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and Neural Networks 

Sheng Hung Chung1 and Ean Teng Khor2 
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Malaysia 

1. Introduction  

Magnetic Resonance Imaging (MRI) images have been widely used for liver disease 
diagnosis. Designing and developing computer-assisted image processing techniques to 
help doctors improve their diagnosis has received considerable interest over the past years. 
In this paper, a computer-aided diagnostic (CAD) system for the characterization of hepatic 
lesions, specifically cyst and tumor as well as healthy liver, from MRI images using texture 
features and implementation of grid computing (Globus approach) and neural networks 
(NN) is presented. Texture analysis is used to determine the changes in functional 
characteristics of organs at the onset of a liver disease, Region of interest (ROI) extracted 
from MRI images are used as the input to characterize different tissue, namely liver cyst and 
healthy liver using first-order statistics. The results for first-order statistics are given and 
their potential applicability in grid computing is discussed. The measurements extracted 
from First-order statistic include entropy and correlation achieved obvious classification 
range in detecting different tissues in this work.  

In this chapter, texture analysis of liver MRI images based on the Spatial Grey Level Co-

occurrence Matrix (SGLCM) [3] is proposed to discriminate normal, malignant hepatic tissue 
(i.e. liver tumor) and cysts in MRI images of the abdomen. SGLCM, also known as Grey Tone 

Spatial Dependency Matrix [3], is a tabulation of how often different combinations of pixel 
brightness values (i.e. grey-level) occur in an image. Regions of interest (ROI) from cysts, 

tumor and healthy liver were used as input for the SGLCM calculation. Second order statistical 
texture features estimated from the SGLCM are then applied to a Feed-forward Neural 

Network (FNN) and Globus toolkit for the characterization of suspected liver tissue from MRI 
images for hepatic lesions classification. This project proposed an automated distributed 

processing framework for high-throughput, large-scale applications targeted for 
characterization of liver texture statistical measurements mainly healthy liver, fatty liver, liver 

cyst for MRI (Magnetic Resonance Imaging) images.  

Table 1 lists eight second-order statistical calculations based on SGLCM, namely, contrast, 
entropy, correlation, homogeneity, cluster tendency, inverse difference moment, energy, 
and angular second moment, which have shown useful results in hepatic lesions 
classification for liver tumor using Computed Tomography (CT), Ultrasonography (US) and  
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Properties Valanis [4] CHEN [5] MIR [6] MOUGIAKAKOU [7] 

Contrast     
Entropy     

Correlation     

Homogeneity     
Cluster Tendency     

Inverse Difference Moment     
Energy     

Angular Second Moment     

Table 1. SGLCM properties for second-order statistical measurements. The features 
successfully examined in prior work are summarized in Table 1 below. 

MRI. The measurements identified in various approaches are indicated by a tick. The 
SGLCM approach undertaken by Valanis et al. [4] was to classify three hepatic tissues: 
normal, hemangeoma and hepatocellular carcinoma on CT images with a resolution of 512 X 
512 pixels and 8 bits per pixel (bpp) (256 grey levels). Correlation, inverse difference 
moment and cluster tendency were shown in the paper to achieve classification rates of up 
to 90.63% after being applied with feature selection based on a Genetic Algorithm (GA) 
approach. Of particular interest is an approach by Chen [5], using a modified probabilistic 
neural network (MPNN) to classify liver tumor, hepatoma and hemangeoma on CT images 
with 12 bpp representing 4096 grey levels and resolution of 320 X 320 pixels. The entropy 
and correlation showed better performance than other features extracted from co-occurrence 
matrices at directions θ = 0°, 45°, 90° and 135°, resulting in a classification rate of 83% where 
the misclassification resulted from the tumor matrices block size. The classification rate 
could be increased by reducing the block size. Another approach was by Mir [6] to classify 
normal and malignant liver on 256 X 256 pixels CT images. Entropy and local homogeneity 
were found to be consistent within a class and most appropriate for discrimination of the 
malignant and normal liver. Mougiakakou [7] implemented an automated CAD system for 
characterization of liver CT images into cysts, hepatoma and hemangeoma using a multiple 
NN classification scheme. Contrast, entropy, correlation and homogeneity were the 
identified features based on feature selection using the Squared Mahalanobis Distance as the 
fitness function [8]. 

1.1 Image acquisition 

MRI produces images of the insides of the body. Unlike an X-ray, MRI does not use 
radiation. Instead, a magnetic field is used to make the body’s cells vibrate [1]. The 
vibrations give off electrical signals which are interpreted and turned into very detailed 
images of “slices” of the body. MRI may be used to make images of every part of the body, 
including the bones, joints, blood vessels, nerves, muscles and organs. Different types of 
tissue show up in different grayscale intensities on a computer-generated image. In this 
study, series of MRI images were acquired from the Diagnostic Imaging Department of 
Selayang Hospital, Malaysia, using a Siemens Magnetom Avanto, 1.5T MRI Scanner. The 
sample liver MRI images (256 X 256 pixels, 12 bps) were acquired consisting of sets of cyst, 
liver tumor and healthy liver, for training and testing.  
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2. Grid computing with globus 

Grid Computing describes computation in which jobs are run on a distributed computational 

unit spanning two or more administrative domains. It has sparked tremendous excitement 

among scientists worldwide and has renewed the interest of the scientific community toward 

distributed computing, an area which was almost forgotten during the 90’s. 

The Globus toolkit [4] was created in the late 1990s as part of a joint research project 
between Argonne National Laboratory and the Information Sciences Institute at the 
University of Southern California. Its aim was to provide a solution to the computational 
needs of large virtual organizations [4] that span multiple institutional and administrative 
domains. Globus is a middleware toolkit that provides fundamental distributed computing 
services such as authentication, job starting and resource discovery. 

Globus provides a collection of services [5] including: GSI, Grid Security Infrastructure 
which provides authentication based on a Certificate Authority trust model; GRAM, Grid 
Resource Allocation Manager which handles job starting or submission; GridFTP, providing 
extensions to the FTP standard to provide GSI authentication and high performance 
transfer; MDS, Monitoring and Discovery Service enabling remote resource discovery. 

By itself Globus does not provide all of the tools and services required to implement a full 

featured distributed computing environment. Additional tools are available to fill some of 

the gaps. The National Center for Supercomputing Applications (NCSA) provides a patch to 

add GSI authentication to OpenSSH. This allows Globus environments to have terminal 

based single-signon. Globus does not provide any scheduling functionality, but rather relies 

on the client operating system scheduler or batch schedulers such as OpenPBS [6] to handle 

local scheduling activities. 

Global scheduling between Globus processes can be provided by meta-schedulers, such as 
Condor-G [6]. Condor-G submits jobs to the GRAM service running on Globus nodes and 
GRAM handles the task of submitting the job to the local scheduling system. 

3. Spatial grey level co-occurrence matrices 

The SGLCM aspect of texture is concerned with the spatial distribution and spatial 

dependence among the grey levels in a local area. This concept was first used by Julesz [9] in 

texture discrimination experiments. Being one of the most successful methods for texture 

discrimination at present, we have investigated its effectiveness for use with MRI images in 

the present work. This method is based on the estimation of the second order joint 

conditional probability density function [10] 

 f ( i , j|d, )  (1) 

where θ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°.Each f(i,j|d,θ) is the probability of 

going from grey level i to grey level j, given that the inter-sample spacing is d and the 

direction is given by the angle θ. The estimated value for these probability density functions 

can thus be written in matrix form [11] 

 (d, ) [ f (i , j ,|d, )]    .  (2) 
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Fig. 1. Component of Gridway in Globus 

For computing these probability distribution functions, scanning of the image in four 
directions has been carried out in this work, with θ = 0°, 45°, 90° and 135° sufficient, since 
the probability density matrix for the rest of the directions can be computed from these four 
basic directions, as denoted in the following [11] 

0 d,180t(d, ) ( )    

45 d,225t(d, ) ( )    

90 d,270t(d, ) ( )    

 135 d,315t(d, ) ( )      (3) 

where d,t( )  denotes the transpose of the matrix for the inter-sample spacing d, and 

direction, θ. 

3.1 Second-order statistical measurements 

Findings by other researchers on SGLCM second-order feature extraction for use in 
statistical classification using neural networks (NN) has been shown to be efficient and very 
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effective [4-7]. There are eleven general second-order statistic measurements, as illustrated 
in [12], which include energy, entropy, contrast, correlation, homogeneity, inverse different 
moment, inertia, skewness, kurtosis, angular second moment and cluster tendency. The 
second-order statistical measurements commonly used in most texture classification cases 
for hepatic tissues using SGLCM are energy, entropy, homogeneity, inertia, contrast and 
correlation. 

Entropy is a notoriously difficult term to understand shown as follows[10].  

  
1 1

0 0

NG NG

i j

H(S (d)) S (i , j ,d)logS (i , j ,d)
 

  
 

     (4) 

where S (i , j ,d)  is the (i, j)th entry in a co-occurrence matrix, NG is the number of grey 

levels in the image from which the SGLCM matrices are extracted. 

The concept of entropy comes from thermodynamics, referring to the quantity of energy 

that is permanently lost to heat ("chaos") every time a reaction or a physical transformation 

occurs. Entropy cannot be recovered to do useful work. Because of this, the term is used in 

non-technical speech to mean irremediable chaos or disorder. Also, as with Angular Second 

Moment [11], the equation used to calculate physical entropy is very similar to the one used 

for the texture measure. In image processing, entropy measures the disorder or randomness 

in an image. The smaller the value of entropy, H(S (d)) , the less common is the occurrence 

of the pixel combinations [12]. Entropy measures the randomness of the elements of the 

matrix when all elements of the matrix are maximally random, entropy has its highest value. 

So, a homogeneous image has lower entropy than an inhomogeneous image.  

Energy, the opposite of entropy, is, in this context denoted by.  

 
2

1 1

0 0

NG NG

i j

E(S (d)) [S (i , j )d]
 

 
 

     (5) 

The energy of a texture describes the uniformity of the texture. In a homogeneous image 
there are very few dominant grey-tone transitions, hence the co-occurrence matrix of this 
image will have fewer entries of large magnitude. So, the energy of an image is high when 
the image is homogeneous. In that sense, it represents orderliness. Thus, energy is useful for 
measuring the texture orderness in the image. 

Homogeneity is the dissimilarity and contrast result in larger numbers for more contrasty 
windows, 

  
1 1

2
0 0

1

1

NG NG

i j

L(S (d)) S (i , j ,d)
(i j )

 

 
 


     (6) 

If weights decrease away from the diagonal, the result will be larger for images with little 
contrast. Homogeneity weights values by the inverse of the contrast weight, with weights 
decreasing exponentially away from the diagonal. When there is a large amount of contrast, 
weights are created in SGLCM so that the calculation results in a larger figure. Values on the 
SGLCM diagonal show contrast as follows, 
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1 1

2

0 0

NG NG

i j

Con(S (d)) (i j ) S (i , j ,d, )
 

 
 

      (7) 

For non-square matrices, the correlation function computes the linear Pearson correlation 

coefficient of two vectors or the correlation matrix of an i x j array,  

 

1 1

0 0

NG NG

i j
i j

i j

(i )( j )S (i , j ,d, )

C(S (d))

 


 



   


 

 
  (8) 

where   refers to the mean intensity value of the image in the x and y directions, 

respectively, 

 
1 1

0 0

NG NG

i
i j

i S (i , j )
 


 

      (9) 

 
1 1

0 0

NG NG

j
i j

j S (i , j )
 


 

      (10) 

When correlation is high, the image will be more complex than when correlation is low. If 

vectors of unequal lengths are specified, the longer vector is truncated to the length of the 

shorter vector and a single correlation coefficient is returned. If an i x j array is specified, the 

result will be an i x j array of linear Pearson correlation coefficients, with the element i,j 

corresponding to correlation of the ith rows and jth column of the input array. 

The inverse difference moment is defined as ,  

 
1 1

2
0 0

1

1

NG NG

i j

IDM(S (d)) S (i , j ,d, )
( i j )

 

 
 

 
     (11) 

It has a relatively high value when the high values of the matrix are near the main diagonal 

because the squared difference (i, j)² is then smaller, which increases the value of 
2

1

1 ( i j ) 
.  

The feature inertia defined as 

 
1 1

2

0 0

NG NG

i j

I(S (d)) (i j ) S (i , j ,d, )
 

 
 

      (12) 

which gives the opposite effect as the inverse difference moment does; when the high values 

of the matrix are further away from the main diagonal, the value of inertia becomes higher. 

So inertia and the inverse difference moment are measures for the distribution of grey 

values in the image.  

The skewness feature, also known as cluster shade and cluster prominence, is the measure 

of the skewness of the matrix [10]  
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1 1

3 3

0 0

NG NG

i j
i j

S(S (d)) (i ) ( j ) S (i , j ,d)
 

 
 

        (13) 

When cluster shade and cluster prominence are high, the image is asymmetric. 

4. Implementation of SGLCM, globus for hepatic lesions detection using 
region of interest 

In constructing the sparse coding for SGLCM, the reduction of the number of intensity levels 

by quantizing the image to fewer levels of intensity [13] helps increase the speed of 

computation, with some loss of textural information. An interactive graphical user interface 

(GUI) region drawing tool was developed for image block size flexibility. Inter-sample 

distance of d = 1, image block size of 12 x 12 pixels and direction θ= 0°, 45°, 90° and 135°, 

were used in the experiment. Fig. 2 shows an ROI drawn on healthy liver texture for NN 

training. Fig. 3 and Fig. 4 show the ROI image block of 12 x 12 pixels drawn on suspected 

texture areas of cyst and liver tumor, respectively. 

 

Fig. 2. 12 x 12 ROI block drawn on healthy liver in a MR image of the abdomen. 

 

Fig. 3. 12 x 12 ROI block drawn on suspected liver tumor in a MR image of the abdomen. 
Liver tumor has irregular shape and has multiple growths tissue. 

Co-occurrence matrices for the θ = 0° and θ = 90° are calculated as illustrated in Fig. 5 and 

Fig. 6, respectively. A test image of 4 x 4 pixels was used as the input to illustrate the sparse 

matrix construction. As observed in Fig. 4, each pixel within the test image window becomes 
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the reference pixel in the position of the matrix, starting from the upper left corner and 

proceeding to the lower right. The pixels along the right edge of the image have no right 

hand neighbour, so they are not used in this count.  

 

Fig. 4. 12 x 12 ROI block drawn on cyst in a MR image of the abdomen. cyst is a recently 
recognized genetic disorder characterized by the appearance of numerous cysts spread 
throughout the liver. A cyst may be identified as an abnormal fluid-filled sac-like structure. 

 

Fig. 5. Constructing SGLCM spatial matrix based on θ =0°, d=1, using 4 x 4 ROI block. Each 
pixel within the test image becomes the reference pixel of the position in the matrix of the 
direction of 0°. A reference pixel of 3 and its horizontal neighbour of 2 would contribute one 
count to the matrix element (3,2) and one count to the matrix element (2,3). 

The spatial matrix, 
1 0,

P   is constructed by filling in the probability of the combinations of 

pixels coordinate occurring in the window test image at the direction, denoted as angle, θ. 
The top cell of 

1 0,
P   will be filled with the number of times the combination of (0,0) occurs 

(i.e. amount of times within the image area a pixel with grey level 0 neighboring pixels) falls 

to the left and right side of another pixel with grey level 0 as the reference pixel. The number 

of combination of (0,0) that occurs are 4 at the angle direction of 0° with the distance, d=1. As 

such, the sparse matrix constructed corresponds to the size of the test image. 
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Similar calculations using SGLCM are evaluated with θ=45°, 135°, 180°, 225°, 270°, and 315° 
as the direction of the reference pixel. If the test image is smaller (e.g 3 x 3 image block), the 
sum of all the entries in the SGLCM spatial matrix generated would be smaller. 

 

Fig. 6. Constructing SGLCM spatial matrix based on θ =90°, d=1, using 4 x 4 ROI block. A 
reference pixel of 0 and its neighbour of 0 at the direction of 90° will contribute one count to 
the matrix element (0,0). Similar to Fig. 4, a reference pixel of 3 and its vertical neighbour of 
2 would contribute one count to the matrix element (3,2) and one count to the matrix 
element (2,3). 

It is, in theory, possible to choose three or more pixels in a given direction [15]. However, 

this becomes extremely unwieldy for calculations and is not an operational procedure. 

Calculation involving three pixels would be third order, four pixels would be forth order 

and so forth. 

4.1 Implementation of SGLCM for hepatic lesions using automated segmentation of 
the image block 

An automated segmentation scheme using a flexible image block size for automated liver 

tissue characterization is shown in Fig. 7.  

Square image blocks of widths of 5, 8 and 10 pixels were used within the liver boundary. The 

purpose of automated segmentation with these various block sizes was for preliminary 

diagnosis of the entire liver, without requiring intervention by the user in identifying an ROI. 

4.2 Implementation and anlaysis 

By using SGLCM, approximately two dozen co-occurrence features can be obtained [16]. 

Consideration of the number of distance angle relations also will lead to a potentially large 

number of dependent features. In this study, we restrict the representation to four features, 

which we hypothesize from Table 1 would provide useful information for texture 

characterization. These are entropy, correlation, contrast and homogeneity. For soft textures, 

the second order measurement distributions change very slightly with distance, while for 

coarse textures, the change in the distribution is rapid [16]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Automated segmentation of image block in a cyst liver boundary using (a) 5 x 5 (b) 8 
x 8 (c) 10 x 10 image block (d) shows the liver region in MRI abdomen image. 

Table 2 shows the statistical results achieved for entropy calculated based on spatial co-

occurrence matrices generated using SGLCM on cysts, tumor and healthy liver of the 

training set (T1, T2, …, Tn). Entropy is consistent within a specific range from 5.174-7.911 for 

cyst classification and 2.487- 4.291 for tumor classification. In healthy liver, entropy ranges 

from 0.054-1.954. As the entropy ranges are distinct for each of the 3 categories tested, 

entropy could be a suitable feature for successful liver lesions classification. 

Table 3 provides the results for the correlation calculated using SGLCM. As observed, 

correlation is consistent within a specific range from 5.962-6.997 for cyst and 2.300-4.932 for 

tumor and 0.071-1.500 for healthy liver. Being different for the 3 categories, correlation may 

also be deemed a suitable classification feature. 

The statistical results for two more features, homogeneity and contrast, calculated based on 

SGLCM on healthy liver ROI were inconsistent as shown in Table 4 and Table 5. As all the 

ranges for the 3 categories overlap, these features cannot be used to classify the liver MRI 

images. 

4.3 Classification for hepatic lesions using neural networks and globus 

The diagnostic value of MRI liver images has become increasingly important in liver disease 

detection. However, the interpretation effectiveness still relies heavily on experience and 

skill of the doctors. From the analysis of the SGLCM results obtained, only entropy and 

correlation are selected for classification for liver tumor and cyst. 
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ROI Direction, θ Entropy 
C

y
st

 

ROI 0° 45° 90° 135° Min Max 

T1 5.802 5.724 6.425 6.484 5.802 6.484 

T2 5.487 5.524 5.925 6.183 5.487 6.183 

T3 5.477 6.554 6.072 7.854 5.477 7.854 

T4 5.339 6.774 6.241 7.692 5.339 7.692 

T5 5.174 6.694 6.131 7.911 5.174 7.911 

T6 5.477 5.884 6.082 7.054 5.477 7.054 

T7 5.884 6.145 6.281 7.692 5.884 7.692 

T
u

m
o

r 

T8 2.802 2.724 2.925 4.284 2.802 4.284 

T9 2.487 2.719 2.919 4.183 2.487 4.183 

T10 2.677 2.794 2.999 4.254 2.677 3.254 

T11 2.539 2.724 2.802 4.192 2.539 4.192 

T12 2.494 2.894 2.994 4.291 2.494 4.291 

T13 3.327 3.484 3.792 4.054 3.327 4.054 

T14 3.124 3.145 3.381 4.102 3.124 4.102 

H
ea

lt
h

y
 

T15 0.054 0.692 1.054 1.692 0.054 1.692 

T16 0.082 0.281 1.082 1.954 0.082 1.954 

T17 0.554 0.784 1.054 1.281 0.554 1.281 

T18 0.887 0.231 1.607 1.784 0.887 1.784 

T19 0.574 0.884 1.177 1.231 0.574 1.231 

T20 0.114 0.145 1.484 1.884 0.114 1.884 

T21 0.774 0.954 1.074 1.145 0.774 1.145 

Table 2. Entropy results for cyst, tumor and healthy liver. 

ROI Direction, θ Correlation 

C
y

st
 

ROI 0° 45° 90° 135° Min Max 

T1 5.962 6.403 6.825 6.854 5.962 6.854 

T2 6.127 6.241 6.325 6.483 6.127 6.483 

T3 6.493 6.554 6.610 6.854 6.493 6.854 

T4 6.384 6.774 6.941 6.997 6.384 6.997 

T5 6.128 6.694 6.910 6.111 6.128 6.910 

T6 6.773 6.884 6.904 6.341 6.773 6.904 

T7 6.237 6.345 6.431 6.562 6.237 6.562 

T
u

m
o

r 

T8 2.302 2.924 3.164 4.269 2.302 4.269 

T9 2.300 2.811 3.119 4.702 2.300 4.702 

T10 2.321 2.703 2.321 4.164 2.321 4.164 

T11 2.370 2.718 3.860 4.718 2.370 4.718 

T12 2.410 2.843 2.994 4.932 2.410 4.932 

T13 3.156 3.481 3.494 4.156 3.156 4.156 

T14 2.186 2.916 3.994 4.321 2.186 4.321 

H
ea

lt
h

y
 

T15 0.110 0.241 1.314 1.500 0.110 1.500 

T16 0.120 0.231 1.312 1.431 0.120 1.431 

T17 0.152 0.214 1.224 1.322 0.152 1.322 

T18 0.133 0.231 1.167 1.311 0.133 1.311 

T19 0.142 0.284 1.437 1.410 0.142 1.410 

T20 0.071 0.145 1.224 1.374 0.071 1.374 

T21 0.140 0.254 1.284 1.350 0.140 1.350 

Table 3. Correlation results for cyst, tumor and healthy liver. 
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ROI Direction, θ Contrast

C
y

st
 

ROI 0° 45° 90° 135° Min Max

T1 4.120 0.242 4.527 0.242 0.242 4.527

T2 0.872 10.51 2.520 11.21 0.872 11.21

T3 7.711 16.50 0.721 16.30 0.721 16.50

T4 0.091 7.741 2.411 17.41 0.091 17.41 

T5 1.746 6.942 13.14 6.042 1.746 13.14

T6 14.01 5.841 0.821 0.841 0.821 14.01

T7 3.341 1.206 0.011 1.210 0.011 1.206

T
u

m
o

r 

T8 0.103 0.212 0.527 0.242 0.103 0.527

T9 0.872 11.31 2.520 12.21 0.872 11.21

T10 0.001 17.20 0.761 13.40 0.001 17.20 

T11 0.004 0.741 2.411 0.411 0.004 2.411

T12 0.246 6.842 8.104 0.052 0.052 8.104

T13 0.071 0.771 0.811 0.101 0.071 0.811

T14 1.345 1.216 0.081 1.210 0.081 1.345

H
ea

lt
h

y
 

T15 12.10 0.222 1.021 2.230 0.222 12.10

T16 3.212 0.141 12.02 11.21 0.141 12.02

T17 0.701 1.110 0.001 16.30 0.001 16.30 

T18 1.091 0.011 2.017 12.41 0.011 12.41

T19 5.342 0.442 1.014 1.042 0.442 5.342

T20 1.121 5.821 0.123 10.31 0.123 10.31

T21 1.341 1.306 1.011 12.10 1.306 12.10

Table 4. Contrast Results for cyst, tumor and healthy liver. 

ROI Direction, θ Homogeneity

C
y

st
 

ROI 0° 45° 90° 135° Min Max

T1 3.015 0.101 12.98 2.045 0.101 12.98

T2 5.178 1.087 0.251 1.101 0.251 5.178

T3 0.018 1.679 1.022 0.667 0.667 1.679

T4 10.54 12.05 11.02 1.668 1.668 12.05

T5 5.890 0.014 12.98 1.031 0.014 12.98 

T6 0.012 11.02 0.023 0.098 0.012 11.02

T7 0.001 11.78 0.078 1.189 0.001 11.78

T
u

m
o

r 

T8 0.040 1.212 5.527 2.142 0.040 5.527

T9 0.012 12.31 2.320 10.17 0.012 12.31

T10 0.007 11.30 12.61 13.24 0.007 13.24 

T11 0.001 11.01 0.401 0.011 0.001 11.01

T12 11.20 0.047 10.14 0.009 0.009 11.20

T13 2.001 0.731 0.011 0.001 0.001 2.001

T14 2.562 3.691 0.001 0.001 0.001 3.691

H
ea

lt
h

y
 

T15 1.133 1.895 1.021 2.230 1.021 2.230

T16 0.112 0.141 6.027 11.21 0.112 6.027

T17 0.001 0.140 0.001 12.31 0.001 12.31

T18 0.001 0.011 2.028 0.480 0.001 2.028

T19 11.30 0.442 1.134 0.001 0.001 11.30

T20 12.01 0.821 0.123 2.078 0.123 12.01

T21 0.001 0.002 1.011 13.28 0.001 13.28 

Table 5. Homogeneity results for cyst, tumor, and healthy liver. 
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The texture features obtained were then applied to the NN classifier and Globus automated 
scheduling for the detection. The final decisions of the NN classifier was generated by 
combining the diagnostic output using the input layer consisting of a number of input 
neurons equal to the number of features fed into the NN. (i.e. 2, namely entropy and 
correlation. Training and testing of the NN classification was based on the use of sample 
MRI abdomen images for all 3 categories as observed in Table 6. 

 

 Entropy Correlation 

 Min Max Min Max 
Cyst 5.174 7.911 5.962 6.997 
Tumor 2.487 4.291 2.300 4.932 
Healthy 0.054 1.954 0.071 1.500 

Table 6. Classification of hepatic lesions using entropy and correlation. 

5. Conclusion 

In the approach described above, it should be noted that, resolution, ROI image block size 
and sampling space used for calculation of SGLCM are important considerations in 
statistical feature extraction. The present study has shown promising results in the use of 
texture for the extraction of diagnostic information from MR images of the liver. Two 
features were selected using SGLCM, namely entropy and correlation, whilst it was shown 
that homogeneity and contrast were unsuitable to differentiate between cyst, tumor and 
healthy liver. In our experiment, the same features were used as input to the NN with the 
aid of Globus automated scheduling for hepatic liver tissue characterization of MRI images. 
In particular, this paper provides results of successful preliminary diagnosis of cyst and 
liver tumor in the liver tissue.  
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