extra-pyramidal symptoms (Molina et al., 2003; 
Buchsbaum et al., 2007), and the decrease in activity in the occipital cortex following 
haloperidol treatment might be related with sedative effects (Bartlett et al., 1991; Desco et 
al., 2003; Lahti et al., 2003).  
An increase in rCBF/rGMR in the basal ganglia in patients with schizophrenia by 

neuroleptics, in particular haloperidol, is the most consistent finding among numerous 

reports on antipsychotics. This has been replicated very well in the acute effect (Lahti et al., 

2005) as well as the chronic effect (Buchsbaum et al., 1987, 1992a, 2007a; Miller et al., 1997, 

2001; Scottish Schizophrenia Research Group, 1998; Corson et al., 2002; Desco et al., 2003; 

Lahti et al., 2003). The increase of blood flow and metabolism in this area is presumed to be 

due to increases of activity in the post synapses through upregulation of DA D2 receptors 

induced by a potent blocking action of the receptor by haloperidol (Miller et al., 1997; 

Corson et al., 2002). This notion is in line with the increase of volume in this area following 

haloperidol treatment in structural MRI studies (Shenton et al., 2001). 

Studies on the effects of atypical antipsychotics on brain perfusion/metabolism have 

become to be examined based on more detailed neuronal substrates than studies on typical 

antipsychotics by appearance of voxel wise analysis. Although risperidone has less effect on 

the reduction of blood flow in the frontal lobe than haloperidol (Miller et al., 2001), the drug 

induces a significant reduction in the prefrontal cortex relative to baseline (Berman et al., 

1996; Liddle et al., 2000; Ngan et al., 2002; Molina et al., 2008). In the basal ganglia, the 

degree of increase in blood flow/metabolism by risperidone is likely smaller than that by 

haloperidol (Liddle et al., 2000; Miller et al., 2001). Liddle et al. (2000) demonstrated that 

treatment with risperidone for 6 weeks showed a significant positive relation between 

decrease in the hippocampus and decrease in reality distortion, suggesting that the 

hippocampus is an important target area of risperidone.  

Olanzapine is likely that its effect of blood flow/metabolism in the frontal lobe is lesser than 

that by risperidone (Gonul et al., 2003b; Molina et al., 2005c; Buchsbaum et al., 2007b).  

Clozapine, the gold standard among the atypical neuroleptics, has a pharmacological profile 
with weaker blockade of DA D2 receptors and broader actions for multiple receptors than 
other atypical antipsychotics, and these characteristics are presumed to be related to its 
superior clinical efficacy relative to other neuroleptics. Interestingly, several previous 
studies have reported that clozapine induced a significant reduction in blood 
flow/metabolism in the prefrontal cortex (Potkin et al., 1994, 2003; Cohen et al., 1997; Lahti 
et al., 2003; Molina et al., 2005d, 2008). On the other hand, increases in several parts of the 
prefrontal cortex, including the ACC (Lahti et al., 2003) and decreases in the hippocampus 
(Lahti et al., 2003; Potkin et al., 2003) have been shown by some studies, supporting the 
drug’s clinical actions such as ameliorations of delusions/hallucinations and cognitive 
impairments. Indeed, responders to clozapine exhibited more prominent changes in blood 
flow/metabolism above mentioned rather than non-responders (Potkin et al., 2003; Molina 
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et al., 2008). These complex patterns induced by clozapine have been suggested to be 
strongly related to the drug’s superior clinical characteristics.  

2.4 Conclusion 

Functional neuroimaging studies performed in schizophrenic subjects under a resting state 

have made progress in the accumulation of findings on hypoperfusion/hypometabolism in 

the frontal lobe. It is noted that the hypofrontality is closely related with negative 

symptoms. On the other hand, the brain regions relevant to positive symptoms are still 

clearly unknown. The studies performed thus far have well explored the effects of various 

antipsychotics on the brain blood flow and metabolism, but neuroleptic-induced reductions 

in blood flow/metabolism in the prefrontal cortex have been obscure in terms of their 

relationship with the improvement of positive symptoms or secondary negative symptoms. 

By contrast, alteration in the limbic regions or the medial phase of the temporal cortex, such 

as the hippocampus, has been shown to be related with positive symptoms, and functional 

neuroimaging studies have contributed to detection of the origin of positive symptoms. 

3. Major Depressive Disorder 

Functional neuroimaging studies measuring at-rest brain perfusion and metabolism in 

patients with major depressive disorder (MDD) have demonstrated that the etiology of the 

disease is closely linked with multiple components of the frontal lobe, temporal lobe, 

parietal lobe, limbic/paralimbic regions, and basal ganglia. Recent knowledge on affection 

and perception acquired from multiple human and animal research fields strongly support 

the findings that have been observed within depressive patients’ brains in neuroimaging 

studies. Although a number of functional neuroimaging studies for MDD have been 

conducted to date, the results were varied widely among the studies. However, a sequence 

of inconsistent findings on MDD has demonstrated that depressive patient groups consist of 

highly heterogeneous subtypes, and that the etiology of depression contains multiple 

symptoms.  

Studies on the effects of antidepressants on brain perfusion and metabolism have reported 
the relatively consistent finding that abnormal activity in the key brain regions relevant to 
depression could be normalized by successful treatment. However, no reliable markers on 
response prediction have been available to date in the imaging studies. On the other hand, 
studies of electroconvulsive therapy (ECT), an established treatment modality for refractory 
depression, have suggested that its effective mechanism is involved in the inhibitory process 
within subjects’ brains that occurred immediately following the ECT course.  

3.1 Abnormalities in multiple prefrontal cortex and limbic regions in MDD 

Earlier functional neuroimaging studies on depression have reported significant reduction 
in rCBF/rGMR in the frontal lobe or prefrontal cortex in patients with depression relative to 
normal subjects (Baxter et al., 1989; Martinot et al., 1990; Bench et al., 1992). However, 
several subsequent studies with the voxel based analyses have failed to confirm this finding 
(Skaf et al., 2002; Videbach et al., 2002; Bonne et al., 2003). Great progression made in 
research on human and animal emotion and perception has elucidated that the frontal lobe 
and limbic/paralimbic systems are tightly involved in affective and perceptive controls, 
including mood, attention, decision-making, anxiety, behaviors dependent on 
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reward/punishment, and so on. It is, therefore, very reasonable that hypoactivity in the 
frontal lobe is observed in subjects with depression relative to normal subjects. Inconsistent 
results among the previous studies mentioned above, suggest great heterogeneity of 
patients with the disease. Therefore, a number of confounding factors, such as age, sex, 
brain organic condition (ischemia and atrophy), pharmacotherapy (drug class, dose and 
duration), and disease stage (acute or remit), could easily affect brain activity, leading to a 
varied distribution of rCBF/rGMR in the patient group as a whole.  
Studies with careful sample selection, in which subjects who were, for example, in a drug-

naïve state or in withdrawal from antidepressants for several weeks, were careful selected in 

order to reduce the heterogeneity have reported significant hypoperfusion and 

hypometabolism in the dorsolateral prefrontal cortex in subjects with depression relative to 

normal controls (Kimbrell et al., 2002; Gonul et al., 2004). The reduction in activity in this 

region was the most consistent finding among those in the frontal lobe as a whole. 

Additionally, rCBF and rGMR in the dorsolateral prefrontal cortex were negatively 

correlated with the severity of depression (Baxter et al., 1989; Martinot et al., 1990; Hurwitz 

et al., 1990; Bonne et al., 1996; Kimbrell et al., 2002; Gonul et al., 2004). Subanalyses of each 

symptom have shown the degree of psycho-motor retardation and the activity in the 

prefrontal cortex to be negative correlated (Bench et al., 1993; Dolan et al., 1993; Videbach et 

al., 2002). Although increased activities in the ventrolateral prefrontal cortex and OFC have 

been suggested by a sequence of studies by Drevets (Drevets et al., 1992, 1997; Drevets, 1999, 

2000), other studies did not sufficiently examine these areas. With respect to the medial 

prefrontal cortex and ACC, although most studies with relatively large ROIs in this area, 

observed hypoperfusion and hypometabolism (Hurwitz et al., 1990; Bench et al., 1992, 1993; 

Bonne et al., 1996; Mayberg et al., 1997; Videbach et al., 2002; Gonul et al., 2004), several 

detailed studies on these regions demonstrated decreased activities in the dorsal medial 

prefrontal and dorsal ACC (Kimbrell et al., 2002; Fitzgerald et al., 2008) and increased 

activities in the rostral ACC (Drevets, 1999; Konarski et al., 2007). In particular, the latter 

region was suggested that the greater perfusion and metabolism was, the better clinical 

response to antidepressant treatment was predicted (Mayberg et al., 1997).  

As for the limbic region, increases in rCBF/rGMR in the amygdala (Drevets et al., 1992; 
Abercrombie et al., 1998; Videbach et al., 2002) and caudate (Gonul et al., 2004; Périco et al., 
2005) were observed in patients with depression relative to normal subjects. The subgenual 
ACC, a component within the paralimbic system, was hypoactive in patients with unipolar 
depression (Drevets et al., 1997; Skaf et al., 2002; Fitzgerald et al., 2008), but also in patients 
with bipolar depression (Drevets et al., 1997). The caudate was also reported to show 
hypometabolism (Baxter et al., 1985; Drevets et al., 1992). These reductions in activity in 
anatomically small areas, such as the subgenual ACC and caudate, might be due to the 
partial volume effects (Krishnan et al., 1992; Drevets, 2000). The ventrolateral prefrontal 
cortex, including the subgenual ACC, has closely reciprocal connectivities with the 
amygdala, hypotharamus and brain stem, and disturbances of these networks could lead to 
the hypersensitivity to failure, pathological guilt and exaggeration of self-esteem shown in 
patients with MDD. 

3.2 Change of rCBF/rGMR induced by antidepressants and ECT 

Antidepressant agents are shown to be effective for 50-60% patients with MDD (Hirschfeld 
et al., 2002), and only 20-35% of patients reach remission (Mann, 2005). While diverse classes 
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of antidepressants are available in clinical practice at present, studies on the effect of specific 
antidepressants on brain perfusion or metabolism and the studies on the relationship 
between clinical improvement and the brain activity induced by antidepressants have been 
very restricted, and, further, the few such studies that exist usually have very small sample 
sizes. According to previous studies on these issues, aberrant regions at baseline prior to 
initial treatment in subjects with MDD appear to be normalized, particularly in responders 
to the agent. However, it is very uncertain whether the abnormalities can be recovered to a 
level similar to that in normal subjects (Baxter et al., 1985, 1989; Tutus et al., 1998; Ishizaki et 
al., 2008) or remain to a certain degree (Hurwitz et al., 1990; Martinoti et al., 1990). The 
discrepancies among these studies might be due to differences in class, dose of 
antidepressant, diverse treatment durations, different definitions of effectiveness or 
recovery of symptoms, or small sample sizes. Several selective serotonin reuptake inhibitors 
(SSRIs; paroxetine and citalopram) and serotonin and noradrenaline reuptake inhibitors 
(SNRIs; venlafaxine) in some well-designed studies have been examined most extensively in 
terms of their effects on brain perfusion/metabolism in patients with MDD. However, 
although several key regions, such as the frontal, temporal, parietal, and limbic regions and 
the basal ganglia, have been widely found to be relevant areas affected by the depressants 
studied, consistent findings on the combination of the relevant areas or their change 
directions have been very scarce. With respect to the prediction of the response to 
antidepressants, the greater the perfusion in the ACC (Mayberg et al., 1997), rectul gyrus 
(Buchsbaum et al., 1997), and lateral prefrontal cortex (Joe et al., 2006; Brockmann et al., 
2009) prior to treatment was, the better the expected response.  On the other hand, a 
decrease in rCBF/rGMR prior to treatment in the ACC (Brody et al., 1999; Konarski et al., 
2009), lateral prefrontal cortex (Navarro et al., 2004) and hippocampus/basal 
ganglia/thalamus (Milak et al., 2009) led to a good treatment response. Therefore, the 
studies on this issue to date have failed to confirm conclusions. 
ECT is usually indicated the patients with MDD who have been treatment-resistant to 

antidepressants. While this modality provides a relatively high rate of response for these 

patients, the understanding of its mechanism of action remains very poor. During seizures 

induced by ECT, evident reductions in rCBF/rGMR occurred over large brain areas (Takano 

et al., 2007). Afterwards, hypoperfusion and hypometabolism, to a lesser degree than during 

the seizure, in several brain regions, including the prefrontal region, have continued for a 

maximum of several months. This findings is presumed to be related to clinical 

responsiveness (Prohovnik et al., 1986; Rosenberg et al., 1988; Guze et al., 1991). However, 

some studies have demonstrated significant increases in rCBF in several brains (Bonne et al., 

1996; Kohn et al., 2007). These discrepancies might be due to several confounding factors, 

such as procedural-related factors including anesthetics and electrode replacements, or to 

varying durations between the termination of the ECT course and imaging scanning.  

3.3 Conclusion 

The etiology of depression is strongly suggested to be related to the frontal lobe and 

limbic/paralimbic regions. However, the highly heterogeneity of patients with depression 

could lead to inconsistent results observed among studies. In addition, assessing the results 

in anatomically small areas or components with obscure boundaries, such as the subgenual 

ACC, amygdala, and OFC, is very difficult, and this serious problem in the interpretations 

of these regions stems from the effects of volume reduction in these regions in patients with 
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depression relative to normal. With respect to antidepressants and ECT, their mechanisms 

have been under examination.  

4. Bipolar Disorder 

Bipolar Disorder is characterized by distinctive affective labile episodes of 

manic/hypomanic state and/or depressive state. Concurrently, cognitive dysfunctions such 

as impairments of attention, working memory and executive function usually accompany 

the disease. Based on recent careful clinical observations, lifetime prevalence, including all 

bipolar II disorder, subthreshold bipolar disorder and drug-induced manic/hypomanic 

episode, is up to 5% (Merikangas et al., 2007). About 60% of patients with bipolar disorder 

are misdiagnosed as having MDD, and further, one-third of patients experience any 

psychiatric symptoms for more than 10 years before a correct diagnosis is made (Hirschfeld 

et al., 2003). Therefore, understanding the pathophysiology of bipolar disorder is very 

important for exact diagnosis and effective treatment. In neuroimaging studies on bipolar 

disorder, however, there have been a number of difficulties with the research, such as 

difficulty in recruiting patients with mania into the study and with safely scanning them, 

and the large heterogeneity within such patient groups in terms of affective state and 

disease subtype. Therefore, neuroimaging studies conducted to date have tended to have 

small sample sizes. Also, almost all studies on bipolar disorder have employed depressive 

patient groups combining cases of bipolar and unipolar depression, and the data acquired to 

date in manic and euthymic patients have been relatively restricted compared to the 

findings in depressive patients. In this context, resting state rCBF/rGMR studies on bipolar 

disorder have appeared to be inconsistent (Stoll et al., 2000; Strakowski et al., 2000). Still, 

recent resting state studies are providing a cortical-anterior subcortical dysfunction model of 

the disease pathology through several kinds of examination, including studies on mania and 

comparative studies between bipolar and unipolar depression (Keener and Phillips, 2007; 

Pan et al., 2009).  

4.1 Bipolar mania 

There have been few studies on manic patients, and those that have been performed have 
been largely biased by very small sample size, patients with manic level that can cooperate 
with study, and continuous pharmacotherapy consisting of a mixture of mood stabilizers, 
antidepressants and antipsychotics. In these studies, rCBF/rGMR reduction in the 
prefrontal cortice, particularly the ventral prefrontal cortex and increase in the subcortical 
areas compared to normal controls have been relatively consistent, providing cortical-
subcortical or cortical–limbic/paralimbic regions impairment as a disease model in bipolar 
disorder. Decrease in brain perfusion/metabolism in the frontal cortex has been reported in 
the lateral prefrontal cortex at rest (al-Mousawi et al., 1996; Bhardwaj et al., 2010; Brooks III 
et al., 2010) and during cognitive tasks (Blumberg et al., 1999; Rubinsztein et al., 2001) and in 
the orbitofrontal cortex at rest (Blumberg et al., 1999) and during cognitive tasks (Blumberg 
et al., 1999; Rubinsztein et al., 2001). On the other hand, increases of rCBF/rGMR have been 
reported in the dorsal ACC (Rubinsztein et al., 2001), caudal ACC (Blumberg et al., 2000) 
and ventral/subgenual ACC (Drevets et al., 1997; Blumberg et al., 2000; Brooks III et al., 
2010) and the head of the caudate (Blumberg et al., 2000; Brooks III et al., 2010). Goodwin et 
al. (1997) reported that in patients with relapsed manic episodes following withdrawal of 
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lithium, increase of rCBF in the ACC was positively correlated with manic symptoms. These 
findings lead to and partly support the anatomical-functional hypothesis that while the 
orbitofrontal and lateral prefrontal impairments are related with affective/impulsive 
dysregulation and cognitive dysfunction, respectively, compensatory functional 
hyperactivity reflects the findings of increase in the ACC and limbic/paralimbic regions 
observed in resting-state studies (Keener and Phillips, 2007; Pan et al., 2009). 

4.2 Bipolar depression 

Although there have been more reports on bipolar depression than on mania, the findings 

from this body of work are rather confusing. This may be due, at least in part, to the design 

of these studies. That is, earlier studies have frequently used a disease group combining 

cases of unipolar and bipolar depression, and when they have compared bipolar depression 

with other conditions, they have alternatively used normal healthy subjects, patients with 

unipolar depression and subjects with mania/euthymia as the comparison group. 

Moreover, the different studies have different target regions (ACC, subgenual prefrontal 

cortex and amygdala). With respect to the cortex, although few reports demonstrated any 

regions with hyperperfusion and hypermetabolism in bipolar depression relative to normal 

controls, areas with hypoperfusion/hypometabolosm in the patients compared to normal 

controls spread very broader in the lateral prefrontal (Baxter et al., 1985, 1989; Ketter et al., 

2001; Brooks III et al., 2009a), medial prefrontal (Baxter et al., 1985; Bauer et al., 2005; Brooks 

III et al., 2009a), subgenual ACC (Drevets et al., 1997; Brooks III et al., 2009a), temporal lobe 

(Baxter et al., 1985; Ketter et al., 2001; Bhardwaj et al., 2010), occipital lobe (Baxter et al., 1985; 

Ketter et al., 2001) and parietal lobe (Baxter et al., 1985; Ketter et al., 2001). On the other 

hand, hyperperfusion/hypermetabolism have also been observed in the subcortical or 

limbic/paralimbic areas, including the amygdala (Ketter et al., 2001; Drevets et al., 2002; 

Bauer et al., 2005; Mah et al., 2007), subgenual ACC (Drevets et al., 1997; Bauer et al., 2005; 

Mah et al., 2007), ventral striatum (Bauer et al., 2005), caudate nucleus (Ketter et al., 2001; 

Mah et al., 2007), and putamen (Ketter et al., 2001; Mah et al., 2007), nucleus accumbens 

(Ketter et al., 2001; Mah et al., 2007), thalamus (Ketter et al., 2001; Bauer et al., 2005) and 

cerebellum (Bauer et al., 2005).  

There have been a few reports comparing patients with bipolar depression and bipolar 

mania within the same study. Examination of the subgenual ACC (Brodmann area 25) by 

Drevets et al. (1997) demonstrated clear distinction of increased activity when mania and 

decreased activity when depression, and growing attention has been paid to this area as a 

mood-state marker in bipolar disorder. However, some subsequent studies showed higher 

metabolism in the depressive state (Bauer et al., 2005; Mah et al., 2007), indicating a failure 

to conform. The inconsistency among studies on small anatomical area such as the 

subgenual ACC may be related to shortcomings in the characteristics of nuclear imaging, 

such as insufficient spatial resolution of the scanner or inaccurate normalization to the 

standard brain (Drevets et al., 2002). 

4.3 Euthymia 

Although manic state and depressive state represent clinically extreme and opposite 

symptoms, neuroimaging findings on the two states are relatively similar. Thus, a cortical-

subcortical model raises some questions as to whether this model means trait marker in the 
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disease, or whether reliable mood-state markers in the disease exist. In this context, studies 

on euthymia will be more and more important for addressing these issues. 

Some studies on patients with euthymic state compared to normal controls have reported 
a decrease of rCBF/rGMR in the lateral prefrontal (Culha et al., 2008; Brooks Ⅲ et al., 

2009b) and ACC (Culha et al., 2008) at rest, and the lateral prefrontal (Krüger et al., 2003) 

and OFC (Blumberg et al., 1999; Krüger et al., 2003) during cognitive tasks or symptom-

provocation. On the other hand, regions with increased perfusion/metabolism were 
observed in the subcortical areas such as the amygdala (Brooks Ⅲ et al., 2009b) and 

parahippocampus (Brooks Ⅲ et al., 2009b) at rest. Krüger et al (2003, 2006) in symptom-

provocation studies demonstrated that although increased rCBF in the subgenual ACC 
seen in normal controls was deficit in euthymic patients, increased perfusion in the dorsal 
ACC was observed only in the patients. Though there have been very few studies 
conducted on euthymia, patients with euthymia appear to show a decrease of 
rCBF/rGMR in the prefrontal cortex and an increase in rCBF/rGMR in the subcortical 
areas, according to previous reports. These notions are comparable to recent clinical 
observations that patients in a euthymic state show significant cognitive impairments 
identical to the distinctive pathological states of mania and depression (Kessing, 1998; 
Elshahawi et al., 2011), and they are in preparatory stage to relapse fragile to stress 
(Swann, 2010), but not asymptomatic state not meeting manic and depression.  

4.4 Conclusion 

Functional neuroimaging studies on bipolar disorder have demonstrated hypoactivity in the 

cortex, particularly the ventral prefrontal cortex, and concurrent hyperactivity in the 

subcortical or limbic/paralimbic regions. To data, however, this knowledge has not 

reflected the clinical bipolarity of mania and depression and thus remains a trait marker. 

Furthermore, these findings cannot be distinguished from those of other psychiatric 

disorders, including unipolar depression. Studies with more sophisticated designed and 

larger sample size will be needed in the future.  

5. Obsessive-Compulsive Disorder 

Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2-3% (Weissman et al., 

1994). OCD is characterized by persistent and recurrent thoughts that invade conscious 

awareness against a patient’s will (obsessions) and is further usually accompanied by ego-

dystonic, ritualistic behaviors that the patient is obliged to perform in order to prevent 

overwhelming anxiety (compulsions). Patients with OCD form a more homogeneous group 

than those with other psychiatric disorders, and this perhaps accounts for the fact that 

previous functional neuroimaging studies have provided relatively consistent findings on 

aberrant brain regions in this disorder, which include the OFC, ACC, caudate nuclei, thalamus 

and so on. That is, the etiology of OCD has been presumed to follow a cortico-subcortical 

model. Functional neuroimaging techniques have contributed substantially to the exploration 

of these areas relevant to the disorder. Furthermore, recent reports on treatment intervention 

for OCD have strongly suggested that selective serotonin reuptake inhibitors (SSRI) and 

cognitive behavior therapy (CBT), both established treatment approaches, raise some effects on 

patients’ brain blood flow and metabolism, and further normalize aberrant regional perfusion 

and metabolism within these networks in treatment responders.  
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5.1 Dysfunction of the orbitofrontal-subcortical circuit in OCD  

The basal ganglia is a candidate abnormal area in OCD to which great attention was initially 

paid. The reason for this is a high rate of patients with obsessive symptoms were found to 

have certain diseases, such as Von Economo encephalitis (Schilder, 1938), Sydenham’s 

chorea (Swedo et al., 1989) and Tourette’s syndrome (Nee et al., 1980), which have 

presumed to be impaired in the basal ganglia. Afterwards, functional neuroimaging studies 

on OCD have focused on the striatum, in particular caudate nucleus as aberrant region 

within patients’ brains and concurrently have successively detected some abnormal brain 

areas such as the OFC, ACC and thalamus in patients with OCD, when compare them with 

normal healthy subjects. In this context, researchers have proposed a dysfunction of cortico-

striatum-thalamus-cortical network as an etiological model of OCD (Modell et al., 1989; 

Baxter et al., 1996; Saxena et al., 1998).  

It has been classically recognized that the cortico-subcortical network consists of direct and 

indirect pathways. The thalamus in the network has a gating function which filters all 

stimuli from the outer world and receives two main inputs from the striatum. The one is the 

direct pathway where signals from the striatum input to the thalamus via the globus 

pallidus internal/substantial nigra and the other is the indirect pathway where signals from 

the striatum input to the globus pallidus internal/substantial nigra through the globus 

pallidus external or subthalamic nucleus, and are further sent to the thalamus. Afterwards, 

feedback signals from the thalamus are sent to the cortex. These pathways consist of 

neurotransmissions combined with excitatory signals by glutamate and inhibitory signals by 

GABA. The direct pathway inputting to the thalamus disinhibits the thalamus 

(reinforcement of positive feedback) and the indirect pathway inhibits the thalamus 

(negative feedback), thereby helping to maintain the balance of the system (Alexander and 

Crutcher, 1990). In patients with OCD, it is presumed that this circuit represents an 

imbalance of hyperactivity. In the dysfunctional network, impairment in the striatum leads 

to an insufficient gating function of the thalamus, resulting in cortical hyperactivities. In this 

context, the direct pathway in the patients with OCD predominates over the indirect 

pathway. In terms of symptom-relations, the striatum is essentially involved in unconscious 

acquisition of the initial process of action or behavior, and hypermobilization of the 

impaired striatum could lead to compulsive symptoms in the manner of ritual behaviors, in 

order to normalize the undesirable thoughts or anxieties occurring via the dysfunctional 

thalamus. On the other hand, these invasive thoughts and excess anxieties would relate with 

hyperactivity in the OFC and ACC, respectively.  

Previous functional neuroimaging studies in subjects at rest or undergoing symptom-

provocation have implicated an increase in rCBF/rGMR in the OFC (Baxter et al., 1987, 

1988; Benkelfat et al., 1990; Horwitz et al., 1991; Rubin et al., 1992, 1995; McGuire et al., 

1994; Alptekin et al., 2001), ACC (Swedo et al., 1989; Horwitz et al., 1991; Perani et al., 

1995), caudate nucleus (Baxter et al., 1987, 1988; Diler et al., 2004; Saxena et al., 2004), 

putamen (Benkelfat et al., 1990; Perani et al., 1995) and thalamus (McGuire et al., 1994; 

Perani et al., 1995; Alptekin et al., 2001; Saxena et al., 2001, 2004), strongly suggesting 

hyperactivities in the cortico-subcortical loop in patients with OCD. However, other 

studies have demonstrated inverse results, i.e., decreases in the OFC (Crespo-Faccoro et 

al., 1999; Busatto et al., 2000), ACC (Busatto et al., 2000), caudate nucleus (Rubin et al., 

1992, 1995; Edmonstone et al., 1994; Lucey et al., 1995, 1997), putamen (Edmonstone et al., 
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1994) and thalamus (Martinot et al., 1990; Lucey et al., 1995). These discrepancies were 

presumed to be due to varied treatment duration of serotonin reuptake inhibitors (SRIs) 

(Rubin et al., 1995), or to childhood- or adult-onset of the disease (Geller et al., 1995), 

presence or absence of comorbidity disorders such as MDD or tic disorder (Crespo-

Faccoro et al., 1999; Hoehn-Saric et al., 2001) and the measurement of different parameters 

(brain blood flow or metabolism). Interestingly, whereas SPECT studies tended to indicate 

a decrease in rCBF, FDG-PET studies tended to show an increase in rGMR in the key 

regions in the disease, suggesting a possibility of uncoupling between brain blood flow 

and glucose utilization (Whiteside et al., 2004). At the very least, these regions are closely 

involved in the pathophysiology of OCD.  

Studies on the relation between the symptom severity and the degree of abnormality in 

these areas have presented very varied results and failed to provide consistent findings.    

5.2 Change following intervention by SRIs and cognitive-behavior therapy 

Previous studies have replicated well that aberrant findings of rCBF/rGMR relevant to 

OCD-related regions could be normalized by pharmacological intervention of SRIs. 

Treatment of clomipramine, a tricyclic antidepressant, over several months could normalize 

regional blood flow or metabolism in the OFC and/or caudate nucleus from significant 

increase level prior to intervention compared to normal controls (Benkelfat et al., 1990; 

Swedo et al., 1992; Rubin et al., 1995). Also, intervention by two SSRIs, paroxetine and 

fluoxetine, provided similar results to clomipramine; increased rCBF/rGMR in the OFC 

and/or caudate nucleus at baseline were reduced significantly following treatment with 

paroxetine (Saxena et al., 1999, 2002; Hansen et al., 2002; Diler et al., 2004) and increased 

rCBF/rGMR in the ACC/caudate nucleus/thalamus at baseline decreased significantly after 

fluoxetine treatment (Hoehn-Saric et al., 1991; Baxter et al., 1992). Furthermore, in most of 

these studies, responders in clinical symptoms to pharmacological intervention tended to 

show a significant decrease relative to baseline, whereas non-responders showed no change 

by the treatment (Benkelfat et al., 1990; Baxter et al., 1992; Swedo et al., 1992; Saxena et al., 

1999; Hoehn-Saric et al., 2001; Diler et al., 2004; Ho Pian et al., 2005). With respect to 

response prediction, several studies have found that the lower the brain blood flow or 

metabolism in relevant regions prior to treatment was, the greater was the reduction in OCD 

symptoms (Benkelfat et al., 1990; Saxena et al., 1999). In addition, there were significant 

correlations between decrease of metabolism at baseline in the OFC or caudate nucleus and 

improvement of OCD symptoms (Benkelfat et al., 1990; Swedo et al., 1992; Baxter et al., 

1992). However, studies on significant response predictors have been very restricted and 

reliable parameters on response prediction have never been explored to date.  

CBT, interestingly, also appears to normalize increased rCBF/rGMR in some relevant areas, 

including the caudate nucleus (Baxter et al., 1992; Schwartz et al., 1996; Nakatani et al., 2003) 

and thalamus (Saxena et al., 2009). Additionally, responders to CBT exhibited greater 

reduction in the caudate nucleus from baseline to CBT intervention than did non-responders 

(Schwartz et al., 1996). Although there have been few studies up to now on the alteration of 

brain function before and after CBT, growing notions on the effects of CBT on brain 

functions within subjects would address some important issues on whether the functional 

brain change induced by SRIs is a direct consequence of their pharmacological actions, or a 

state consequence occurring regardless of treatment approaches.  
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5.3 Depression as a comorbidity with OCD 

Although most studies have been directed to the patients with OCD without MDD, in 
clinical practice OCD patients frequently have major depression as a comorbidity; 
approximately one-third of OCD patients also have MDD (Rasmussen and Eisen, 1992; 
Weismann et al., 1994), whereas 22-38% of patients with MDD have obsessive-compulsive 
symptoms (Kendell and DiScipio, 1970). Thus, notions acquired from studies performed on 
pure OCD patients without depression might deviate from the actual pathophysiology of 
OCD. Further, since SRIs and CBT are commonly effective for improvement of both OCD 
and MDD, exploration of the neuronal substrates shared by the two diseases might provide 
very valuable information for understanding the etiology.  
Saxena et al. (1999) demonstrated that patients with concurrent OCD and MDD showed a 
significant reduction in metabolism in the hippocampus similar to that of patients with 
MDD alone. Furthermore, treatment with paroxetine for patients with concurrent OCD and 
MDD induced a reduction of rGMR in the ventral lateral prefrontal cortex, which was 
similar to the findings in patients with MDD alone, but did not show a decrease in the OFC 
and caudate nucleus like that seen in the patients with OCD alone (Saxena et al., 2002). 
These findings suggested that patients with concurrent OCD and MDD had the 
pathophysiology of MDD, and thus may constitute a distinctive subtype within OCD, such 
that both the etiologies of OCD and MDD should be considered carefully when devising a 
treatment strategy.    

5.4 Conclusion 

Functional neuroimaging studies on OCD have provided much more consistent findings 
than structural MRI studies. That is, in patients with OCD, some important regions in the 
cortical and subcortical areas present with hyperactivity and are normalized by 
pharmacotherapy. Since improvements by SRIs and CBT occur in only about half of patients 
(responders), further neuroimaging studies controlled by treatment intervention are 
strongly needed.  
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