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Posidonia oceanica and Zostera marina as 
Potential Biomarkers of Heavy Metal 

Contamination in Coastal Systems 

 Lila Ferrat1 et al.* 

1University of Corsica, Sciences for Environment,  
France 

1. Introduction 

In the early 1960s recognition of the adverse effects of environmental contamination due to 
industrial, pesticide, and agricultural pollution led to the emergence of the field of 
ecotoxicology (Ramade, 1992). Today, marine estuary and inshore ecosystems continue to be 
negatively impacted by environmental contamination (Short & Wyllie-Echeverria 1996; Orth 
et al., 2006; Osborn & Datta, 2006). In order to reduce these negative impacts, bio-
surveillance programs are needed to monitor environmental conditions so that changes in 
ecosystem processes, structure, and the physiological condition of species can be assessed 
(Blandin, 1986; Tett et al., 2007). An important characteristic of these programs is that 
indicator species must be capable of rapidly detecting significant changes in the ecosystem 
so that the cause of deterioration can be addressed early (e.g. Hemminga & Duarte, 2000). 

Mussels (Goldberg et al., 1983) and fish (Reichert et al., 1998; Stephensen et al., 2000) are 
frequently used as indicators of chemical contamination in long-term environmental 
monitoring programs. However, these programs can be deficient because they only provide 
information about water column contamination, and these organisms can have limited 
ranges and often must be introduced to a site as part of the monitoring program. To offset 
these deficiencies widely distributed indicator organisms in coastal systems that have the 
capacity to provide contamination information from both water column and sediment 
environments are needed. Consequently, there is increasing interest in the use of marine 
macrophytes because they grow in most coastal and estuarine systems (see Green & Short, 
2003). These rooted vascular plants interact with the chemical properties of the water 
column and surface sediment environments within site-specific and basin-wide locations 
(Brix, 1997; Brix et al., 1983; den Hartog, 1970; Lange and Lambert, 1994; Rainbow and 
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Phillips, 1993). For this study the focus was on the seagrasses Posidonia oceanica (L.) Delile 
(Posidoniaceae) and Zostera marina L. (Zosteraceae). These were chosen because they are the 
dominant species in the regions of our inquiry which were, respectively, the Mediterranean 
Sea (Lipkin et al., 2003; Procaccini et al., 2003) and the Pacific Northwest (Wyllie-Echeverria 
& Ackerman, 2003). Both species can form vast meadows across the intertidal-subtidal 
gradient in their respective ecosystems (Molinier & Picard, 1952; Phillips, 1984). 

1.1 P. oceanica and Z. marina as indicators of environmental quality 

The potential for these species to provide an early warning of deteriorating environmental 
quality has been noted for P. oceanica and Z. marina where both species were found useful 
at detecting environmental deterioration within local and basin-wide locations (Augier, 
1985; Dennison et al., 1993; Pergent, 1991; Pergent-Martini et al., 1999). For example, P. 
oceanica accumulates certain metal pollutants, notably mercury (Pergent-Martini, 1998), 
which is one of the most abundant marine pollutants. Within the Mediterranean Sea 
elevated mercury levels have been reported in certain regions (Maserti et al., 1991), and 
correlations have been drawn between mercury levels in plant tissue and the 
concentrations of mercury in the water column (Pergent-Martini, 1998). In laboratory 
studies Lyngby & Brix (1984) and Brix & Lyngby (1984) demonstrated that Z. marina can 
accumulate heavy metals in concentrations above natural levels, and that these 
concentrations inhibited growth. In addition, based on extensive sampling along the 
coastline of Limfjord, Denmark, these authors noted that Z. marina could be used to 
monitor heavy metal contamination. Also, a related species Z. capricorni has provided 
valuable information in monitoring iron, aluminium, zinc, chromium, and copper 
contamination (Prange & Dennison, 2000).  

Indicator species that provide an early warning of ecosystem change will likely be those that 
reveal first order changes in organism function. Molecular, biochemical, and/or cellular 
changes triggered by pollutants are measurable in biological mediums such as cells, tissues, 
and/or cellular fluids (McCarthy & Shugart, 1990). For example, oxidation is known to be a 
significant factor in stress-related organismal weakening, and antioxidant molecules have 
been used to evaluate organism health (Chen et al., 2007). One group of antioxidant 
molecules are the widely studied phenolic compounds (Ferrat et al., 2003a) which are 
known to be induced by reactive oxygen species (Rice-Evans et al., 1995; Vangronsveld et 
al., 1997).  

1.2 Physiological and ecological roles of phenolics and volatile compounds 

Phenolic compounds produced via the Shikimic Acid Pathway, and volatiles produced via 
the Mevalonate Pathway, are known to be important to plant health and survival (Cates, 
1996; Fierer et al., 2001; Hartman, 2007; Phillips, 1992; Schimel et al., 1996). They are found in 
terrestrial higher plants, most notably angiosperms (Goodwin & Mercer, 1983; Hadacek, 
2002), some seagrasses (Verges et al., 2007; Zapata and McMillan, 1979), and have a wide 
range of chemical structures and activities (Hadacek, 2002; Hartman, 2007). Phenolic and 
volatile compounds contribute significantly to the antioxidant activity of plants, have the 
capacity to bind heavy metals (Emmons et al., 1999), and are an important mechanism in 
protecting plants against stress (Swain, 1977). Volatile compounds (e.g. monoterpenes, 
sesquiterpenes) have been found to serve as energy sources in plants (Croteau & Sood, 
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1985), are important in the defensive system of higher plants (Cates, 1996; Langenheim, 
1994), and influence ecosystem processes such as nutrient cycling (Horner et al., 1988; White, 
1986). The production of phenolics and volatiles is under genetic control (Croteau & 
Gershenzon, 1994; Hartman, 2007), but their qualitative and quantitative production is 
affected by various environmental factors (Bryant et al., 1983; Gershenzon, 1984; Hartman, 
2007; Macheix, 1996; Quackenbush et al., 1986; Ragan & Glombitza, 1986). However, as with 
other seagrasses, only a very limited number of studies deal with the role of phenolic and 
volatile compounds from Posidonia oceanica (Heglmeier & Zidorn, 2010) and Zostera marina 
(Short & Willie Echeverria, 1996). Only were investigated the impacts of interspecific 
competition (Dumay et al., 2004), nutrient variation, diseases (Vergeer & Develi, 1997) and 
grazing (Cannac et al., 2006), or general anthropization of water masses (Short & Wyllie-
Echeverria, 1996, Agostini et al., 1998). 

1.3 Objective 

The objective of this study was to determine if P. oceanica and Z. marina might be reliable 
candidates as bio-surveillance organisms with regard to heavy metal pollution. We choose 
to consider different environmental conditions and to monitor physiological changes 
through two different seasons. Our assumption was that heavy metal contamination would 
adversely impact adult P. oceanica and Z. marina plants, and that plant response to these 
impacts could be assessed by differences in phenolic and volatile compound content of 
tissue from impacted and non-impacted sites.  

We assessed differences in heavy metal content of plant tissues from sites with documented 
heavy metal pollution versus controls with no sources of heavy metal pollution. Then, we 
tested the hypothesis that the presence of identified contaminants could induce a bio-
indicator response in these seagrass species. To do this we measured changes in total 
phenolic content in the leaf and sheath tissue of P. oceanica, and total phenolic and volatile 
compound content in above-and below-ground tissue of Z. marina.  

2. Materials and methods 

2.1 Site location and sample collection 

In June 2000 and January 2001, 30 adult shoots of P. oceanica were collected by SCUBA at 
~10 m in the sub-tidal region at two sites located in the northwestern Mediterranean Sea. 
The Bay of Bonifacio, a control site, is a pristine area relatively free of industrial pollution 
located in the south of Corsica (Tonnara - France; 41.4000 N; 9.0830 E; Capiomont et al., 
2000). The Bay of Rosignano site south of Livorno (Italy; 43.4000 N; 10.4166 E) is a polluted 
site. At this site, a chlor-alkali plant has discharged industrial wastes rich in mercury since 
1920 (130 kg per year; Ferrara et al., 1989). Water temperature ranged from 18°C in June 2000 
to 14°C in January 2001 at all sites but salinity was relatively constant at 38.5 PSU within the 
study zone (i.e., 10 m depth contour; Villefranche sur Mer Observatory and Di Martino, 
personal communication).  

For P. oceanica, foliage leaf and sheath tissue was analyzed for mercury and phenolic 
content. Tissue was obtained by separating the foliage leaf and sheath tissue from the roots 
and rhizomes following the procedure of Giraud (1977); root and rhizome tissue was 
discarded. The chlorophyllous foliage leaves were then separated from non-chlorophyllous 
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sheaths that are located at the leaf base. Foliage leaves from three adult shoots were 
dissected according to Giraud (1977) and combined to form one sample. Sheaths from the 
same three shoots were combined to form each sheath sample. After epiphytes were 
removed from leaf and sheath samples using a glass slide, each sample was rinsed with 
ultra-pure water and frozen (-20°C) until analysis. To determine mercury and phenolic 
content, we extracted 0.5 g dry wt. of each tissue sample (n=10). 

During maximum low tide, Z. marina adult shoots were hand-collected from the lower 
intertidal region of two sites in Northern Puget Sound, Washington, USA in April and June 
2000. The site located near Anacortes, WA (48.4263 N; 122.5897 W) was documented as 
having heavy metal pollution (http://www.ecy.wa.gov/programs/wq/permits/ 
permit_pdfs/dakota/factsheet.pdf), and the other was a pristine location with no industrial 
activity on the southeast side of Shaw Island (48.33942 N; 122.55448 W) that served as the 
control site (Wyllie-Echeverria & Ackerman, 2003). Water temperature ranged between 9°C 
in April to12°C in June 2000 at all sites, and salinity was relatively constant at 30 PSU during 
this time period (Wyllie-Echeverria, unpublished data). 

Three samples were collected from each site, and each sample consisted of at least 0.5 g dry 
wt (Cuny et al., 1995) of eight to ten sterile (non-reproductive) shoots which were separated 
into above- and below-ground parts. Above-ground tissue consisted of the foliage leaf (i.e. 
basal leaf sheath and distal leaf blade; Kuo & den Hartog, 2006) excised from the rhizome at 
the node primordia (Tomlinson, 1974). The remaining rhizome and associated nodes and 
roots formed the below-ground sample. Epiphytes were scraped from the above-ground 
tissue and sediment was rinsed from the roots and rhizomes (Brackup & Capone, 1985). 
Each above- and below-ground sample was placed in labelled bags, kept moist and cool in a 
refrigerator, and shipped overnight to the Chemical Ecology Laboratory at Brigham Young 
University. Three replicate samples of above-ground tissue from each site, and three 
replicates of below-ground tissue from each site, were frozen at –80°C until extracted for 
heavy metals, phenolics or volatiles. Samples were stored at –80°C to preserve the volatile 
compounds in the tissues. 

2.2 Qualitative and quantitative analysis of plant tissues for heavy metal content 

Foliage leaves and sheaths of P. oceanica and above- and below-ground tissues of Z. marina 
were analyzed qualitatively and quantitatively for heavy metals. For P. oceanica, only 
mercury content, which is the predominant heavy metal pollutant at the Rosignano site 
(Lafabrie et al., 2007), was analyzed. Three individual shoots (three foliage leaves and three 
sheaths) that had been separately freeze dried were ground to a powder, and an aliquot of 
0.05 g dry wt was digested. Digestion was performed in a 100-ml Teflon® advanced 
composite vessel reactor with 5 ml HNO3 and 1 ml H2O2 (30%). Microwave digestion (Mars 
5, CEM Chemistry, Engineering and Microwave, Matthews, NC, USA) was carried out using 
a temperature ramp of 8 min up to 200°C followed by a heating plateau of 20 min at 200°C. 
After digestion, the samples were increased to 25 ml with ultra-pure water and then filtered. 
Total mercury was determined using a flameless atomic absorption spectrophotometer flow 
injection (Perkin-Elmer System 100; Norwalk, CT, USA). The procedure consisted of 
reduction with 1.1% tin chloride (SnCl2, 2H2O) in 3% HCl and 0.5% hydroxylammonium 
chloride (NH2OH, HCl). A standard addition method for total mercury was used to 
calibrate the protocol. The analytic procedure was verified using a moss as the certified 
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reference material (Lagarosiphon major, Certified Reference Material 60, Community Bureau 
of Reference, Commission of the European Community, Brussels, Belgium). Data are 
expressed as ng per g dry wt. 

For Z. marina, heavy metal content was analyzed using the EPA Method 3052 Procedure. All 

elements were wet-ashed to prevent loss of elements and reduce the potential of 

confounding data due to silica content. Above- and below-ground tissue (0.5 g dry wt) was 

placed in a 50 ml folin tube, and 5 ml concentrated nitric acid was added. Samples sat 

overnight, and then were placed on a block digester at 200oC for 5-10 minutes. Tubes were 

removed, cooled, and then digested with 1 ml hydrofluoric acid. Samples were placed back 

on the block digester for 45-60 minutes. Tubes were removed and brought to a 50 ml volume 

with distilled water. Stoppered tubes were shaken and then analyzed by inductively 

coupled plasma atomic emission spectrometry (Iris Intrepid II XSP, model 14463001; 

Thermo Electron Corporation, Franklin, MA) equipped with an ASX-520 autosampler. Data 

are expressed as ppm (Table 2).  

2.3 Extraction and determination of phenolic content in the tissues of P. oceanica, 
and phenolic and volatile content of above-ground tissues of Z. marina 

Total phenolic content for both species, and total volatile content for Z. marina, were 

determined to ascertain whether tissue collected from impacted (heavy metal pollution for 
both species) and control sites differed. A different method is used for the definition of the 

phenolic and volatile compounds, because the measurements were realized in different labs. 
For P. oceanica, extraction of total phenolic compounds was carried out on 0.5 g dry wt 

freeze-dried foliage leaf or sheath tissue. Extraction followed Cuny et al. (1995) and 
consisted of infusing each sample at 40°C in 50 % (v/v) aqueous ethanol in darkness for 3 h. 

The extract was acidified with a few drops of 2N HCl, the ethanol was evaporated under 
vacuum, and the aqueous residue extracted with ethanol/acetic acid. The organic phase was 

dried using anhydrous Na2SO4. Concentration of total phenolic compounds was measured 
by colorimetry (Swain & Hillis, 1959) using Folin-Denis reagent (Folin and Dennis, 1915). 

Phloroglucinol (Frantzis, 1992) was used for elaboration of standard curves. For Z. marina, 
phenolics were extracted using MeOH/CH2CH2 (50/50) from 200 mg dry wt of freeze dried 

above-ground tissue, filtered using VWR grade 415 filter paper, and blown dry using 
nitrogen gas to prevent oxidation. After resdisolving in MeOH/CH2CH2 (50/50), the extract 

was again filtered, placed in an auto-sampler vial (Chromatography Research Supplies, 
Addison, IL) and injected into a high pressure liquid chromatograph (HPLC) (HP Model 

1100; Agilent 1100 Series, Model G1313A; Santa Clara, CA) equipped with a diode-array 
detector (Model G1316A) and a C18 reverse phase 5μm column (Phenomenex, Torrance, 

CA). The HPLC solvents were A = water/acetic acid (98:2); B = acetonitrile/acetic acid 

(98:2). Temperature was 50oC, flow rate 1ml/min, and wavelength of the detector set at 280 
nm (optimized for Z. marina phenolic compounds). Phenolic content is expressed as total 

peak height /200 mg dry wt. To obtain volatile compound content in Z. marina samples, 3 g 
fresh wt of above-ground tissue was ground to a fine powder in liquid nitrogen and hexane. 

The extract was then filtered, and the filtrate injected into a capillary gas chromatograph 
(HP Model 6890) equipped with a head-space sampler (Perkin-Elmer HS 40 XL; Waltham, 

MA) and a HP-1 column. Oven temperature was 80oC, needle temperature 85oC, transfer 
temperature 120oC, thermostat time 10 min, pressurizing time 0.6 min, injection time 0.2 
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min, and withdrawal time 0.5 min. The ramp GC program was 40-210oC at intervals of 3oC 
ramp/min. Total volatile compound content is expressed as total peak height per 3 g fresh 

wt tissue. 

2.4 Statistical analysis 

Data from P. oceanica samples were analyzed using a three-way ANOVA to allow 
comparisons between the phenolic compounds and mercury levels according to tissue, site 
and sampling period. Since the interaction among these factors was significant, one-way 
analyses followed by a Tukey test (for analyses over the annual cycle) or Student-t test (for 
analyses of tissue and site factors at given months) were performed (Zar, 1999). Normality 
and homoscedasticity were verified by Shapiro Wilks and Bartlett tests, respectively (Zar, 
1999). The relationships between phenolic compounds and mercury level were assessed 
using correlation and regression analyses in Statgraphics plus (ver 3.1) for Windows. Data 
from Z. marina are expressed as ppm for heavy metals, total peak area per 200 mg freeze 
dried tissue for phenolics, and total peak area per 3 g fresh wt for volatiles. Since all samples 
were randomly collected along a transect, each sample is treated as an independent 
experimental unit. Comparison of heavy metal content between impacted and control sites 
in Z. marina above- and below-ground tissues, and for phenolic and volatile content in 
above-ground tissues, was conducted using a one-way ANOVA, SAS GLM program (SAS, 
1996).  

3. Results 

3.1 Site and tissue differences in heavy metal contamination  

Foliage leaf and sheath tissue of P. oceanica from the industrially impacted Rosignano site 
showed large and significant (p<0.05) differences in mercury content when compared to the 
control Tonnara site (Table 1).  

Tissue Type Mercury impacted site 
(Rosignano) 

Control site 
(Tonnara) 

Foliage Leaves                            June 2000
                                                January 2001 

233 ± 23  

317 ± 41 

77 ± 11  
79 ± 15 

Sheaths                                        June 2000 368 ± 26  64 ± 8  
                                                January 2001 215 ± 16  80 ± 19  

Table 1. Mercury levels (ng/g dw) in foliage leaf and sheath tissues of P. oceanica collected at 
different sites and different sampling periods. 

Samples of above-ground tissue collected in April 2000 from Z. marina plants growing in the 
impacted site were higher in iron, aluminium, and copper when compared to tissue from 
the control site (Table 2). However, above-ground tissue from the control site was 
significantly higher in zinc, nickel, molybdenum, and mercury when compared to the 
impacted site (Table 2). For the July 2000 samples, the only significant differences were that 
nickel and copper were in highest concentration in plants from the impacted site when 
compared to plants from control site (Table 2). For below-ground tissue of Z. marina in 
April, samples from the industrially impacted site were significantly higher (p<0.05) for 
iron, aluminium, nickel, manganese, copper, cadmium, chromium, and lead when 
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compared to the control site (Table 2). None of the heavy metals was higher in concentration 
in the control site for samples taken in April 2000. For the July 2000 samples, barium, iron, 
aluminium, zinc, manganese, copper, cadmium, arsenic, and chromium were higher in the 
plants from the impacted site when compared to the control site, and cobalt and strontium 
were higher in plants from the control site (Table 2). 

Heavy 
Metals 

 Site (ppm)* 
 

   Above-ground Tissue 
 

 Below-ground Tissue 

April  July  April  July 

Industrially 
impacted 
site 

Control 
site 

Industrially 
impacted 
site 

Control 
site 

Industrially 
impacted 
site 

Control 
site 

Industrially 
impacted 
site 

Control 
site 

Barium 323(41)a 364(32)a 279(107)a 312(55)a 466(136)a 420(100)a 570(148)a 315(84)b 

Iron 320(127)a 180(58)b 204(87)a 142(94)a 5801(2846)a 1068(540)b 5591(1503)a 576(263)b 

Aluminum 183(75)a 119(43)b 88(42)a 100(81)a 1626(1341)a 665(435)b 1737(494)a 503(336)b 

Zinc 100(11)a 119(13)b 102(22)a 110(15)a 134(45)a 133(44)a 169(46)a 96(16)b 

Nickel 55(21)a 104(25)b 45(16)a 23(15)b 127(78)a 34(13)b 63(20)a 64(31)a 

Manganese 37(6)a 42(6)a 48(16)a 51(7)a 38(33)a 11(6)b 26(7)a 10(4)b 

Copper 14(2)a 12(2)b 16(4)a 10(1)b 40(21)a 19(29)b 43(12)a 10(3)b 

Molybdenum 5(2)a 6(1)b 7(2)a 8(1)a 0(0) ----** 0(0)a 0(1)a 

Cadmium 2(1)a 1(1)a 2(1)a 2(1)a 13(8)a 4(2)b 11(3)a 3(1)b 

Arsenic 4(2)a 3(2)a 3(2)a 3(2)a 8(7)a 8(1)a 10(6)a 1(2)b 

Cobalt 2(1)a 4(1)a 2(1)a 2(1)a 2(1)a 1(1)a 1(1)a 2(1)b 

Mercury 1(1)a 2(1)b 0(1)a 1(1)a 3(3)a 2(1)a 4(1)a 4(2)a 

Strontium 1(2)a 2(3)a 4(3)a 4(2)a 3(4)a 6(4)a 0(0)a 1(2)b 

Chromium 1(1)a 2(1)a 1(0)a 1(0)a 7(4)a 2(1)b 6(2)a 1(1)b 

Lead 0(0)a 1(2)a 0(0)a 0(0)a 13(23)a 6(3)b 0(1)a 0(1)a 

Table 2. Differences in accumulation of heavy metals in above- and below- ground tissues of 

Z. marina between impacted and control sites [April, July 2000; x, -]. *Means followed by 

different letters are significantly different at p < 0.05; Means followed by the same letter (i.e. 

“a”) are not significantly different at p < 0.05. **Insufficient sample for analysis. 

3.2 Production of phenolic and volatile compound content in plant tissues between 
impacted and control sites  

Foliage leaves from Tonnara (20.5 mg.g -1) were significantly higher (Tukey test, p< 0.05) in 

phenolic content in January 2001 compared to plants from the mercury impacted Rosignano 

site (13.2 mg.g-1), but were not significantly different in the June 2000 samples (Fig. 1). For 

sheaths, the levels of total phenolic compounds from Tonnara plants in June and January 

(9.2 and 15.2 mg.g-1, respectively) were significantly higher than those measured in plants at 
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the Rosignano site (5.0 and 6.4 mg.g-1, respectively) (Tukey test, p<0.05). Phenolic content 

was higher across sites and sampling times in P. oceanica foliage leaves compared to sheaths 

in all comparisons (Mann and Whitney test, p> 0.05).  

 

 

Fig. 1. Total phenolic concentration (mg.g-1 dw) in foliage leaf and sheath tissues of P. 

oceanica in Tonnara (control) and Rosignano (mercury polluted) in June 2000 (A) and 

January 2001 (B). 

For Z. marina total phenolic content in above-ground tissues collected from plants at the 

control site always was higher when compared to above-ground tissues collected from the 

impacted site for both April and July 2000 (Fig. 2). However, the only significant difference 

was in July where the control site produced a higher amount of total phenolic (65.8 vs 50.8 

peak area / 200 mg dry wt, respectively; p<0.05). Total volatile compound production also 

was higher at both sampling periods, but the only significant difference occurred in the 

April 2000 sampling where above-ground tissues from the control site showed an average 

peak area of 551 per 200 mg dry wt tissue compared to 352 at the impacted site (p<0.05). 

A

B

p<0.05 
 
b             ab 

p<0.05 
 
  b              a 

p<0.05 
b              a 

p<0.05 
            b           a 
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Fig. 2. Total phenolic content in above-ground tissue from Z. marina plants growing in 
heavy metal impacted and control sites (April and July, 2000). 

4. Discussion 

4.1 Tissue and site differences in heavy metal content  

Results presented indicate that plant tissues of P. oceanica and Z. marina significantly 
accumulated high levels of heavy metals when growing on heavy metal-impacted sites 
(Tables 1 & 2). At the Rosignano site, when compared to the control Tonnara site, foliage 
leaves and sheaths contained two to over six times the amount of mercury. These patterns of 
accumulation are consistent with findings by other authors who have studied the same sites 
(Capiomont et al., 2000; Ferrat, 2001; Ferrat et al., 2003b; Maserti & Ferrara, 1991).  

Z. marina plants from the heavy-metal impacted site accumulated significantly higher 
concentrations of iron, aluminum, nickel, and copper in their above-ground tissues when 
compared to the control site (Table 2). In addition, below-ground tissue of Z. marina plants 
from the industrially-impacted site accumulated over three, and up to five, times the levels 
of heavy metals compared to plants from the control site. A striking difference between 
above- and below-ground tissue, is that below-ground tissue from the impacted site 
accumulated 12 heavy metals (barium, iron, aluminum, zinc, nickel, manganese, copper, 
cadmium, arsenic, cobalt, chromium, lead; Table 2) while above-ground tissue only 
accumulated four heavy metals (iron, aluminum, nickel, copper) (Table 2). Another major 
difference is that the quantity of heavy metals accumulated in the below-ground tissue was 
higher for most of the heavy metals compared to that in the above-ground tissue. 

Variation in metallic accumulation between above- and below-ground seagrass tissue has 
been discussed by various authors (see synthesis in Pergent Martini & Pergent, 2000), and 
could be a function of differences in binding sites or seasonal translocation between above- 
and below-ground structures (Libes & Boudouresque, 1987; Ward, 1987). The level of 

    Control 

     Impacted 
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environmental contamination within a particular site also may be an important factor. For 
example Capiomont et al. (2000) found that mercury content was higher in the interstitial 
water than in the water column at our Rosignano sampling location. 

Heavy metals are known to have adverse affects on the physiology of P. oceanica and Z. 
marina as well as other seagrasses (Ward, 1987). Lyngby & Brix (1984) have shown that the 
order of heavy metal inhibition of growth of Z. marina from greatest to least is mercury, 
copper, cadmium, zinc, chromium, and lead. Interestingly mercury was not significantly 
accumulated by Z. marina at our impacted site but the other five generally followed the 
pattern described by Lynby & Brix (1984) (Table 2).  

4.2 Phenolic and volatile compound production in plant tissues between impacted 
and control sites  

Our results suggest that total phenolic compound levels within seagrass tissue could be an 
indicator of site quality. Differences in production of phenolics in tissues from both species 
were noted between impacted and control sites. For foliage leaves and sheaths of P. oceanica 
collected in January, and above-ground tissue of Z. marina collected in July, total phenolic 
content was significantly lower in plants collected from industrial sites (Fig. 1 & 2). This is 
supported by Vergeer et al. (1995) who concluded that a decrease of total phenolic compounds 
in the tissue of Z. marina indicated plants may be growing in unsuitable environmental 
conditions. Noteworthy is that correlation analysis indicated a significant (p< 0.05) inverse 
relationship between heavy metal content and the health of plants as measured by phenolic 
content for P. oceanica (r2 = 69.8 %, linear model of regression: mercury = 0.22 – 0.0055 * phenol 
for sheaths).  

Additionally, gas chromatography analysis of volatile compounds from Z. marina indicated 
that above-ground tissue from plants growing in the impacted site was significantly lower 
in volatiles from the April collection, when growth begins in Northern Puget Sound 
(Phillips, 1984) compared to tissue from the control site (Fig. 3). However, no significant 
differences occurred in volatile compound production between impacted and control sites in 
the July collection. 

4.3 Phenolic compound production with regard to tissue and time collection  

For P. oceanica, the concentration of phenolic compounds differed between foliage leaves 
and sheaths being higher in leaf tissue regardless of site. Similarly, Agostini et al. (1998) 
found higher concentrations (6 mg.g-1) in the apical parts and youngest leaves and lower 
concentrations in sheaths (0.1 mg.g-1). Also, in our study significant variation was observed 
between seasons; for example, phenolic levels were found to be higher in the January 2001 
samples compared to the June 2000 samples. 

Differences occur in the natural products analyzed depending on month of collection for 
both P. oceanica and Z. marina (Fig. 1-3). For example, P. oceanica foliage leaves and sheaths in 
January 2001 were higher in phenolic content than those collected in June 2000 (Fig. 1). 
While phenolic content in above-ground Z. marina tissue was similar in concentration 
between April and July (Fig. 2), but volatile compounds in above-ground tissue collected in 
April were significantly higher than those collected in July (Fig. 3). April and July were 
selected as sampling times for Z. marina because they represent early and mature tissue 
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growth in the Northern Puget Sound (Phillips, 1984). However, in a preliminary study in 
which Z. marina shoots were collected in February 2000, plants from the heavy metal-
impacted site produced only 19% of the total phenolic content when compared to plants 
from the control site (Zou et al., unpublished data). In order to establish when phenolics and 
volatiles may best indicate plant health, experimental designs need to involve sampling 
plants every two months throughout the year.  

0

100

200

300

400

500

600

700

April July

T
o

ta
l 

V
o

la
ti

le
s
 (

p
e
a
k
 a

re
a
/2

0
0
 m

g
 d

w
) Picnic Cove

Dakota Creek
p=0.00

 

Fig. 3. Total volatile content of above-ground tissue from Z. marina plants growing in heavy 
metal impacted and control sites (April and July, 2000).  

Finally, based on the response of different seagrass genotypes to disturbance (e.g. Ehlers et 
al., 2008; Hughes & Stachowicz, 2009; Wyllie-Echeverria et al., 2010), we suspect that 
variation in the type and concentration of heavy metal uptake may exist within different 
genotypes. However, this aspect of heavy metal accumulation in needs investigation in 
controlled conditions with seagrass species from different locations.  

5. Conclusions 

Significant differences were found in the accumulation of mercury in leaf and sheath tissues 
of P. oceanica when plants were growing on impacted sites as compared to sites not 
impacted heavily by mercury (Table 1). Z. marina plants growing in a site impacted by 
heavy metals associated with industrial pollution accumulated significantly higher amounts 
of iron, aluminium, nickel, and copper in above-ground tissues as compared to a non-
impacted site, and higher amounts of barium, iron, aluminium, zinc, nickel, manganese, 
copper, cadmium, arsenic, chromium, and lead in below-ground tissues at the impacted site 
(Table 2). For P. oceanica, total phenolics were significantly higher in leaves at the control site 
when compared to the mercury impacted site for the January sampling period (Fig. 1). For 
sheath tissue total phenolics from the control site were significantly higher when compared 
to the mercury impacted site for both sampling periods (Fig. 1). For Z. marina, total phenolic 
content was higher in both sampling periods at the non-impacted site compared to the 

   Control 

    Impacted 
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control site, but only significantly so for the July 2000 sampling period (Fig. 2). Total volatile 
content also was higher at the control site for both sampling periods, but only significantly 
higher for the April sampling period (Fig. 3). These results support the hypotheses that P. 
oceanica and Z. marina accumulate significant amounts of heavy metals from impacted sites, 
and that these accumulations are associated with reduced total phenolic and volatile 
compound content. Based on these supportive data, we conclude that P. oceanica and Z. 
marina are potential candidates as bio-surveillance organisms especially with regard to 
heavy metal pollution of coastal and estuarine ecosystems. 

Since we observed variation in the production of phenolics and volatiles with regard to 
sampling time and season, a priority is the identification of individual phenolic and volatile 
compounds in the tissue of these two species. In our labs we have identified in one or both 
species using gas chromatography/mass spectroscopy and high pressure liquid 
chromatography several cinnamic acid and benzoic acid derivatives; these results are 
comparable to those found by Quackenbush et al. (1986). Additionally, these analyses 
indicate not only a quantitative decrease in total phenolic and volatile compounds, but also 
qualitative differences between plants growing on impacted and non-impacted sites (Ferrat 
et al., unpublished data for P. oceanica; Zou et al., unpublished data for Z. marina). Finally, 
since various environmental perturbations may adversely affect seagrass health (impact of 
human activity reviewed in Short & Wyllie-Echeverria, 1996), and thereby phenolic and 
volatile compound production, collaboration among scientists working at a diversity of sites 
would greatly facilitate progress toward this bio-surveillance effort.  
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