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1. Introduction

The accurate and efficient solution of Maxwell’s equation is the problem addressed by
the scientific discipline called Computational ElectroMagnetics (CEM). Many macroscopic
phenomena in a great number of fields are governed by this set of differential equations:
electronic, geophysics, medical and biomedical technologies, virtual EM prototyping, besides
the traditional antenna and propagation applications. Therefore, many efforts are focussed
on the development of new and more efficient approach to solve Maxwell’s equation. The
interest in CEM applications is growing on. Several problems, hard to figure out few years
ago, can now be easily addressed thanks to the reliability and flexibility of new technologies,
together with the increased computational power. This technology evolution opens the
possibility to address large and complex tasks. Many of these applications aim to simulate
the electromagnetic behavior, for example in terms of input impedance and radiation pattern
in antenna problems, or Radar Cross Section for scattering applications. Instead, problems,
which solution requires high accuracy, need to implement full wave analysis techniques,
e.g., virtual prototyping context, where the objective is to obtain reliable simulations in
order to minimize measurement number, and as consequence their cost. Besides, other
tasks require the analysis of complete structures (that include an high number of details) by
directly simulating a CAD Model. This approach allows to relieve researcher of the burden of
removing useless details, while maintaining the original complexity and taking into account
all details. Unfortunately, this reduction implies: (a) high computational effort, due to the
increased number of degrees of freedom, and (b) worsening of spectral properties of the linear
system during complex analysis. The above considerations underline the needs to identify
appropriate information technologies that ease solution achievement and fasten required
elaborations. The authors analysis and expertise infer that Grid Computing techniques can
be very useful to these purposes. Grids appear mainly in high performance computing
environments. In this context, hundreds of off-the-shelf nodes are linked together and work
in parallel to solve problems, that, previously, could be addressed sequentially or by using
supercomputers. Grid Computing is a technique developed to elaborate enormous amounts
of data and enables large-scale resource sharing to solve problem by exploiting distributed
scenarios. The main advantage of Grid is due to parallel computing, indeed if a problem can
be split in smaller tasks, that can be executed independently, its solution calculation fasten
up considerably. To exploit this advantage, it is necessary to identify a technique able to split
original electromagnetic task into a set of smaller subproblems. The Domain Decomposition
(DD) technique, based on the block generation algorithm introduced in Matekovits et al.
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(2007) and Francavilla et al. (2011), perfectly addresses our requirements (see Section 3.4 for
details). In this chapter, a Grid Computing infrastructure is presented. This architecture
allows parallel block execution by distributing tasks to nodes that belong to the Grid. The
set of nodes is composed by physical machines and virtualized ones. This feature enables
great flexibility and increase available computational power. Furthermore, the presence of
virtual nodes allows a full and efficient Grid usage, indeed the presented architecture can be
used by different users that run different applications.

The chapter is organized as follow, Section 2 briefly explains author’s contribution. Section
3 describes technologies used and summarized Domain Decomposition principles. The
architecture is shown in Section 4, while the advantages derived by its adoption are illustrated
in Section 5 and Section 6 draws conclusions and gives hints for future works.

2. Motivation

Due to the decomposition of the original problems into a larger number of subproblems,
the scheme is well suited to a parallelization approach, since the subproblems (which will
be referred to as blocks in the following) are disjoint, and the elaboration of the blocks
is intrinsically a parallelizable operation. Since the generation of the entire domain basis
functions on each block is independent from the other blocks, a high scalability is expected.
As an example, Figure 1 shows a fighter subdivided into 4 different blocks, identified by
different colors. The four blocks can be processed in parallel by four different processes,
in order to generate the basis functions describing each block. Parallelization can be
achieved using two different techniques: parallel programming or Grid Computing. Parallel
programming is the technique by which have been obtained the best results in this field
(500 billion of unknowns) Mouriño et al. (2009). There are important barriers to the broader
adoption of these methodologies though: first, the algorithms must be modified using parallel
programming API like MPI (2011) and OpenMP (2011), in order to run jobs on selected cores.
The second aspect to consider is the hardware: to obtain results of interest supercomputers
with thousands of cores and thousands of GB of RAM are required. Typically these machines
are made by institutions to meet specific experiments and do not always allow public access.
Grid Computing is a rather more easily applicable model for those who do not fulfill the
requirements listed above Foster & Kesselman (2003). For its adoption the only requirement
is to have at disposal computers to use within the grid. The machines may be heterogeneous,
both in terms of the types (workstations, servers) and hardware resources of each machine
(RAM, CPU, HD); besides they can also be recovery machines. With the Virtualization
technology the number of processes running on each machine (for multicore ones) can be
optimized by instantiating multiple virtual nodes on the same physical machine. The real
advantage of this model, however, is that researchers do not have to worry about rewriting
code to make their application parallelizable. One of the drawbacks in the adoption of this
model is the addition of overhead introduced by the grid (e.g., inputs time transfer) and by
the hypervisor that manages the virtual machines. It has been shown, however, that the loss of
performance due to the hypervisor is not particularly high, usually not exceeding 5% Chierici
& Verald (2010). For the above reasons, in our case it was decided to grid infrastructure,
composed of heterogeneous recovery machines, both physical and virtual, on which to run
scientific applications without the need to modify the source codes of the used algorithms.
The ultimate goal is the reduction of execution times of CEM applications.

248 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics 3

Fig. 1. A fighter discretized with 4774 triangles is subdivided into 4 blocks, shown with
different colors.

3. Background

The rapid technology growth in the recent years has helped the development and rapid
expansion of Grid Computing. "The roots of Grid Computing can be traced back from the late
80s when the research about scheduling algorithms for intensive applications in distributed
environments accelerated considerably" Kourpas (2006). In the late 1990s began to emerge, a
more generalized framework for accessing high performance computing systems, and at the
turn of the millennium, the pace of change was accelerated by the recognition of potential
synergies between the grid and the emerging Service Oriented Architectures (SOA) through
the creation of the Open Grid Services Architecture (OGSA) Kourpas (2006). "The Open
Grid Services Architecture is a set of standards defining the way in which information is
shared among several components of large, heterogeneous grid systems. The OGSA is, in
effect, an extension and refinement of the Service Oriented Architecture" OGSA (2007). The
Open Grid Services Architecture is a standard created by the Open Grid Forum (OGF) OGF
(2011). OGF was founded in 2006 from the Global Grid Forum (GGF) and the Enterprise Grid
Alliance (EGA). GGF had a rich background and established international presence within the
academic and research communities while EGA was focused on developing and promoting
enterprise grid solutions. The OGF community now counts thousands of members working
in research and industry, representing more than 400 organizations in 50 countries.

3.1 Grid Computing technologies

Grid Computing is often described by referring to the analogy between electrical networks
and grid. When people access to electric network they use wall sockets with no care
about where or how electricity is actually generated. This relation underlies that computing
becomes pervasive thanks to Grid Computing diffusion. Therefore, individual users (or
client applications) can access computing resources (processors, storage, data, applications,
etc..) when needed with little or no knowledge about where those resources are located or
what underlying technologies, hardware, operating system are used. A further definition
is given by "Grid is an infrastructure that involves the integrated and collaborative use of
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computers, networks, databases and scientific instruments owned and managed by multiple
organizations" Asadzadeh et al. (2005). Grid Computing is based on these technology
principles Oracle (2009):

Standardization on operating systems, servers, storage hardware, middleware components,
and network components extends interoperability and reduce system management
overhead. It also improves operational complexity reduction in data center by simplifying
application deployment, configuration, and integration.

Virtualization of resources means that applications are not bound to a specific server, storage,
or network components but can be used in any virtualized resource. Virtualization is
realized thanks to a sophisticated software layer that hides the underlying complexity
of hardware resources and presents a simplified interface used by applications and other
resources (see Section 3.2).

Automation Grid Computing requires large-scale automation of IT operations due to the
potentially very high number of components, both virtual and physical. Each component
requires configuration management, on-demand provisioning, top-down monitoring, and
other management tasks. Combining these capabilities into a single, automated, integrated
solution for managing grids enables organizations to maximize their return of investment.

3.1.1 The Globus Toolkit

The Globus Toolkit (Globus (2010)) developed by the Globus Alliance, is an open source
software toolkit used for building grid systems and applications. The Globus Alliance
includes ISI, the University of Chicago, the University of Edinburgh, the Royal Institute of
Technology in Sweden, the National Center for Supercomputing Applications, and Univa
Corporation. Sponsors include federal agencies such as DOE, NSF, DARPA, and NASA, along
with commercial partners such as IBM and Microsoft.

The Globus Toolkit includes software for security, information infrastructure, resource
management, data management, communication, fault detection, and portability. It is
packaged as a set of components that can be used either independently or together to
develop applications. It is used by various companies and organizations as the basis for grid
implementations of various types.

Globus Toolkit is composed by four main components (shown in Figure 2):

• Security (GSI: Grid Security Infrastructure). It is a set of tools, libraries and protocols used
in Globus to allow users and applications to securely access resources. GSI is based on
a public key infrastructure, (PKI) with certificate authorities (CA) and (X509) certificates.
GSI uses (SSL) for authentication and message protection and enables user to create and
delegate proxy credentials to processes running on remote resources;

• Resource Management (GRAM: Grid Resource Allocation Manager). It provides the user
to access the grid in order to run, terminate and monitor jobs remotely;

• Information Services are for providing configuration and adaptation capabilities for
heterogeneous resources:

– MDS: Monitoring and Discovery Service: provides information about the available
resources on the Grid and their status;

– GRIS: Grid Resource Information Service: is associated with each resource and answers
queries from client for their current configuration, capabilities and status;
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– GIIS: Grid Index Information Service: is a directory service that pulls information for
GRIS’s. It is a "caching" service which provides indexing and searching functions.

• Data Management GridFTP: is a protocol that provides for the secure, robust, fast and
efficient transfer of data.
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Fig. 2. Globus Toolkit Protocols.

3.2 Virtualization technologies

The idea of computer system virtualization is not new, the earliest examples dates back to the
60s when IBM introduced the IBM 7044 and when Manchester University presented the Atlas
project (one of the first world’s supercomputers). These systems present the first rudimental
example of demand paging and supervisor calls.

However, in the last ten years, the use of virtualization in modern data centers increased
mainly due to contain operating. Virtualization is a technology that allows running several
concurrent Operating System (OS) instances inside a single physical machine called host. The
physical device is divided into multiple isolated virtual environments called guest system.
A Virtual Machine (VM) is an instance of the physical machine and gives users the illusion
of accessing the physical machine directly and each VM is a fully protected and isolated
copy of the underlying system. Virtualization is thus used to reduce the hardware costs
on one side and to improve the overall productivity by letting many more users work on
it simultaneously. Moreover the global cost and electricity power consumption makes the
virtualization adoption convenient. Furthermore, the server number can rationalized, while
maintaining the functional capacity of the system. A virtualization layer provides the required
infrastructural support exploiting lower-level hardware resources in order to create multiple
independent virtual machines that are isolated from each other. This layer, traditionally called
Virtual Machine Monitor, usually sits on top of the hardware and below the operating system.

The hypervisor, or Virtual Machine Manager (VMM), allows multiple operating systems to
concurrently run on a single host computer. It is so named because it is conceptually one
level higher than a supervisory program. A supervisory program or supervisor is usually
part of an operating system, that controls the execution of other routines and regulates work
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Fig. 3. Virtualization approaches.

scheduling, input/output operations, error actions, and similar functions and regulates the
flow of work in a data processing system. The supervisor is generally called kernel. The
hypervisor presents to the guest OS a virtual hardware platform and manages the execution
of the guest OS. Multiple instances of different operating systems may share the virtualized
hardware resources. Hypervisors are installed on server hardware whose only task is to run
guest operating systems. Non hypervisor virtualization systems are used for similar tasks
on dedicated server hardware, but also commonly on desktop, portable and even handheld
computers. There are three popular approaches to server virtualization: Full Virtualization,
Para Virtualization and virtualization with hardware support (Hardware Virtual Machine, or
HVM).

Full Virtualization provides emulation of the underlying platform on which a guest
operating system and application set run without modifications and unaware that the
platform is virtualized. This approach is idealistic, in real world scenarios virtualization
comes with costs.

Providing a Full Virtualization implies that every platform device is emulated with
enough details to permit the guest OS to manipulate them at their native level (such
as register-level interfaces). Moreover, it allows administrators to create guests that use
different operating systems. These guests have no knowledge about the host OS since they
are not aware that the hardware they see is not real but emulated. The guests, however,
require real computing resources from the host, so they use a hypervisor to coordinate
instructions to the CPU. The hypervisor provides virtual machine to show all the needed
hardware to start and run the operating system. Via a virtual bios, it shows CPU, RAM and
storage devices. The main advantage of this paradigm concerns the ability to run virtual
machines on all popular operating systems without requiring them to be modified since
the emulated hardware is completely transparent.

Para Virtualization Machine approach is based on the host-guest paradigm and uses a
virtual machine monitor. In this model the hypervisor modifies the guest operating
system’s code in order to run as a guest operating system in a specific virtual machine
environment. Like virtual machines, Para Virtual Machines are able to run multiple
operating systems. The main advantage of this approach is the execution speed, always
faster than HVM and Full Virtualization approach. The Para Virtualization method uses
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a hypervisor for shared access to the underlying hardware but integrates virtualization
aware code into the OS itself. In a context of Para Virtualization the guest operating system
must be aware of being run in a virtual environment. So the original operating system, in
particular its kernel, is modified to run in a Para Virtualized environment.

Hardware Virtual Machine (HVM) Hardware-assisted virtualization is a virtualization
approach that enables efficient Full Virtualization using help from hardware capabilities.
Last innovations in hardware, mainly in CPU, MMU and memory components (notably
the Intel VT-x and AMD-V architectures), provide direct platform-level architectural
support for OS virtualization. For some hypervisors (like Xen and KVM) it is possible
to recompile Para Virtualized drivers inside the guest machine running in HVM
environment and load those drivers into the running kernel to achieve Para Virtualized
I/O performance within an HVM guest.

3.2.1 Virtualization considerations

As anticipated, several advantages ensue from virtualization use. The number reduction of
physical servers is one of the most evident: the hardware (software) solution for virtualization
allows multiple virtual machines running on one physical machine, moreover additional
advantages are power consumption reduction, better fault tolerance, optimization of time
needed for device installation and of the number of cabinets. Another advantage is that
virtualization can be used to abstract hardware resources, since operating systems are closely
related to the underlying hardware, several issues need to be taken into account when a
server is moved or cloned, e.g., incompatible hardware, different drivers and so on. Another
virtualization feature is the creation of abstraction levels such that the operating system does
not see the actual physical hardware, but a virtualized one. Administrator can move or clone
a system on other machines that run the same virtualization environment without worrying
about physical details (network and graphics cards, chipsets, etc.).

Another important aspect is adaptability: if a company changes its priorities and needs,
a service may become more important than another or may require more resources.
Virtualization allows resource allocation to virtual hardware easily and quickly. Some
companies maintain old servers with obsolete operating systems that cannot be moved to
new servers as these OS would not be supported. In virtualized environments it is possible
to run legacy systems allowing IT managers to get rid of old hardware no longer supported,
and more prone to failure. In many cases it is appropriate to use virtualization to create test
environments. It frequently happens that production systems need to be changed without
knowledge about consequences, i.e., installing an operating system upgrade or a particular
service pack is not a risk-free. Virtualization allows immediate replication of virtual machines
in order to run all necessary tests.

Like any other technology, the virtualization gives disadvantages that depends on the
application scenario. The most important are performance overhead and presence of
hardware virtualization. Each virtualization solution is decreasing the overall performance,
such as disk access times or access to memory. Some critical applications may suffer from
this overhead introduced by virtualization. Depending on the products used, some devices
may not be used by virtual machines, such as serial and parallel ports, USB and Bluetooth
interfaces, or graphics acceleration hardware.
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Fig. 4. Taxonomy of grid security issues.

3.2.2 Xen and KVM based virtualization

Xen is a Virtual Machine Monitor that allows several guest operating systems to be executed
on the same computer hardware concurrently. A Xen system is structured with the Xen
hypervisor as the lowest and most privileged layer. Above this layer are located one or
more guest operating systems, which the hypervisor schedules across the physical CPUs.
Xen can work both in Para Virtualized or HVM mode; in the first the guest operating
system must be modified to be executed. Through Para Virtualization, Xen can achieve
very high performance. The HVM mode offers new instructions to support direct calls by a
Para Virtualized guest/driver into the hypervisor, typically used for I/O or other so-called
hypercalls. KVM is a Full Virtualization solution for Linux on x86 hardware containing
virtualization extensions (Intel VT or AMD-V). KVM is implemented as a module within the
Linux kernel. A hypervisor hosts the virtual machine images as regular Linux processes, so
that each virtual machine image can use all of the features of the Linux kernel, including
hardware, security, storage, and applications. KVM supports I/O Para Virtualization using
the so called VIRTIO subsystem consisting of 5 kernel modules IBM (2010).

3.3 Security overview

The basis idea of pooling has been always employed by humans. Its most evident and
valuable advantage is cost and resource optimization, but it hides facets that may shadows its
benefits. Whenever we share something we are worried since our goods may not be handle
properly and may be manipulated by strangers. Moreover when we use someone else stuff
we worry about safety since objects may be dangerous, broken or compromised.

The above concept perfectly fits grid system since grid can be seen as a mechanism to
pool resources to optimize system utilization. Therefore we can state that security and
trust, together with resource monitoring, authentication and authorization of users, and
data protection, are essential to Grid Computing. In the following we give an overview of
security in Grid Computing by using the classification proposed by Chakrabarti (2007). As
shown in Figure 4, he categorized grid security issues into three main categories: architecture,
infrastructure, and management related issues.

3.3.1 Architecture issues

Architecture level issues concerns threats - pertaining information security (e.g., data
confidentiality and integrity), authorization, and service level security - that impact the whole
grid system.

Information Security is defined as the security properties of data transmission between
hosts, that is, mainly, secure communication and authentication. These aspects involve
confidentiality (i.e., the data can be accessed only by legitimate users) and integrity (i.e.,
the data has not been modified during transmission). These aspects are essential security
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requirements in all information and communication areas, but become extremely critical
in distributed and heterogeneous environment like grids. The Open Grid Forum released
an open standard called Open Grid Standards Architecture OGSA (2007) which is the
referring point for worldwide researchers. OGSA specifies a layer called Grid Security
Infrastructure GSI (2010) which aim is to undertake these matters, for further details see
Section 3.3.4. The GSI is based on X.509 infrastructure and Secure Socket Layer (SSL)
protocol, and uses public key cryptography and certificates for creating secure grid and
application level data encryption. The X.509 certificates are used to ensure authentication:
every user or service owns a certificate which contains needed information to identify and
authenticate the owner.

Authorization is a security feature that implies the definition of "who" can access "what",
clearly this definition can be extended by adding "when", "how", "how long", and so on.
In the grid environment authorization is very important as resources are shared between
several users and services. The Authorization Systems (AS) can be classified into two
groups: (1) Virtual Organization (VO) Level and (2) Resource Level Systems. The former
is centralized AS for an entire VO: when an user needs to access a resource of Resource
Provider (RP) he requests for credentials to the AS and presents them to the RP which
allows/denies rights to the user. The latter, instead, specifies the authorization to a set of
resources, these systems allow the (authenticated) users to access the resources based on
the credentials he presents. Examples of the first authorization systems are Community
Authorization Service CAS (2010) and Virtual Organization Membership Service VOMS
(2003), while example of the second are Privilege and Role Management Infrastructure
Standards Validation PERMIS (2002), and the GridMap system.

Service Security entails the implementation of protection mechanisms focussed to guarantee
the availability of services. Attack class examples are QoS violation and Denial-of-Service
(DoS). The first is achieved through traffic congestion, packet delay or drop, while
the second aims to cause software crash and to completely disrupt the service. The
countermeasures to contain these attacks are mainly based on prevention and monitoring
in order to limit damages and to raise alarms. Some approaches also try to detect the
source, but an effective defense against these attacks is really hard to achieve.

3.3.2 Infrastructure issues

Infrastructure threats regards network and host devices that form the grid infrastructure
and are classified in Host level and Network level. These issues impact data protection,
job protection, host availability, access control functionalities, secure routing and all the
communication aspects.

Host Security impacts data protection and job starvation. The former regards the protection
of data already stored in the host, in fact the host submitting the job may be untrusted
and the job code may be malicious. The latter is a scenario in which resources assigned to
a job are denied to the original job and assigned to a different (malicious) job. The most
effective countermeasures to limit data threats are: (1) application level sandboxing, (2)
virtualization, and (3) sandboxing. The first approach uses proof carrying code (PCC), the
compiler creates proofs of code-safeness and embed those in the executable binary. The
second solution is based on the creation of Virtual Machines upon the physical host, this
technique ensures strong isolation between different VMs and the host system. The third
method confines system calls and sandboxes (isolates) the applications to avoid data and
memory access not allowed. The solution adopted to avoid job starvation are based on
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resource booking or priority reduction for long running jobs, in order to reduce starvation
likelyhood.

Network Security is a core requirement in grid scenario due to high speed needs and
host heterogeneity. Access control and isolation are fundamental to the grid networks.
Solutions for Grid Computing may not work effectively with existing firewalls and virtual
private networks (VPN), for this reason researcher developed solutions like Adaptive Grid
Firewalls (AGF) and Hose. Moreover routing attacks can be very dangerous for grid
working, countermeasures to these threats came from the traditional networking research
and foresee the deploy of secure routing protocol.

3.3.3 Management issues

Management issues are very delicate as the grid is an heterogeneous environment composed
of several entities, users, domains, and policies. The management problem can be seen as
three distinct, but correlated, points: (1) credential management, (2) trust management, and
(3) monitoring.

Credential Management is a complex and delicate task due to the distributed and numerous
components that form the grid. Each of these requires rights to access resources that need
to be trusted and non compromised. This aim is achieved by using credential management
mechanisms that securely store, grant, revoke, and renew credentials for user and system.
Some solutions move the burden to store credential from the user to the system, e.g., by
using smart cards. Other approaches resort to the federated identity paradigm to manage
credentials, across different systems, domains, and frameworks. Implementation example
of the first family is MyProxy, while KX.509 (a protocol which enables interoperability
between X.509 and Kerberos), Liberty Framework and Shibboleth are examples of the
second one.

Trust Management is a critical aspect in grid since nodes and users continuously join and
leave the system. Therefore a mechanism to manage trust levels of users, nodes and the
grid itself is mandatory. Different trust management solutions have been developed, their
key features are scalability, reliability, and security and can be grouped into two main
categories: reputation based and policy-based systems. The formers are based on trust
metrics taken from local and global reputation of a resource or an host. In the latter
approach, the different units that compose the system, exchange and manage credentials
to create trust connections given a set policies.

Monitoring of resources is necessary in grid due to two main reasons. Firstly, organizations
can be charged according to grid utilization, and, secondly, resource information can
be logged for auditing, debugging, testing and security purposes. Different monitoring
system are available in literature and can be grouped into three categories: (1) system
level, (2) cluster level, and (3) grid level. The first systems collect and transmit data
related to standalone systems or networks. The second ones require deployment across
clusters and gather information upon the cluster itself. The thirds are more flexible than
the formers because they can be deployed on top of other monitoring systems and may
provide interfaces for querying, and displaying data in standard formats.

3.3.4 Grid Security Infrastructure (GSI)

The definition and implementation of a robust infrastructure is one of the main issue when
the problem of securing grid is investigated. The Grid Security Infrastructure GSI (2010)
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addresses exactly this issue, it defines security requirements and provides a framework to
provide security in Virtual Organization based grid systems. GSI has been provided by
the Global Grid Forum (GGF) that is a forum of researchers and practitioners with the aim
to exchange information and to define standards for Grid Computing. One of the most
important aspects of GSI is that it is not only a theoretical definition, but it is implemented
and used worldwide thanks to Globus Toolkit Globus (2010). GSI handles different security
requirements, that can be summarized in: authentication, integrity, confidentiality, and
delegation. The most prevalent mechanisms of authentication in a GSI based on grid is the
certificate based on authentication (X.509) mechanism where a public key infrastructure (PKI)
is assumed to exist which allows the trusted authority to sign information to be used for
authentication purposes, by using these mechanisms it is also possible to ensure integrity.
In addition to certificate based mechanism, it supports password based authentication,
and research efforts are underway to integrate One Time Password (OTP) and Kerberos
authentication with GSI.

Confidentiality are supported through transport level security using SSL/TLS protocols, and
message level security using Web services standards. It is worth notice that Globus Toolkit is
one of the few implementations where message level security is used for grid confidentiality
purposes.

Delegation is especially important in case of grid because of the possibility of multiple
resources involved in grid based transactions. It may be unnecessary or very expensive to
authenticate each and every time a resource is accessed. On the other hand, if the user issues a
certificate allowing the resource to act on its behalf then the process will become a lot simpler.
This type of certificate issued by the user to be used by some other entity is called a proxy
certificate. A proxy is made up of a new certificate containing two parts, a new public and a
new private key. The proxy certificate has the owner’s identity, with a slight change to show
that it is a proxy certificate. The certificate owner will sign the proxy certificate. As part of the
proxy certificate there is an entry with a timestamp, which indicates at what time the proxy
certificate expires.

3.4 Computational ElectroMagnetics description

A complete discussion about the EM modeling and the mathematical aspects of the
formulation goes beyond the scope of this paper; only a short summary of the problem will
be presented in the following. In order to simplify the mathematical model, in the following
the analysis of the electromagnetic behavior of Perfectly Electric Conducting (PEC) objects
in a free space environment will be briefly introduced. Nevertheless, the authors would
like to point out that the described approach is not limited to PEC objects in free space,
in fact it is applicable to different formulations as well (dielectric objects or layered media
problems for instance): in other terms it is a kernel free method. Besides, the focus of
this chapter will be on a Grid Computing approach applied to computationally demanding
electromagnetic problems: rather than considering more complicate approaches, that would
divert the attention from the subject of this chapter, we prefer to introduce and apply the
method to PEC objects in a homogeneous background, but we stress that it can be applied
to other formulations as well. The Electric Field Integral Equation (EFIE) is a very versatile
approach to the full-wave analysis of complex electromagnetic problems: for PEC objects the
EFIE can be written by enforcing the boundary condition on the surface of the object, i.e. the

257Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics

www.intechopen.com



12 Will-be-set-by-IN-TECH

tangential component of the electric field vanishes on the surface S:

n̂ × E|Σ = n̂ ×
(

Escat + Einc
)

|Σ = 0 (1)

The surface S is discretized by a mesh with triangular cells, over which a usual system of RWG
functions f

n
is defined. The unknown surface current J is approximated by the above set of

RWG basis functions

J (r) ≈
N

∑
n=1

In f
n
(r) (2)

A Galerkin testing is used to convert the EFIE into the MoM linear system; hence we obtain
the matrix equation

[Z] · [I] =
(

[

Zφ
]

[

ZA
])

· [I] = [V] (3)

where a generic element of the scalar potential and of the vector potential matrix,
[

Zφ
]

and
[

ZA
]

respectively, is expressed as

Z
φ
m,n =

1

4π jωǫ0

∫∫

Sm

dS ∇s · f
m
(r)

∫∫

Sn

dS′ G(r, r′) ∇s · f
n
(r′) (4)

ZA
m,n =

jωμ0

4π

∫∫

Sm

dS f
m
(r) ·

∫∫

Sn

dS′ G(r, r′) f
n
(r′) (5)

where: G(r, r′) = e−jk0 R

R , k0 = ω
√

ǫ0μ0, R = |r − r′|, and Sm is the definition domain of the
function f

m
. The coefficients In in (2) are collected in the vector [I], and the mth element of [V]

is equal to

Vm = −
∫∫

Sm

dS f
m
(r) · Ei(r) (6)

where Ei is the impressed field in absence of bodies.

The first step of the Domain Decomposition approach is a subdivision of the overall geometry,
breaking down the scatterer surface S into NB sub-scatterers, which will be referred as blocks
in the following. An example of the splitting of a sphere into 8 blocks is shown in Figure 5.

To subdivide the structure in blocks, on which entire domain synthetic functions will be
generated, we use a fully automatic procedure. We would like to stress this aspect of our
implementation, as it is of vital importance to be able to properly generate the subdomains
for the synthetic function approach, and it is especially critical for arbitrary and complex
structures. The block generation algorithm is based on the multi-level cell grouping described
in Andriulli et al. (2008); Vipiana et al. (2009) for the generation of the Multi-Resolution basis
functions. The starting point is the usual mesh for the analysis of the considered structure,
without any constraint on the mesh properties and on the topology of the structure. Then a
nested family of meshes, with non-simplex cells, is generated through subsequent groupings
of the initial triangular mesh cells. We denote this initial mesh with M0, and call it level-0
mesh. All other meshes will be composed of groups of adjacent cells of the initial mesh. We
start by considering groupings of adjacent cells in M0 formed so that their average area is
about four times the average area of the cells in M0. This covering will be called the level-1
mesh, M1. The same procedure applied to M1 will generate the generalized mesh M2, and so
forth. We stop grouping a cell with its adjacent cells when its size reaches a chosen threshold
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Fig. 5. Example of geometric block partitioning and definitions; a sphere is split into 8 blocks.

∆; the algorithm stops when the last level L contains non-simplex cells with (linear) dimension
around ∆. The non overlapping blocks, on which the synthetic functions will be generated,
will then be the cells of the last level ML. The only parameter the user has to control for
the algorithm is the threshold where the grouping has to be stopped. We underline that the
grouping procedure used to find the domains where the Synthetic Functions are defined has
a O(NlogN) complexity, where N is the number of initial mesh cells.

The next step consists in the generation of the basis functions to model the current distribution
over each block; these will be referred as synthetic functions (SFs), whose support extends over
the entire block. The synthetic functions are chosen in the set of responses to the required
incident field, and to other sources placed at the borders of the block and around it, to make
up the space of all (rigorous) solutions restricted to that block. Once the set of the solutions
to all these sources is computed, the minimum number of necessary responses has to be
determined. This is done through a combination of a Singular Value Decomposition (SVD)
and a Gram-Schmidt (GS) procedure, applied to the matrix that collects the responses from
all the sources: the functions are then selected with a proper thresholding on the associated
singular value. Finally, the set of RWG functions defined over the connections of contacting
blocks is added to the set of SFs in order to guarantee continuity across blocks. Since the SFs
are expressed as a linear combination of the initial RWG functions, the scheme can be seen as
a purely multiplicative algebraic compression of the standard MoM matrix.

It should be clear now that the process of generation of the synthetic functions is carried
out independently on different blocks, i.e. the set of SFs is generated by solving the
electromagnetic problem on each block in isolation. As a consequence, a Grid Computing
approach is particularly well suited for the generation of the SFs: each block can be processed
by a different node of the grid.

Finally, after the complete set of SFs is generated, the original system matrix is compressed,
and the compressed system is inverted to yield the solution of the full problem. We underline
that the goal of the synthetic functions approach is to accelerate the solution of the problem
when a large number of excitation vectors (right hand sides, RHSs) is present, which is typical
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for Radar Cross Section (RCS) calculations. On the other hand, when a single RHS is present,
approaches based on the combination of a fast factorization scheme and an iterative solver,
are more efficient.

In order to exploit the Grid Computing approach, each node of the grid has to sequentially
solve a number of blocks. The synthetic functions are chosen in the set of responses to the
required incident field, and to other sources placed at the borders of the block and around it,
to make up the space of all (rigorous) solutions restricted to that block. Since the grid is in
general heterogeneous, i.e., the nodes have different processing and memory characteristics,
the blocks should be properly dimensioned and assigned to the computing nodes. When the
block dimensions are properly taken into account, the computation of the full MoM matrix
and its handling do not pose a limitation within a single block.

However, once the full set of synthetic functions is generated, one needs to apply the basis
change to the full system matrix related to the original structure, in order to compress the
system and invert it. For practical problems this is not feasible though, due to the total
dimension of the problem. Therefore we perform the compression within a fast scheme, which
avoids computing the full system matrix and makes the solution of large problems possible.
The compressed matrix in the new basis can be written as:

[ZSF] = [T] [Z] [T]H (7)

where [ZSF] is the compressed matrix, [T] is the change of basis matrix, whose dimensions are
NSF × NRWG (the total number of synthetic functions and the total number of RWG functions,

respectively), [Z] is the MoM matrix in the RWG basis, and []H represents the hermitian
operator. The same change of basis is performed on the RHS, namely:

[VSF] = [T] [V] (8)

where [VSF] is the compressed RHS in the SF basis. Finally the compressed system is solved.
At the present stage of the work, the compression and the solution of the complete system is
not carried out in the grid though; this will be object of future research.

4. GridCEM architecture

The GridCEM project aims to improve performance of CEM application. This objective is
achieved by the adoption of a grid architecture that exploits the benefits derived from the
parallel computation. The proposed system manages data automatically and without impact
for users. Furthermore, virtualized resources make system flexible, simplify the underlying
infrastructure and improve scalability. To this aim an hybrid grid infrastructure was built
and tests were performed in order to compare grid results to the ones of the same task
executed on a single machine. The grid is composed of two types of nodes, a Master Node
(MN) and Worker Nodes (WN). The Master Node is in charge to manage, control, and grant
the security of the entire infrastructure. In addition, it coordinates other node operations.
The middleware used to create the grid infrastructure is the Globus Toolkit (Globus (2010)).
The toolkit, as explained in Section 3.1.1, includes functionalities for security, information
systems, resource and data management, node communication, fault detection, portability
and all the features need to safely deploy grid. The input data is a file that contains the mesh
structure to analysis. It is split by the MN in smaller files, called blocks, that are distributed
to WN. Since these blocks are generated according to Domain Decomposition technique and
are independent, they can executed in parallel. The size of split blocks is not uniform but
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Fig. 6. GridCEM Architecture.

depends on the geometry of the structure. Moreover, the MN hosts the Global Scheduler
(GS), that represents the smart component of the grid, and it holds information related to grid
status, that are sent from each Worker Node, and stored in a database. The WN, instead,
receives blocks, elaborates them and sends results to MN. The execution phase is managed
by the Local Scheduler (LS) and the node status is monitored by an always active agent. The
agent monitors the availability of each service on the node and sends periodically its status
to the database on the MN. The agent role is crucial since the choice to send a job to a node
depends on the information it gathers: if all services are available, the node is in condition
to receive a job. All Worker Nodes have same operating system and are equipped with the
same software: the middleware, the monitoring agents, the Local Scheduler and the code for
execution.

4.1 Global Scheduler

As mentioned before the Master Node holds the brain of the grid that is represented by the
Global Scheduler. It is a software module developed in Java responsible for the distribution
of smaller parts of the input data (blocks) to each Worker Nodes. It communicates with
other nodes thanks to grid services provided by the Globus Toolkit. The files are sent by the
scheduler in order to balance the execution on each node: this is achieved by checking WNs
availability and the number of files to sent. In order to know the overall status of the grid, the
GS queries the database and transfers file only to nodes that have communicate their status
within a specific time period. It is worth noting that this monitoring system that periodically
push data into the database instead of gather information from each machine, allows to reduce
time and computational wastes Gradwell (2003).
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4.2 Local Scheduler

Each WN is provided with a Local Scheduler, developed in Java, that checks contents of its
input folder: every time a new job file is detected it executes the task. In order to be recognized
the filename must follow a predefined naming convention rules. During the execution the
analyzed block is transformed into a Method of Moments (MOM) matrix. If the execution
terminates successfully, the output is sent to the Master Node, that reassembles it with the
outputs received from other nodes. Also the LS is in charge of tracking the status of job
execution and sends information about start and stop time of each process.

4.3 Virtual environment

Since the code was not developed for parallel execution, it was decided to optimize resources
by virtualizing nodes in order to run multiple processes on the same physical machine.
In this way it was possible to create multiple virtual nodes on the same resource and
increase the available nodes number, e.g., the parallelization of the system, instead of coding
parallelization, to improve the overall performance. Virtualized systems also help to improve
infrastructure management, allowing the use of virtual node template to create virtual nodes
in a short time, speeding up the integration of new nodes on the grid and, therefore,
improving the reactivity and the scalability of the infrastructure. Another advantage of
virtual environment is the availability improvement, since in case of damage of a virtual
node the system will be able to quickly restore it, reducing the downtime due to his recovery.
The open source KVM (Hirt (2010)), has been used as hypervisor. It allows to create fully
virtualized machines. The kernel component of KVM is included in mainline Linux. The
basic requirements for the installation of this hypervisor is that the processor of the machine
supports virtualization technology (Intel VT or AMD-V).

5. Test environment

In order to measure the gain in terms of time, some performances test were conducted. It has
been compared the result times of the analysis of a model executed on the grid infrastructure
with the sequential execution of the same model on a single computer. The experiment
allowed verifying the practical usefulness of the adoption of distributed infrastructures in
this kind of applications.

Node Type CPU model Virtual CPU RAM[GB]

master physical Intel Core Duo 4
2.66GHz

wn1 physical Intel Pentium 4 @ 3.20GHz 3.5

wn2 physical Intel Core 2 6420 @ 2.13GHz 2

wn3 virtualized Intel Xeon E5440 @ 2.83GHz 2 4

wn4 virtualized Intel Xeon E5440 @ 2.83GHz 2 4

wn5 virtualized Intel Xeon X3470 @ 2.93GHz 2 4

Table 1. Grid Nodes Specifications.

The grid used for performance testing consists of hardware not purchased specifically for this
purpose, but of computer available to researchers of Istituto Superiore Mario Boella(ISMB).
For this reason, its composition is heterogeneous in terms of the machines types (workstations,
servers) and in terms of view of hardware resources of each machine (RAM, CPU, HD).
Within the pool of available machines, two machines met the criteria for virtualization: on
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Fig. 7. Total execution time comparison between grid enviroment and sequential execution

these machines three VMs have been created. To run the tests six nodes with the following
configuration have been used: a Master Node, two physical Worker Nodes (wn1, wn2) and
three virtualized Worker Nodes (wn3, wn4, wn5). The details of the machines used for the
experiment are shown in Table 1.

As a test-case a jet fighter aircraft (shown in Figure 1) has been discretized with a linear mesh
density around 5 cm. The input file has a size of 17 MB and consists of about 156K unknowns.
The plane is illuminated with a wave at the frequency of 600 MHz. The geometry has been
subdivided into 67 blocks, each one described in a mesh file of about 7.5 MB. The first test
performed was the execution of the entire process on a single physical machine. The node
chosen for this test was the wn2: despite the smaller amount of RAM, the processing time of
this machine is comparable to the average processing time of the other nodes. This node splits

Node Executed blocks Number of Time [h:min:s]
executed blocks

master 0 0:02:55

wn1 5 10 15 20 25 30 35 40 45 50 55 60 65 13 1:42:19

wn2 1 6 11 16 21 26 31 36 41 46 51 56 61 66 14 1:22:33

wn3 2 7 12 17 22 27 32 37 42 47 52 57 62 67 14 1:24:50

wn4 3 8 13 18 23 28 33 38 43 48 53 58 63 13 1:21:38

wn5 4 9 14 19 24 29 34 39 44 49 54 59 64 13 0:56:22

wn2 all 67 6:56:51

Table 2. Nodes Execution Time.

263Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics

www.intechopen.com



18 Will-be-set-by-IN-TECH

Fig. 8. Block execution time of each node compared to the same block executed in sequential
mode (wn2-seq)

the main input into smaller chunks and ran the sequential execution of individual blocks:
the total processing time for 67 blocks on wn2 was equal to 6h 56min 51s. In the second
test the splitting was delegated to the Master Node, which has also been responsible for the
distribution of the single blocks to different nodes. The execution time of the build process
of the blocks and the file transfer is 2min 55s, and therefore it is negligible if compared to
the total execution time. The execution times of different nodes are very similar, only the
virtual machine wn5 has slightly better performance, probably due to the higher performance
processor. The total execution time of the grid is equal to the maximum execution time of
individual nodes, i.e., 1h 42min 19s of wn1. Table 2 summarizes the execution times. Figure 7
depicts total execution time comparison between grid environment and sequential execution
on different nodes, on the grid and on sequential execution. The total time reduction is of 75%.
Figure 7 shows the comparison between the processing times of individual nodes on the grid
and the sequential execution: the colors of the column wn2-seq, correspond to the processing
time of each node, through this comparison it can be appreciate the performance gain of the
grid. In Figure 8 the comparison between the execution of individual blocks on the grid and
in sequential mode is represented. The columns are divided into small parts that correspond
to different executed blocks, each block is identified by a different color. The graph is useful
for reasoning on the overhead introduced both by the grid and by the virtual machines. From
the comparison between the execution of a group of blocks on the grid on a given node and
sequentially on the same machine (i.e., the second pair of columns) it can be deduced that the
grid introduces an overhead (equal to 2min 38s in this case) due to the transfer of files output,
but negligible compared to the total execution time.

5.1 Application domains overview

More and more applications require high performance computing, flexibility and reduced
processing time. The architecture explained before, can be useful in many fields i.e., in
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e-science applications (electronic, geophysics, biomedical domains). In our past studies,
a similar grid infrastructure has been created for the analysis of Radio Occultation data.
This project for the Italian Space Agency (ASI), allows to characterize the temperature,
pressure and humidity (further details are available at Terzo et al. (2011)). In this project
we have focused the attention on configuration and management problems due to distributed
environment, scheduling of processes and resources, virtualization and Cloud environment.
Another type of application, where the Grid Computing technique can be useful is in
bioinformatic field, i.e., biological laboratories are producing a huge amount of DNA/RNA
sequencing data and Next Generation Sequencing has proved to be extremely helpful in
making the detection of various forms of disease. Unfortunately, this is reflected in a higher
computational effort that must be faced by innovative computing infrastructure but in this
case an hybrid infrastructure, composed of physical and virtualized resources and when it
is necessary a Public Cloud (i.e., Amazon), is the best choice. An important feature is the
application type that must allow to split a process in a smaller independent jobs in order to
elaborate each single job in several resources reducing the elaboration time and increase the
system flexibility.

6. Conclusion

The solution for CEM problems requires infrastructures based on high performance
computing in order to reduce the execution time. However, it is not always possible to use
supercomputers or parallelize algorithms code used for the calculation, a good solution may
be represented by the Domain Decomposition technique, which allows the subdivision of the
original complex problem into a set of smaller subproblems in a grid environment. In fact for
this project, a grid infrastructure was carried out, that consists of 6 nodes (both physical and
virtual). The results showed that the adoption of this infrastructure has reduced the execution
time of 75% with respect to the sequential execution on a single machine. It was also noted
that the overhead introduced by the grid is negligible when compared to the total execution
time. The Virtualization has allowed optimizing the hardware resources of the machines,
letting to run multiple blocks in parallel on the same physical machine, not introducing a
significant overhead compared to the overall system performance. Studies are underway to
improve the implementation of the scheduler, ensuring that blocks will be distributed to nodes
most suitable for their execution. In particular, it will be developed a system that takes into
account the weights of the jobs and the weights of the nodes available, assigned on the basis of
predetermined criteria (e.g., file size, hardware resources, nodes availability, the average time
of execution). The Scheduler will also be able to turn on and off virtual nodes according to the
needs of the system, considering the load level of the grid. Furthermore the virtual nodes will
be configured dynamically as needed to perform specific jobs (RAM, CPU and storage). A
further improvement will be the integration of the system with Public Cloud Platforms (e.g.,
Amazon EC2) in order to increase the system scalability, asking for virtual nodes usage only
when necessary.
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