
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Hierarchy-Aware Message-Passing in the
Upcoming Many-Core Era

Carsten Clauss, Simon Pickartz, Stefan Lankes and Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University

Germany

1. Introduction

The demands of large parallel applications often exceed the computing and memory resources
a local computing site offers. Therefore, by combining distributed computing resources as
provided by Grid environments can help to satisfy these resource demands. However, since
such an environment is a heterogeneous system by nature, there are some drawbacks that, if
not taken into account, are limiting its applicability. Especially the inter-site communication
often constitutes a bottleneck in terms of higher latencies and lower bandwidths than
compared to the site-internal case. The reason for this is that the inter-site communication
is typically handled via wide-area transport protocols and respective networks; whereas
the internal communication is conducted via fast local-area networks or even via dedicated
high-performance cluster interconnects. That in turn means that an efficient utilization

of such a hierarchical and heterogeneous infrastructure demands a Grid middleware that
provides support for all these different kinds of communication facilities (Clauss et al., 2008).
Moreover, with the upcoming Many-core era a further level of hierarchy gets introduced
in terms of Cluster-on-Chip processor architectures. The Single-chip Cloud Computer (SCC)
experimental processor is a concept vehicle created by Intel Labs as a platform for Many-core
software research (Intel Corporation, 2010). This processor is indeed a very recent example
for such a Cluster-on-Chip architecture. In this chapter, we want to discuss the challenges
of hierarchy-aware message-passing in distributed Grid environments in the upcoming
Many-core era by taking the example of the SCC. The remainder of this chapter is organized
as follows: Section 2 initially reviews the basic knowledge about parallel processing and
message-passing. In Section 3, the demands for parallel processing and message-passing
especially in Grid computing environments are detailed. Section 4 focuses on the Intel SCC
Many-core processor and how message-passing can be conducted with respect to this chip.
Afterwards, Section 5 discusses how the world of chip-embedded Many-core communication
can be integrated into the macrocosmic world of Grid computing. Finally, Section 6 concludes
this chapter.

2. Parallel processing using message-passing

With a rising amount of cores in today’s processors, parallel processing is a prevailing field of
research. One approach is the message-passing paradigm, where parallelization is achieved by
having processes with the capability of exchanging messages with other processes. Instead

8

www.intechopen.com



2 Will-be-set-by-IN-TECH

of sharing common memory regions, processes perform send and receive operations for data
and information transfer. In high-performance computing the message-passing paradigm is
well established. However, this programming model gets more and more interesting also
for the consumer sector. The message-passing model is mostly architecture independent, but
it may profit from underlying hardware that supports the shared-memory model in terms
of more performance. It is accompanied by a strictly separated address space. Therefore
erroneous memory reads and writes are easier to locate than it would be with shared memory
programming (Gropp et al., 1999).

2.1 Communication modes

The inter-process communication for synchronization and data exchanges has to be performed
by calling send and received functions in an explicit manner. In doing so, the parallelization
strategy is to divide the algorithm into independent subtasks and to assign these tasks to
parallel processes. However, at the end of these independent subtasks intermediate results
need commonly to be exchanged between the processes in order to compute the overall result.

2.1.1 Point-to-point communication

In point-to-point communication several different communication modes have to be
distinguished: buffered and non-buffered, blocking and non-blocking, interleaved and overlapped,
synchronous and asynchronous communication. First of all, non-buffered and buffered
communication has to be differentiated. The latter requires an intermediate data buffer
through which sender and receiver perform communication. A send routine will send a
message to a buffer that may be accessed by both the sending and the receiving side. Calling
the respective receive function, the message will be copied out of that buffer and stored
locally at the receiving process. Figure 1(a) shows sender A transmitting a message to an
intermediated buffer and returning after completion. The buffer holds the message until
receiver B posts the respective receive call and completes the data transfer to its local buffer.
In addition to that, the terms blocking and non-blocking related to message-passing have to
be defined. They relate to the semantics of the respective send and receive function calls.
A process that calls a blocking send function remains in this function until the transfer is
completed. Whether this is associated with the arrival of the according message at the

receiving side or only with the completion of the transmission on the sender side, has to be
defined in the context where the function is used. Figure 1(b) shows an example where the
completion of a blocking send call is defined as the point in time after the whole message
arrived at the receiver and is stored in a local buffer. For this period, A is blocked even if B has
not posted the respective receive call yet. On the contrary, a non-blocking send routine returns
immediately regardless whether the message arrived at the receiver or not. Thus, the sender
has to ensure with other mechanisms that a message was successfully transmitted before
reusing its local send buffer. With non-blocking routines it is possible to perform interleaved
but also overlapped communication and computation. Overlapped communication results
in real parallelism where the data delivery occurs autonomously after being pushed by the
sending process. Meanwhile, the sender is able to perform computation that is independent
from the transmitted data. The same applies to the receiving side. With interleaved
communication, message dependencies may be broken up, but there is still a serialized
processing which requires a periodical alternating between computation and communication.

152 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 3

A

B

A starts to 

send message

time to put message into

intermediate buffer

time to receive message

from intermediate buffer

B posts receive 

request

t 0

Time

(a) Example: Buffered and Asynchronous

A

B

A starts to 

send message

wait for B to 

post receive

B posts 

receive call

message 

transmissiont 0

Time

A returns to

user application

(b) Example: Blocking and Synchronous

Fig. 1. Comparison of Asynchronous and Synchronous Communication

This may increase the application’s performance if a resource is currently not available.
Instead of waiting for the opponent to be ready, time is used to perform other tasks. Thus, the
application itself has to check from time to time if the communication process is still stuck, by
calling functions to query the status of the respective request handle. These are objects which are
commonly being passed back for this purpose by a non-blocking function call. Although often
used as a synonym for blocking/non-blocking function calls (Tanenbaum, 2008), synchronous
and asynchronous communication primitives should be further distinguished. Facilitated by
buffered communication, asynchronous message-passing enables the sender to complete the
send routine without having the receiver posted a respective receive call. Thus, it is not
necessary to have a global point in time when sender and receiver are coevally within their
respective function calls. In Figure 1(a) A returns from the send call and locally completes
the message transfer before the matching receive routine is posted. In contrast to that, in
non-buffered mode where no intermediate communication buffer is available, it is not possible
to perform asynchronous message-passing. That is because data transfer only occurs when

both, sender and receiver, are situated in the communication routines at the same time.
Referring to Figure 1(b) it becomes clear what is meant by one point in time. At time t0 both,
sender and receiver, are in the respective communication routines what is necessary in order
to complete them.

2.1.2 Collective communication operations

Collective operations are communication functions that have to be called by all participating
processes. These functions help the programmer to realize more complex communication
patterns than simple point-to-point communication within a single function call. Moreover, it
must be emphasized that using such collective operations not only simplifies the application
programming, but also enables the lower communication layer to implement the collective
communication patterns in the most efficient way. For that reason, application programmers
should utilize offered collective operations instead of implementing the patterns by means of
point-to-point communication whenever possible. However, a possible drawback of collective
operations is that they may be synchronizing what means that the respective function may

only return when all participating processes have called it. In case of unbalanced load,
processes possibly have to wait a long time within the function, not being able to progress with
the computation. In the following, some important examples of collective communication

153Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



4 Will-be-set-by-IN-TECH

P0 P1 P2 P3

root

(a) Broadcast

root

P0 P1 P2 P3

(b) Gather

P0 P1 P2 P3

P0 P1 P2 P3

(c) All-Gather

Fig. 2. Examples of Collective Communication Patterns

patterns are shown. Although important, not nearly all communication libraries provide
collective functions for these patterns. If a process needs to send a message to all the other
processes, a broadcast function (if provided by the communication library) can be utilized.
In doing so, all participating processes have to call this function and have to state who is
the initial sender (the so-called root, see Figure 2(a)) among them. In turn, all the others
realize that they are eventual receivers so that the communication pattern can be conducted.
However, during the communication progress of the pattern every process can become a

sender and/or receiver. That means that the internal implementation of the pattern is up
to the respective library. For example, internally this pattern may be conducted in terms of a
loop over all receivers, or even better tree-like achieving higher performance. In many parallel
algorithms, a so-called master process is used to distribute subtasks among the other processes
(the so-called worker) and to coordinate the collection of partial results later on. Therefore,
such a master may initially act as the root process of a broadcast operation distributing
subtask-related data. Afterwards, a gather operation then may be used at the master process
to collect partial results generating the final result with the received data. Figure 2(b) shows
the pattern of such a gather operation. Besides this asymmetric master/worker approach,
symmetric parallel computation (and hence communication) schemes are common, too.
This means, regarding collective operations, that for example during a gather operation all
processes obtain all partial datasets (a so-called all-gather operation). Internally, this may be
for example implemented in terms of an initial gather operation to one process, followed
by a subsequent broadcast to all processes. However, the internal implementation of such
communication patterns can also be realized in a symmetric manner, as Figure 2(c) shows for

the all-gather example.

2.2 Process topologies

A process topology describes the logical and/or physical arrangement of parallel processes
within the communication environment. Thus, the logical arrangement represents the
communication pattern of the parallel algorithm, whereas the physical arrangement constitutes
the assignment of processes to physical processors. Of course, in hierarchical (or even
heterogeneous) systems, the logical process topology should be mapped onto the underlying
physical topology in such a way that they are as congruent as possible. For example, and
as already noted in the last section, collective communication patterns should be adapted
to the underlying hardware topologies. This may be done, for instance, by an optimized

154 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 5

communication library as it is described for hierarchical systems in the later Section 3.2.2.
Moreover, even an adaptation of the parallel algorithm itself to the respective hardware
topology may become necessary in order to avoid unnecessary network contention. Therefore,
a likewise hierarchical algorithm design would accommodate such systems. However, in
homogeneous environments, the algorithm design can still be kept flat and process topologies
are mapped almost transparently onto the hardware.

2.2.1 Programming paradigms

Based on the consideration where to place the processes and which part of a parallel task
each of them should process, two programming paradigms can be distinguished (Wilkinson &
Allen, 2005): the Multiple-Program Multiple-Data (MPMD) and the Single-Program Multiple-Data
(SPMD) paradigm. According to the MPMD paradigm, each process working on a different
subtask within a parallel session processes an individual program. Therefore, in an extreme
case, all parallel processes may run different programs. However, usually this paradigm is not
that distinctive. A very common example for MPMD is the master/worker approach where

just the master runs a different program than the workers. In contrast to this, in a session
according to the SPMD paradigm, all processes run only one single program. That in turn
implies that the processes must be able to identify themselves1 because otherwise all of them
would work on the same subtask.

2.2.2 Session startup and process spawning

Considering the question which process should work on which subtask leads to a further
question: When shall the processes of a session be created? Regarding this problem, two
approaches can be distinguished: In the case of a static startup, all the processes are created at
the beginning of a parallel run and are normally bound to their respective processors during
runtime. Such a static startup is usually conducted and supported by a job scheduler detecting
and assigning idle processors. However, in the case of a dynamic process startup, further
processes can be spawned by already running processes even at runtime. This approach is
commonly combined with the MPMD paradigm. So for example, when a master process
running a master program spawns worker processes running subtask-related subprograms.
However, this approach demands for an additional interaction between spawning processes

and the runtime environment during execution, in order to place spawned processes onto free
processors. That is the reason why this approach is more complicated in most cases.

2.3 Programming interfaces

The actual handling of a message transfer, that is the execution of the respective
communication protocols through the different networking layers, is much too complex and
too hardware-oriented to be done at application level. Therefore, the application programmer
is usually provided with appropriate communication libraries that hide the hardware-related
part of message transfers and hence allow the development of platform-independent parallel
applications.

1 for example by means of process identifiers

155Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



6 Will-be-set-by-IN-TECH

2.3.1 The Berkeley Socket API

A very common communication interface is the Berkeley Socket API, also known as BSD

Sockets. A socket is a communication termination endpoint that facilitates the access to
various transport layer protocols, such as TCP and UDP (Winett, 1971). Although usable
to communicate between processes on the same machine, their intention is to enable
the inter-process communication over computer networks. This can be done either first
establishing a connection via creating a stream socket for the TCP protocol, or connectionless
using datagram sockets for the UDP protocol. The sockets are managed by the operating
system which organizes the access to the underlying network. They are used in a Client-Server
manner, what means that the connection establishment between a pair of processes must be
triggered in an asymmetric way, starting from the client side. Afterwards, messages may be
exchanged bidirectional via the socket by using simple send and receive functions (Stevens
et al., 2006).

2.3.2 Communication libraries for parallel environments

Besides simple send and receive functions, communication libraries especially for parallel
environments do not only offer simple Client-Server relations, but rather provide support
for a session management covering all parallel processes, including process startup and an

all-to-all connection establishment. Commonly such libraries also offer additional features, as
for example, for conducting collective operations or for transparent data conversion. In the
course of time, several of such communication libraries had been developed, usually driven
by the demand for new libraries in connection with new hardware platforms. Examples
are: NX, NX/2 and NX/M that are libraries developed by Intel for a past generation of
dedicated multi-computers (Pierce, 1988), Zipcode is a software system for message-passing
developed by the California Institute of Technology (Skjellum & Leung, 1990), P4: Portable
Programs for Parallel Processors is a socket-based communication library by Argonne National
Laboratory (Butler & Lusk, 1994), Chameleon is no communication library by itself but rather a
macro-based interface to several underlying communication libraries (Gropp & Smith, 1993),
and PVM: Parallel Virtual Machine is still a very common communication library (Dongarra
et al., 1993) that has also been extended by the ability to be runnable in Grid environments
(Geist, 1998).

2.3.3 The Message-Passing Interface (MPI)

When looking at the diversity of communication libraries listed in the last section, it becomes

obvious that writing portable parallel applications was hardly possible in those days. Hence,
there was a strong demand for the creation of a unified interface standard for parallel
communication libraries in the early 1990s. This demand for an easy portability of parallel
applications to always new generations of parallel machines eventually led in 1993 to the
definition of such a unified library interface by the so-called Message-Passing Interface
Forum. The goal was to define a communication standard that is hardware and programming
language independent but still meets the requirements of high-performance computing. The
result was the Message-Passing Interface Standard (MPI), which is a specification of a library
interface (Message Passing Interface Forum, 2009). The main objective is that users do not
need to compromise among efficiency, portability and functionality without having to abstain

156 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 7

from advantages of specialized hardware (Gropp et al., 1999). Although MPI is, in contrast to
the libraries mentioned in the last section, not a specific implementation but just an interface
standard, the standardizing processes was accompanied by the development of a prototype
and reference implementation: MPICH (Gropp et al., 1996).2

Today, two different compatibility levels can be distinguished:3 Compatibility with MPI-1
means that an MPI implementation provides support for all features specified in the MPI
standard Version 1.3. And compatibility with MPI-2 means as opposed to MPI-1 that the
respective MPI implementation also provides support for the extensions specified up to the
MPI standard Version 2.2. Altogether, these two levels incorporate a function set of about
280 MPI functions. However, many MPI applications just use a handful of them, mostly
focusing on the actual message handling. To begin with the term of a message, the tuple
(address, count, datatype) defines an MPI message buffer, in which count describes the amount of
elements of datatype beginning at address. Thus, it is ensured that the receiving side obtains the
same data even if it uses another data format than the sending side. To distinguish between
several messages, a tag is introduced that represents the message type defined by the user
application. Furthermore, MPI defines the concepts of the context and groups aggregated in
a so-called communicator. Only messages with a valid context (that is in terms of a matching
communicator) will be received and processes may be combined to logical groups by means

of the communicator. In addition to these basic concepts, a wide range of further mechanism
like non-blocking, buffered or synchronizing communication, as well as collective operations
and a particular error handling is provided. Although most MPI applications are written
according to the SPMD paradigm, MPI-2 also features process spawning and support for
programs written according to the MPMD paradigm.

2.3.4 The Multicore Communications API (MCAPI)

The MCAPI, recently developed by the Multicore Association, resembles an interface for
message-passing like MPI. However, in contrast to MPI and sockets which were primely
designed for inter-computer communication, the MCAPI intends to facilitate lightweight
inter-core communication between cores on one chip (Multicore Association, 2011). These
may be even those which execute code from chip internal memory. Therefore the MCAPI
tries to avoid the von Neumann bottleneck4 using as less memory as it is necessary to realize
communication between the cores. According to this, the two main goals of this API are
extremely high-performance and low memory footprint of its implementations. In order to
achieve these principals, the specification sticks to the KISS5 principal. Only a small number

of API calls are provided that allow efficient implementations on the one hand, and the
opportunity to build other APIs that have more complex functionality on top of it, on the
other hand. For an inter-core communications API, such as MCAPI, it is much easier to
realize these goals because an implementation does not have to concern issues like reliability

2 Nowadays, two more popular and also freely available MPI implementations exist: Open MPI (Gabriel
et al., 2004) and MPICH2 (Gropp, 2002).

3 Currently, the specifications of the upcoming MPI-3 standard are under active development by the
working groups of the Message-Passing Interface Forum.

4 It describes the circumstance that program memory and data memory share the same bus and thus
result in a shortage in terms of throughput.

5 Keep It Small and Simple

157Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



8 Will-be-set-by-IN-TECH

and packet loss which is the case in computer networks for example. In addition to that, the
interconnect between cores on a chip offered by the hardware facilitates high-performance
data transfer in terms of latency and throughput. Although designed for communication
and synchronization between cores on a chip in embedded systems, it does not require the
cores to be homogeneous. An implementation may realize communication between different
architectures supported by an arbitrary operating system or even bare-metal. The standard
purposely avoids having any demands to the underlying hardware or software layer. An
MCAPI program that only makes use of functions offered by the API should be able to run in
thread-based systems as well as in process-based systems. Thus, existing MCAPI programs
should be easily ported from one particular implementation to another without having to
adapt the code. This is facilitated by the specification itself. Only semantics of the function
calls are described without any implementation concerns. Although MCAPI primarily focuses
on on-chip core-to-core communication, when embedded into large-scale but hierarchy-aware
communication environments, it can also be beneficial for distributed systems (Brehmer et al.,
2011).

3. Message-passing in the grid

When running large parallel applications with demands for resources that exceed the capacity
the local computing site offers, the deployment in a distributed Grid environment may help
to satisfy these demands. Advances in wide-area networking technology have fostered
this trend towards geographically distributed high-performance parallel computing in the
recent years. However, as Grid resources are usually heterogeneous by nature, this is

also true for the communication characteristics. Especially the inter-site communication
often constitutes a bottleneck in terms of higher latencies and lower bandwidths than
compared to the site-internal case. The reason for this is that the inter-site communication
is typically handled via wide area transport protocols and respective networks, whereas
the internal communication is conducted via fast local-area networks or even via dedicated
high-performance interconnections. That in turn means that an efficient utilization of such
a hierarchical and heterogeneous infrastructure demands a communication middleware
providing support for all these different kinds of networks and transport protocols (Clauss
et al., 2008).

3.1 Clusters of clusters

The basic idea of cluster computing is to link multiple independent computers by means of
a network in such a way that this system can then be used for efficient parallel processing.
Practically, such a cluster of computers constitutes a system that exhibits a NoRMA6

architecture where each network node possesses its own private memory and where messages
must be passed explicitly across the network. However, a major advantage of such systems is

that they are much more affordable than dedicated supercomputers because they are usually
composed of standard hardware. For this reason, cluster systems built of common components
off the shelf (COTS) have already become prevalent even in the area of high-performance
computing and datacenters. Moreover, this trend has been fostered in the last decades also
by the fact that common desktop or server CPUs have already reached the performance class

6 No Remote Memory Access

158 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 9

of former dedicated but expensive supercomputer CPUs.7 This idea of linking common
computing resources in such a way that the resulting system forms a new machine with
an even higher degree of parallelism just leads to the next step (Balkanski et al., 2003):
building a Cluster of Clusters (CoC). Such systems often arise inherently when, for example
in a datacenter, new cluster installations are combined with older ones. This is because
datacenters usually upgrade their cluster portfolio periodically by new installations, while
not necessarily taking older installations out of service. On the one hand, this approach
has the advantage that the users can chose that cluster system out of the portfolio that fits
best for their application, for example, in terms of efficiency. On the other hand, when
running large parallel applications, older and newer computing resources can be bundled
in terms of cluster of clusters in order to maximize the obtainable performance. However, at
this point also a potential disadvantage becomes obvious: While a single cluster installation
usually constitutes a homogeneous system, a coupled system built from clusters of different
generations and/or technologies exhibits a heterogeneous nature which is much more difficult
to be handled.

3.1.1 Wide area computing

When looking at coupled clusters within a datacenter, the next step to an even higher degree
of parallelism suggests itself: linking clusters (or actually cluster of clusters) in different
datacenters in a wide area manner. However, it also becomes obvious that the interlinking
wide area network poses a potential bottleneck with respect to inter-process communication.
Therefore, the interlinking infrastructure as well as its interfaces and protocols of such a
wide area Grid environment play a key role regarding the overall performance. Obviously,
TCP/IP is the standard transport protocol used in the Internet, and due to its general design,
it is also often employed in Grid environments. However, it has been proven that TCP has
some performance drawbacks especially when being used in high-speed wide area networks
with high-bandwidth but high-latency characteristics (Feng & Tinnakornsrisuphap, 2000).
Hence, Grid environments, which are commonly based on such dedicated high-performance
wide area networks, often require customized transport protocols that take the Grid-specific
properties into account (Welzl & Yousaf, 2005). Since a significant loss of performance arises
from TCP’s window-based congestion control mechanism, several alternative communication

protocols like FOBS (Dickens, 2003), SABUL (Gu & Grossman, 2003), UDT8 (Gu & Grossman,
2007) or PSockets (Sivakumar et al., 2000) try to circumvent this drawback by applying their
own transport policies and tactics at application level. That means that they are implemented
in form of user-space libraries which in turn have to rely on standard kernel-level protocols
like TCP or UDP, again. An advantage of this approach is that there is no need to modify the
network stack of the operating systems being used within the Grid. The disadvantage is, of
course, the overhead of an additional transport layer on top of an already existing network
stack. Nevertheless, a further advantage of such user-space communication libraries is the
fact that they can offer a much more comprehensive and customized interface to the Grid
applications than the general purpose OS socket API does. However, in the recent years, a
third kernel-level transport protocol has become common and available (at least within the

7 The other way around, this trend can also be recognized when looking at today’s multicore CPUs,
making most common desktops or even laptops already being a parallel machine.

8 UDT: a UDP-based Data Transfer Protocol

159Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



10 Will-be-set-by-IN-TECH

Linux kernel): the Stream Control Transmission Protocol (SCTP) which provides, similar to
TCP, a reliable and in-sequence transport service (Stewart et al., 2007). Additionally, SCTP
offers several features not present in TCP, as for example the multihoming support. This
means that an endpoint of a SCTP association (SCTP uses the term association to refer to a
connection) can be bound to more than one IP address at the same time. Thus, a transparent
fail-over between redundant network paths becomes possible. Furthermore, it can be shown
that SCTP may also perform much better than TCP especially in heterogeneous wide area
networks due to a faster congestion control recovery mechanism (Nagamalai et al., 2005).
For that reasons, employing SCTP also in Grid environments can be beneficial compared to
common TCP (Kamal et al., 2005).

3.1.2 Grid-services and session layers

When looking at this diversity of alternative transport protocols, the question arises which one
should be used by the bridging session layer of a message-passing library in Grid computing
environments? The answer is that this depends on the properties of the actual environment.

In fact, the best solution may differ even within the Grid, due to its heterogeneous nature.
Moreover, since Grid resources can be volatile, the optimal protocol to be used may also
vary in the course of time, as an initially assigned bandwidth does not necessarily be
granted during a whole session for example. For that reason, an efficient session layer
for message-passing-based Grid computing should be capable of supporting more than one
transport facility at the same time. Nevertheless, such a session layer should also be aware of
the inter-site communication overhead by being and acting as resource-friendly as possible in
this respect. In order to exploit a Grid environment at its full potential, the underlying network
must be a managed resource, just like computing and storage resources usually are. As such,
it should be manages by an intelligent and autonomic Grid middleware (Hessler & Welzl,
2007). Such a middleware, like a Grid scheduler, needs to retrieve runtime information about
the current capacity and quality of the communication infrastructure, as well as information
about the communication patterns and characteristics of the running Grid applications. For
that purpose, the possibility of a dynamic interaction between this scheduling middleware
and the respective application would be very desirable. Therefore, a session layer for
message-passing in Grid environments should also provide Grid service interfaces in order

to make such information inquirable at runtime. Moreover, a dedicated interface that also
allows to access and even to reconfigure the session settings at runtime would help to exploit
the Grid’s heterogeneous network capabilities at their best. Consequently, a session layer
for an actual efficient message-passing should provide such integrated services to the Grid
environment.

3.2 Grid-enabled message-passing interfaces

Since MPI is the most important API for implementing parallel programs for large-scale
environments, also some MPI libraries have already been extended meeting these demands
of distributed and heterogeneous computing. Those libraries are often called Grid-enabled
because they do not only use plain TCP/IP (which is obviously the lowest common
denominator) for all inter-process communication, but are also capable of exploiting fast but
local networks and interconnect facilities accommodating the hierarchy of the Grid. Hence,
for being able to provide support for the various high-performance cluster networks and

160 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 11

Routers

WANCluster A Cluster B

(a) Router-based Architecture

Gateway

A B
ClusterCluster

(b) Gateway-based Architecture

All−to−All

Cluster A Cluster B

(c) All-to-all Architecture

Fig. 3. Different Topology Approaches regarding the Interlinking Network

their specific communication protocols, most of those libraries in turn rely on other high-level
communication libraries (like site-native MPI libraries), rather than implementing this support
inherently. Therefore, Grid-enabled MPI libraries can be understood as a kind of a meta-layer
bridging the distributed computing sites. For that reason their application area is also referred
to as a so-called meta-computing environment. The most common Grid-enabled MPI libraries
are MPICH-G2 (Karonis et al., 2003), PACX-MPI (Gabriel et al., 1998), GridMPI (Matsuda
et al., 2004), StaMPI (Imamura et al., 2000), MPICH/Madeleine (Aumage et al., 2001) and
MetaMPICH (Pöppe et al., 2003), which are all proven to run large-scale applications in
distributed environments. Although these meta-MPI implementations usually use native MPI
support for site-internal communication, as for example provided by a site-local vendor MPI,
they must also be based on at least a transport layer being capable of wide area communication
for bridging and forwarding messages also to the remote sites. However, since regular
transport protocols like TCP/IP are commonly point-to-point-oriented, it is a key task of such
a bridging layer to setup all the required inter-site connections and thus acting as a session

layer for the wide area communication.

3.2.1 Hardware topologies

When establishing the inter-site connections, a session layer has to take the actual
hardware topologies into account in order to enable an efficient message-passing later
on. With respect to topologies, three different linking approaches can be differentiated:
router-based architectures, gateway-based architectures and finally a so-called all-to-all
structures (Bierbaum, Clauss, Pöppe, Lankes & Bemmerl, 2006). In a router-based architecture,
only certain cluster nodes have a direct access to the interlinking network. That means that
all inter-site messages have to be routed through these special cluster nodes which then
forward the messages to the remote clusters (see Figure 3(a)). This routing can either be done
transparently concerning the MPI library, for example by means of the underlying transport
protocol like TCP/IP. Or the MPI library itself has to perform this message routing, for
example due to an incompatibility between the cluster internal and the external transport
layer. In a gateway-based architectural approach, one or more cluster nodes are part of
two or more clusters (see Figure 3(b)). That way, these nodes can act as gateways for

161Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



12 Will-be-set-by-IN-TECH

root

1

2

3

5

6

7
0

4

(a)

root

1

2

3

5

6

7
0

4

(b)

Fig. 4. Bad (a) and Good (a) Implementation of a Broadcast Operation on Coupled Clusters

messages to be transferred from one cluster to another. However, this approach is only
suitable for locally coupled clusters, due to a missing wide area link. Finally, when using
a fully connected interlinking network, all nodes in one cluster can directly communicate
with all nodes in the other clusters. Actually, such a all-to-all topology only needs to be
logically full connected, for example realized by means of switches (see Figure 3(c)). Not
all Grid-enabled MPI libraries provide support for all these topologies. While router-based
architectures are supported e.g. by PACX-MPI and MetaMPICH, the gateway approach is
only supported by MPICH/Madeleine, whereas all-to-all topologies are supported by almost
all above mentioned libraries.

3.2.2 Collective communication patterns

An efficient routing of messages through hierarchical topologies needs to take the underlying
hardware structures accordingly into account. Moreover, this is especially true for collective
communication operations because bottlenecks and congestion may arise, due to a high
number of participating nodes. As already mentioned in Section 2.1.2, there exist a lot of
collective communication operations and it is up to the respective communication library
to map their patterns onto the hardware topologies in a most optimal way. So a broadcast
operation for example may be optimally conducted in a homogenous system in terms of a
binomial tree. However, in a hierarchical system, using just the same pattern would lead to
redundant inter-site messages, as shown in Figure 4. Therefore, to avoid unnecessary inter-site
communication, the following two rules should be observed: Send no messages with the same
content more than once from one to another cluster, and each message must take at most
one inter-site hop. The first rule helps to save inter-site bandwidth, whereas the second rule
limits the impact of the inter-site latency on the overall communication time. An auxiliary
communication library, especially designed for supporting optimized collective operations
in hierarchical environments, is the so-called MagPIe library (Kielmann et al., 1999). This
library is just an auxiliary library in this respect that is an extension to the well-known MPI

implementation MPICH. Figure 5 shows as an example the broadcast pattern implemented
by MagPIe for a system of four coupled clusters.

162 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 13

root

Fig. 5. Communication Pattern implemented by the MagPIe Library for a Broadcast
Operation

3.3 The architecture of MetaMPICH

In this section, we detail the architecture of the Grid-enabled MPI implementation developed
at the Chair for Operating Systems of the RWTH Aachen University: MetaMPICH which is
derived, like many other MPI implementations, from the original MPICH implementation by
Argonne National Laboratory (Gropp et al., 1996).

3.3.1 Session configuration

One key strength of MetaMPICH is that it can be configured in a very flexible manner.

For that purpose, MetaMPICH relies on a dedicated configuration file that is parsed before
each session startup. This configuration file contains information about the communication
topologies as well as user-related information about the requested MPI session. The
information must be coded in a special description language customized to coupled clusters
in Grid environments. Such a configuration file is structured into three parts: a header
part with basic information about the session, a part describing the different clusters and a
part specifying the overall topology. The header part gives, for example, information about
the number of clusters and the number of nodes per cluster and thus the total number of
nodes. The second part describes each participating cluster in terms of access information,
environment variables, node and router lists as well as information about type and structure
of the cluster-internal network. In the third part, the individual links between router nodes
in case of a router-based architecture are described in terms of protocols and addresses. The
same applies to clusters that are connected in an all-to-all manner: Here, a transport protocol
must be specified9 and additional netmasks may be stated, too. Moreover, MetaMPICH even
supports mixed configurations, where some clusters are connected via an all-to-all network,
whereas others are simultaneously connected via router nodes. Figure 6 shows an example

for such a mixed session configuration.

3.3.2 Internal message handling

Since MetaMPICH is derived from MPICH, it also inherits major parts of its layered
architecture, which is shown here in Figure 7. Both supported interlinking approaches of

9 MetaMPICH provides support for TCP, UDT and SCTP as the interlinking transport layers.

163Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



14 Will-be-set-by-IN-TECH

All−to−All
Cluster BCluster A

Routers

Cluster C

Fig. 6. Example for a Mixed Configuration Supported by MetaMPICH

MPI Interface (API)

Abstract Device Interface

HW/OS Interface

Profiling Interface (PMPI)

MPID Layer

MPIR Layer

Operating System

Hardware

MPI Application

M
P

IC
H

Channel Interface

Chameleon SHMEM P4

. . . . . .. . .

Generic Implementation of

the Abstact Device Interface

ch2 ch_shmem

Device Device

ch_p4

Device

(platform−independent parts)

(platform−dependent abstract device)

P4Chameleon SHMEM

Fig. 7. The Layer Model of MPICH that enables the Multi-Device Support of MetaMPICH

MetaMPICH (the all-to-all approach as well as the router-based approach) in turn, rely on the
so-called multi-device feature of MPICH. This feature allows the utilization of multiple abstract
communication devices, which are data structures representing the actual interfaces to lower
level communication layers, at the same time. That way, for example, communication via
both TCP and shared memory within one MPI session becomes possible. MetaMPICH in turn
uses this feature to directly access the interfaces of cluster-internal high-speed interconnects
like SCI, Myrinet or InfiniBand via customized devices, while other devices are used to link

the clusters via TCP, UDT10 or SCTP. However, when running a router-based configuration,
certain cluster nodes need to act as routers. That means that messages to remote clusters are
at first forwarded via the cluster-native interconnect (and thus by means of a customized
communication device) to a router node. The router node then sends the message to
a corresponding router node at the remote site that finally tunnels the message via that
cluster-native interconnect to the actual receiver.

10 UDT: a UDP-based Data Transfer Protocol, see Section 3.1.1.

164 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 15

3.3.3 The integrated service interface

A further key strength of MetaMPICH is an integrated service interface that can be accessed

within the Grid environment via remote procedure calls (RPC). Although there exist several
approaches for implementing RPC facilities in Grid environments, we have decided to base
our implementation on the raw XML-RPC specification (Winer, 1999). Therefore, all service
queries have to be handled via XML-coded remote method invocations. Simple services just
provide the caller with status information about the current session, as for instance whether a
certain connection has already been established, which transport protocol is in use, or how
many bytes of payload have already been transfered on this connection. However, also
quality-of-service metrics like latency and bandwidth of a connection can be inquired. All
these information can then be evaluated by an external entity like a Grid monitoring daemon
in order to detect bottlenecks or deadlocks in communication. Besides such query-related
services, MetaMPICH also offers RPC interfaces that allow external entities actually to control
session-related settings. In doing so, external monitoring or scheduling instances are given the
ability to reconfigure an already established session even at runtime. Besides such external
control capabilities, also self-referring monitoring services are supported by MetaMPICH.
These services react automatically on session-internal events, as for instance the detection
of a bottleneck or the requirement of a cleanup triggered by a timeout (Clauss et al., 2008).

4. Message-passing on the chip

Since the beginning of the multicore era, parallel processing has become prevalent
across-the-board. While previously parallel working processors almost exclusively belonged
to the domain of datacenters, today nearly every common desktop PC is already a
multiprocessor system. And according to Moore’s Law, the number of compute cores per
system will continue to grow on both the low end and the high end. Already at this stage,

there exist multicore architectures with up to twelve entire cores. However, this high degree
of parallelism poses an enormous challenge in particular for the software layers.

4.1 Cluster-on-chip architectures

On a traditional multicore system, a single operating system manages all cores and schedules
threads and processes among them with the objective of load balancing. Since there is no
distinction between the cores of a chip, this architecture type is also referred to as symmetric
multiprocessing (SMP). In such a system, the memory management can be handled nearly
similar to a single-core but multi-processing system because the processor hardware already
undertakes the crucial task of cache coherency management. However, a further growth of the
number of cores per system also implies an increasing chip complexity, especially with respect
to the cache coherence protocols; and this in turn may cause a loss of the processors’ capability
and verifiability. Therefore, a very attractive alternative is to waive the hardware-based cache
coherency and to introduce a software-oriented message-passing based architecture instead:
a so-called Cluster-on-Chip architecture. In turn, this architecture can be classified into two
types: The first resembles a homogeneous cluster where all cores are identically, whereas the

second exhibits a heterogeneous design. Therefore, the second type is commonly referred to
as asymmetric multiprocessing (AMP).

165Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



16 Will-be-set-by-IN-TECH

4.2 The Intel SCC Many-core processor

The Intel SCC is a 48-core experimental processor built to study Many-core architectures

and how to program them, concerning parallelization capabilities (Intel Corporation,
2010). With this architecture, Many-core systems may be investigated that do not make
use of a hardware based cache coherent shared-memory programming model but use the
message-passing paradigm instead. For this purpose, a new memory type is introduced that
is located on the chip itself.

4.2.1 Top level view

The 48 cores are arranged in a 6x4 array of 24 tiles with two cores on each of them. They are
connected by an on-die 2D mesh that is used for inter-core data transfer but also to access
the four on-die memory controllers. These address up to 64 GiB of DDR3 memory altogether
which can be used as private but also shared among the cores. The SCC system contains a
Management Console PC (MCPC) that is used to control the SCC being connected to an FPGA11

on the SCC board using the PCIe bus. The FPGA controls all off-die data traffic and provides
a method to extend the SCC system by new features. Programs may be loaded by the MCPC
into the SCC’s memory. The same applies to operating systems that shall be booted. The
MCPC can be used to read the content of the memory. For this purpose the SCC’s memory

regions may be mapped into the MCPC’s address space. Figure 8 gives a schematic view of
the architecture described above. Furthermore the SCC introduces a concept to govern the
energy consumption of the chip. It is divided into 7 voltage and 24 frequency domains that
can be adjusted independently. Thus, the programmer has the opportunity to influence the
software’s power consumption. This may be achieved for example by throttling down a core
that currently does not have any tasks.

4.2.2 Tile level view

The cores are based on the Intel P54C architecture, an x86 design used for the Intel Pentium I.
They contain 16 KiB integrated L1 data and instruction cache each. Apart from the two cores,
a tile holds an additional L2 cache of 256 KiB per core to cache the off-die private memory. In
addition to that, the so-called message-passing buffer (MPB) is provided, a fast on-die shared
memory of 16 KiB per tile whereby 8 KiB may logically be assigned to each core. Since the
SCC does not provide any cache coherency between the cores, the MPB is intended to realize
explicit message-passing among the cores. The so-called Mesh Interface Unit (MIU) on each tile
handles all memory requests which may be those for message-passing via MPB or accesses

to the off-die memory. According to Figure 8, the MIU is the only instance that interacts
with the router constituting the connection to the mesh and therefore to the other tiles. For
synchronization purposes each tile provides two Test-and-Set registers. They are accessible
by all cores competitively and guarantee an atomic access. In addition to that, configuration
registers are supplied that may be used to modify the operating modes of the on-tile hardware
elements.

11 Field-Programmable Gate Array

166 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 17

M
C
1

M
C
2

M
C
3

M
C
4

Router MIU MPB

Fig. 8. Block Diagram of the SCC Architecture: a 6x4 mesh of tiles with two cores per tile

Shared off-chip DRAM

CPU
0

L1
$

L2
$

Private DRAM
(off-chip)

CPU
47

L1
$

L2
$

Private DRAM
(off-chip)

Message Passing Buffer (8kB/core on-chip)

Fig. 9. Logical Software View onto the SCC’s Memory System

4.2.3 Software level view

In order to avoid problems due to the missing cache coherency, the off-die memory of the
SCC is logically divided into 48 private regions (one per core) plus one global region for all
cores. Since for all cores an exclusive access to their private regions is guaranteed, the caches
can be enabled for these regions per default. In doing so, each core can then boot its own
operating system, usually a Linux kernel (Mattson et al., 2010). Therefore, the SCC is able to
run 48 Linux instances simultaneously, actually resembling a cluster on the chip. Moreover,

it is also possible to share data between the cores, since all cores have concurrent access to
the additional global memory region. However, because of the missing cache coherency, the
caches are disabled for this shared region per default. This logical software view onto the
memory is illustrated in Figure 9.

4.3 SCC-customized message-passing interfaces

The memory architecture of SCC facilitates various programming models (Clauss, Lankes,
Reble & Bemmerl, 2011), where the cores may interact either via the on-die MPBs or via the
off-die shared memory. However, due to the lack of cache coherency, message-passing seems
to be the most efficient model for the SCC.

167Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



18 Will-be-set-by-IN-TECH

4.3.1 RCCE: the SCC-native communication layer

The software environment provided with the SCC, called RCCE (Mattson & van der

Wijngaart, 2010), is a lightweight communication API for explicit message-passing on the
SCC. For this purpose, basic send and receive routines are provided that support blocking
point-to-point communication which are based on one-sided primitives (put/get). They
access the MPBs and are synchronized by the send and receive routines using flags, introduced
with this API. Although used library internal in this case, the flags are also available to
the user application. They can be accessed with respective write and read functions and
may be used to realize critical sections or synchronization between the cores. Both at the
sending and at the receiving side matching destination/source and size parameters have to
be passed to the send and receive routine. Otherwise this will lead to unpredictable results.
Communication occurs in a send local, receive remote scheme. This means that the local MPB,
situated at the sending core, is used for the message transfer. The communication API is
used in a static SPMD manner. So-called Units of Execution (UEs) are introduced that may be
associated with a thread or process. Being assigned to one core each, with an ID out of 0 to
#cores−1, all UEs form the program. As it is not sure when a UE exactly starts the execution,
the programmer may not expect any order within the program. To encounter this, one may
use functions to synchronize the UEs, like a barrier for example. Inspired by MPI, there is

a number of collective routines (see Section 2.1.2). For example a program, in which each
UE makes a part of a calculation, may use a all-reduce to update the current result on all
UEs instead of using send/receive routines. A wider range of collectives is provided with
the additional library RCCE_comm (Chan, 2010) that includes functions like scatter, gather,
etc. With RCCE a fully synchronized communication environment is made available to the
programmer. It is possible to gain experience in message-passing in a very simple way.
However, if one wants to have further control over the MPB, the so-called non-gory interface
of RCCE described above is not sufficient anymore. Thus, Intel supplies a gory version which
offers the programmer more flexibility in using the SCC. Asynchronous message-passing
using the one-sided communication functions is now possible, however it has to be considered
that cache coherency must not be expected. Therefore the programmer has to make sure by
himself that the access to shared memory regions is organized by the software. Although, a
very flexible interface for one-sided communication is made available with the gory version,
the lack of non-blocking functions concerning two-sided communication forces to look for
alternatives.

4.3.2 iRCCE: a non-blocking extension to RCCE

At the Chair of Operating Systems of RWTH Aachen University an extension to the
RCCE communications API called iRCCE has been developed (Clauss, Lankes, Bemmerl,
Galowicz & Pickartz, 2011). It offers a non-blocking communication interface for point-to-point
communication. Now interleaved communication and computation is possible. Due to the
fact that the SCC does not supply asynchronous hardware to perform the message exchange,
functions to push the pending requests are provided. To make sure the communication
progress has completed, a test or wait function has to be called. To be able to process multiple
communication requests, a queuing mechanism is implemented that handles posted requests
in a strict FIFO manner. According to the definitions made in Chapter 2.1.1, iRCCE offers
a non-blocking but still synchronized communication interface. Since messages may exceed

168 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 19

the available MPB space, it can only be used to transfer data chunk-wise from sender to the
receiver. Furthermore, the library itself does not perform overlapped but just interleaved
message transfer from sender to receiver. Therefore, the transfer progress has to be actively
fostered by the user application. Hence, even with this approach it is not possible to realize
real asynchronous message-passing between the cores. While offering a wide range of
functions that facilitate non-blocking communication between the cores of the SCC, iRCCE
just as RCCE is still a low-level communications API which allows other APIs, like MPI for
example, to be built on top of it. That is also reflected in the application programmer interface.
It is kept very simple and one who is experienced in message-passing will not have any
problems working with it. Due to the simplicity, the functionality is limited, compared to
MPI for example.12 No buffer management has been implemented with the consequence that
the send and receive buffers have to be provided by the programmer. Furthermore, there is
no mechanism to differ between different message types, like it is possible with tags in MPI.

4.3.3 An MCAPI implementation for the SCC

A proof of concept for an MCAPI implementation for the SCC has been developed at the Chair
of Operating Systems of RWTH Aachen University, too. The approach that was made is to
layer it on top of iRCCE including the features offered by an additional mailbox system13. This
approach does not endeavor to be a highly optimized communication interface. However,
it should be sufficient to investigate the usability of the communication interface offered by
the MCAPI for future Many-core systems. The MCAPI defines a communication topology
that consists of domains, nodes and endpoints. A domain contains an arbitrary number of
nodes. The specification does not oblige what to associate with a domain. However, in
this SCC-specific implementation, a core is defined as a node and the whole SCC chip as
a domain. For now only one domain is supported, however further versions may connect
different SCCs and thus offering more than one domain (see also Section 5). An endpoint is
a communication interface that may be created at all nodes. Each node internally holds two
endpoint lists, one for the local endpoints and one for the remote ones. As the specification
requires, the tuple (domain,node,port) defining an endpoint is globally unique within the
communication topology. The iRCCE communication interface only provides one physical
channel for sending purpose (that is the local MPB). In contrast to that the MCAPI allows an

arbitrary amount of endpoints to be created at each node. Thus, the approach made by this
implementation has to supply a multiplex mechanism as well as a demultiplex mechanism
that organizes the message transfer over the channel provided by iRCCE at each node.

5. Message-passing in future Many-core Grids

In the previous sections, we have considered the demands of message-passing in Grid
environments as well as in Many-core systems. However, we have done this each apart from

the other. Now, in this section we want to discuss how these two worlds can eventually be
combined.

12 MPI actually provides functions for real asynchronous two-sided communication.
13 This is an asynchronous extension to iRCCE that may be used additionally to the functionality offered

by iRCCE itself.

169Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



20 Will-be-set-by-IN-TECH

5.1 Bringing two worlds together

When looking at Section 3 and Section 4, it becomes obvious that the two worlds there

described will inevitably merge in the near future. The world of chip-embedded Many-core
systems will have to be incorporated into the hierarchies of distributed Grid computing.
However, the question is how this integration step can be conducted in such a way that both
worlds can benefit from this fusion. In doing so, especially the communication interfaces
between these two worlds will play a key role regarding their interaction.

5.1.1 The macrocosmic world

In the world of Grid computing as well as in the domain of High-Performance Computing
(HPC), MPI has become the prevalent standard for message-passing. The range of functions
defined by the MPI standard is very large and an MPI implementation that aims to provide the
sheer magnitude has to implement way above 250 functions.14 In turn, this implies that such
an MPI library tends to become heavyweight in terms of resource consumption, as for example
in terms a large memory footprint. However, this is definitely tolerable concerning the HPC
domain; at least as long as the resources deployed lead to a high performance as for example
in the form of low latencies, high bandwidth and optimal processor utilization. Furthermore,
a Grid-enabled MPI implementation must also be capable of dealing with heterogeneous

structures and it must be able to provide support for the varying networking technologies and
protocols of hierarchical topologies. Moreover, it becomes clear how complex and extensive
the implementation of such a library might get if besides the MPI API additional service
interfaces for an interaction between the MPI session and the Grid environment come into
play. However, when looking at the application level it can be noticed that many MPI
applications just make use of less than 10 functions from the large function set offered. On
the one hand, this is due to the fact that already a handful of core functions are sufficient in
order to write a vast number of useful and efficient MPI programs (Gropp et al., 1999). On the
other hand, knowledge of and experience with all offered MPI functions are not very common
even within the community of MPI users. Therefore, many users rely on a subset of more
common functions and implement less common functionalities at application level on their
own.15

5.1.2 The microcosmic world

Currently, there does not exist one uniform and dominant standard for message-passing in
the domain of Many-cores and cluster-on-chip architectures. Although MPI can basically

also be employed in such embedded systems, customized communication interfaces, as for
example RCCE for the SCC, are predominant in this domain. The reason for this is that MPI
is frequently too heavyweight for pure on-chip communication because major parts of an
MPI implementation would be superfluous in such systems, as for example the support for
unreliable connections, different networking protocols or heterogeneity in general. However,
a major drawback of customized libraries with proprietary interfaces is that applications get
bound to their specific library and thus become less portable to other platforms. Therefore,
a unified and widespread interface standard for on-chip communication in multicore and

14 That is an MPI implementation compliant with the compatibility level MPI-2.
15 An example for this is the comprehensive set of collective operations offered by MPI (see Section 2.1.2).

170 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 21

(a) Three Linked AMP Many-core Systems (b) MPI for On-die Communication

Fig. 10. Many-core Systems According to the AMP Approach

Many-core systems, as the MCAPI promises, would certainly be a step in the right direction.
Actually, the MCAPI specification aims to facilitate lightweight implementations that can
handle the core-to-core communication in embedded systems with limited resource but less
requirements (Brehmer et al., 2011),

5.1.3 The best of both worlds

Several approaches for Many-core architectures follow the asymmetric multiprocessing
approach (AMP) where one core is designated to be a master core whereas the other cores
act as accelerator cores (see Section 4.1). Examples for this approach are the Cell Broadband
Engine or Intel’s Knights Corner (Vajda, 2011). One way to combine the macrocosmic world
of Grid computing with the microcosmic world of Many-cores in terms of message-passing
is using MPI for the off-die communication between multiple master cores and customized
communication interfaces, as for example MCAPI, for the on-die communication between
the masters and their respective accelerator cores. In this Multiple-Master Multiple-Worker
approach, the master cores not only act as dispatchers for the local workload but must
also act as routers for messages to be sent from one accelerator core to another one on a
remote die (see Figure 10(a)). This approach can be arranged with the MPMD paradigm (see
Section 2.2.1), where the master cores run a different program (based on MPI plus e.g. MCAPI
calls for the communication) than the accelerator cores (running e.g. a pure MCAPI-based
parallel code). In addition, the master cores may spawn the processes on the local accelerator

cores at runtime and in an iterative manner, in order to assign dedicated subtasks to them.
However, one drawback of this approach is the need for processes running on the master
cores to communicate via two (or even more) application programming interfaces. A further
drawback is the fact, that the master cores are prone to become bottlenecks in terms of
inter-site communication. Another approach would be to base all communication calls of
the applications upon the MPI API so that all cores become part of one large MPI session.
However, also this approach has some drawbacks that, if not taken into account, threaten to
limit the overall performance.

5.1.4 The demand for hierarchy-awareness

First of all, when running one large MPI session that covers all participating cores in a
Many-core Grid, one has to apply a Grid-enabled MPI library that is not only capable of

171Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



22 Will-be-set-by-IN-TECH

routing messages to remote sites but that also must be able to handle the internal on-die
communication in a fast, efficient and thus lightweight manner. Hence, in a first instance
such an MPI library must be able to differentiate between on-die messages and messages to
remote destinations. Moreover, in case of an AMP system, the MPI library should be available
in two versions: a lightweight one (possibly just featuring a subset of the comprehensive MPI
functionalities) customized to the respective Many-core infrastructure, and a fully equipped
one (but possibly quite heavyweight) running on the master cores that also offers, for example,
Grid-related service interfaces (see Section 3.1.2). That way, on-die messages can be passed
fast and efficient via a thin MPI layer that in turn may be based upon another Many-core
related communication interface like MCAPI (see Figure 10(b)). At the same time, messages
to remote sites can be transferred via appropriate local or wide area transport protocols (see
Section 3.1.1) and Grid-related service inquiries can be served. So far, the considered hierarchy
is just two-tiered in terms of communication: on-die and off-die. However, with respect
to hierarchy-awareness, a further level can be recognized when building local clusters of
Many-cores and then interlinking multiple of those via local and/or wide area networks.16

In that case, the respective MPI library has to distinguish between three (or even four) types
of communication: on-die, cluster-internal, (local area) and wide area. Additionally, at each of
these levels, hierarchy-related information should be exploited in order to reduce the message
traffic and to avoid the congestion of bottlenecks. So, for example, the implementation of
collective operations has to take the information about such a deep hierarchy into account (see
Section 3.2.2).

5.2 SCC-MPICH: A hierarchy-aware MPI library for the SCC

Considering the Intel SCC as a prototype for future Many-core processors, the question is:
How can we build clusters of SCCs and deploy them in a Grid environment? In this section,
we want to introduce SCC-MPICH that is a customized MPI library for the SCC developed at
the Chair for Operating Systems of RWTH Aachen University.17 Since SCC-MPICH is derived
from the original MPICH library, just the same as MetaMPICH, it is possible to plug the
SCC-related part of SCC-MPICH18 into MetaMPICH. That way, the building of a prototype
for evaluating the opportunities, the potentials as well as the limitations of future Many-core
Grids should become possible.

5.2.1 An SCC-customized abstract communication device

Although the semantics of RCCE’s communication functions are obviously derived from
the MPI standard, the RCCE API is far from implementing all MPI-related features (see
Section 4.3). And even though iRCCE extends the range of supported functions (and thus
the provided communication semantics), a lot of users are familiar with MPI and hence
want to use its well-known functions also on the SCC. A very simple way to use MPI
functions on the SCC is just to port an existing TCP/IP-capable MPI library to this new
target platform. However, since the TCP/IP driver of the Linux operating system image

16 The resulting architecture may be called a Cluster-of-Many-core-Clusters, or just a true Many-core Grid.
17 At this point we want to mention that by now there also exists another MPI implementation for the

SCC: RCKMPI by Intel (Urena et al., 2011).
18 This is actually an implementation of the non-generic part of an abstract communication device

customized to the SCC (see Section 3.3).

172 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 23

for the SCC does not utilize the fast on-die message-passing buffers (MPBs), the achievable
communication performance of such a ported TCP/IP-based MPI library lags far behind
the MPB-based communication performance of RCCE and iRCCE. For this reason, we have
implemented SCC-MPICH as an SCC-optimized MPI library which in turn is based upon
the iRCCE extensions of the original RCCE communication library.19 In doing so, we have
added to the original MPICH a new abstract communication device (refer back to Figure 7 in
Section 3) that utilizes the fast on-die MPBs of the SCC as well as the off-die shared-memory
for the core-to-core communication. In turn, this new SCC-related communication device
provides four different communication protocols: Short, Eager, Rendezvous and a second Eager
protocol called ShmEager (Clauss, Lankes & Bemmerl, 2011). The Short protocol is optimized
in order to obtain low communication latencies. It is used for exchanging message headers
as well as header-embedded short payload messages via the MPBs. Bigger messages must
be sent either via one of the two Eager protocols or via the Rendezvous protocol. The main
difference between Eager and Rendezvous mode is that Eager messages must be accepted
on the receiver side even if the corresponding receive requests are not yet posted by the

application. Therefore, a message sent via Eager mode can implicate an additional overhead
by copying the message temporarily into an intermediate buffer. However, when using the
ShmEager protocol, the off-die shared-memory is used to pass the messages between the
cores. That means that this protocol does not require the receiver to copy unexpected messages
into additional private intermediate buffers unless there is no longer enough shared off-die
memory. The decision which of these protocols is to be used depends on the message length
as well as on the ratio of expected to unexpected messages (Gropp & Lusk, 1996).

5.2.2 Integration into MetaMPICH

By integrating the SCC-related communication device of SCC-MPICH into MetaMPICH,
multiple SCCs can now be linked together according to the all-to-all approach as well as to
the router-based approach (see Section 3.3.1). However, at this point the question arises how
the SCC’s frontend, that is the so-called Management Console PC (MCPC), has to be considered
regarding the session configuration (see Section 4.2.1). In fact, the cores of the MCPC20 and
the 48 cores of the SCC are connected via an FPGA in such a way that they are contained
within a private TCP address space. That means that all data traffic between the SCC cores

and the outside world has to be routed across the MCPC. In this respect, an SCC system can
be considered as an AMP system where the CPUs of the MCPC represent the master cores
while the SCC cores can be perceived as 48 accelerator cores. In turn, a session of two (or
more) coupled SCC systems must be based on a three-tiered mixed configuration: 1. On-die
communication via the customized communication device of SCC-MPICH; 2. System-local
communication within the private TCP domain; 3. Router-based communication via TCP,
UDT or SCTP as local or wide area transport protocols to remote systems. Figure 11 shows an
example configuration of two linked SCC systems.

19 In fact, the development of iRCCE was driven by the demand for a non-blocking communication
substrate for SCC-MPICH because one cannot layer non-blocking semantics (as supported by MPI)
upon just blocking communication functions (as provided by RCCE), see also Section 2.1.1.

20 Actually, the MCPC is just a common server equipped with common multicore CPUs.

173Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



24 Will-be-set-by-IN-TECH

Fig. 11. Two Linked SCC Systems: Each Consisting of 4 MCPC Cores and 48 SCC Cores

5.2.3 Future prospects

The next step would be to link more than two SCC systems to a real cluster of SCCs and
to deploy them in a Grid environment. However, one major problem is that currently the

SCC cores are not able to communicate directly with the outside world. That means that
all messages must be routed across the MCPC nodes which in turn may become bottlenecks
in terms of communication. Although MetaMPICH supports configurations with more than
one router node per site and allows for a static balancing of the router load, a second major
problem is the link between the MCPC and the SCC cores: Because due to this link, each
message to a remote site has to take two additional process-to-process hops. Therefore, a
smarter solution might be to enable the SCC cores to access the interlinking network in a direct
manner. However, this in turn implies that the processes running on the SCC cores have then
to handle also the wide area communication. So, for example, when performing collective
communication operations, a router process running on the MCPC can be used to collect and
consolidate data locally before forwarding messages to remote sites, thereby relieving the
SCC cores from this task. Without a router process, the SCC cores have to organize the local
part of the communication pattern on their own. Hence, a much smarter approach might
be hybrid: allow for direct point-to-point communication between remote SCC cores and use
additional processes running on the MCPCs to perform collective operations and/or to handle
Grid-related service inquiries. All the more so because such hierarchy-related interaction

with other Grid applications will play an important part towards a successful merge of both
worlds. Although the runtime system of MetaMPICH has already been extended by the
ability to interact with a meta-scheduling service in UNICORE-based Grids (Bierbaum, Clauss,
Eickermann, Kirtchakova, Krechel, Springstubbe, Wäldrich & Ziegler, 2006), the integration
into other existing or future Grid middleware needs to be considered.

6. Conclusion

It is quite obvious that the world of chip-embedded Many-core systems on the one hand and
the world of distributed Grid computing on the other hand will merge in the near future.
With the Intel SCC as a prototype for future Many-core processors, we have even today the
opportunity to investigate the requirements of such Many-core equipped Grid environments.
In this chapter, we have especially focused on the challenges of message-passing in this
upcoming new computing era. In doing so, we have presented the two MPI libraries

174 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 25

MetaMPICH and SCC-MPICH and we have shown how both can be combined in order to
build a Grid-enabled message-passing library for coupled Many-core systems. By means
of this prototype implementation, the evaluation of opportunities, potentials as well as
limitations of future Many-core Grids becomes possible. We have especially pointed out the
demand for hierarchy-awareness to be included into the communication middleware in order
to reduce the message traffic and to avoid the congestion of bottlenecks. As a result, this
approach requires knowledge about the hardware structures and thus related information
and service interfaces. Moreover, even a likewise hierarchical algorithm design for the parallel
applications will probably become necessary. However, in order to keep this chapter focused,
a lot of other very interesting and important aspects could not be covered here. So, for
examples, it is still quite unclear how such hardware-related information can be handled
and passed in a standardized manner. Although the MPI Forum is currently fostering the
upcoming MPI-3 standard, it looks quite unlikely that already the next standard will give
answers to these questions.

7. References

Aumage, O., Mercier, G. & Namyst, R. (2001). MPICH/Madeleine: A True Multi-Protocol
MPI for High Performance Networks, Proceedings of the 15th International Parallel and
Distributed Processing Symposium (IPDPS’01), IEEE CS Press, San Francisco, CA, USA.

Balkanski, D., Trams, M. & Rehm, W. (2003). Heterogeneous Computing With
MPICH/Madeleine and PACX MPI: a Critical Comparison, Chemnitzer
Informatik-Berichte CSR-03-04: 1–20.

Bierbaum, B., Clauss, C., Eickermann, T., Kirtchakova, L., Krechel, A., Springstubbe,
S., Wäldrich, O. & Ziegler, W. (2006). Reliable Orchestration of distributed
MPI-Applications in a UNICORE-based Grid with MetaMPICH and
MetaScheduling, Proceedings of the 13th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’06), Vol. 4192 of Lecture Notes in Computer Science, Springer-Verlag,
Bonn, Germany.

Bierbaum, B., Clauss, C., Pöppe, M., Lankes, S. & Bemmerl, T. (2006). The new
Multidevice Architecture of MetaMPICH in the Context of other Approaches to
Grid-enabled MPI, Proceedings of the 13th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’06), Vol. 4192 of Lecture Notes in Computer Science, Springer-Verlag,
Bonn, Germany.

Brehmer, S., Levy, M. & Moyer, B. (2011). Using MCAPI to Lighten an MPI Load, EE Times
Design Article (online).

Butler, R. & Lusk, E. (1994). Monitors, Messages and Clusters: The P4 Parallel Programming
System, Parallel Computing 20(4): 547–564.

Chan, E. (2010). RCCE_comm: A Collective Communication Library for the Intel Single-Chip

Cloud Computer, Technical report, Intel Corporation.
Clauss, C., Lankes, S. & Bemmerl, T. (2008). Design and Implementation of a

Service-integrated Session Layer for Efficient Message Passing in Grid Computing
Environments, Proceedings of the 7th International Symposium on Parallel and Distributed
Computing (ISPDC’08), IEEE CS Press, Krakow, Poland.

175Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



26 Will-be-set-by-IN-TECH

Clauss, C., Lankes, S. & Bemmerl, T. (2011). Performance Tuning of SCC-MPICH by means of
the Proposed MPI-3.0 Tool Interface, Proceedings of the 18th European MPI Users Group
Meeting (EuroMPI 2011), Vol. 6960, Springer, Santorini, Greece.

Clauss, C., Lankes, S., Bemmerl, T., Galowicz, J. & Pickartz, S. (2011). iRCCE: A
Non-blocking Communication Extension to the RCCE Communication Library for
the Intel Single-Chip Cloud Computer, Technical report, Chair for Operating Systems,
RWTH Aachen University. Users’ Guide and API Manual.

Clauss, C., Lankes, S., Reble, P. & Bemmerl, T. (2011). Evaluation and Improvements
of Programming Models for the Intel SCC Many-core Processor, Proceedings of the
International Conference on High Performance Computing and Simulation (HPCS2011),
Workshop on New Algorithms and Programming Models for the Manycore Era (APMM),
Istanbul, Turkey.

Dickens, P. M. (2003). FOBS: A Lightweight Communication Protocol for Grid Computing,
Processing of the 9th International Euro-Par Conference (Euro-Par’03), Austria.

Dongarra, J., Geist, A., Mancheck, R. & Sunderam, V. (1993). Integrated PVM Framework

Supports Heterogeneous Network Computing, Computers in Physics 7(2): 166–175.
Feng, W. & Tinnakornsrisuphap, P. (2000). The Failure of TCP in High-Performance

Computational Grids, Proceedings of the Supercomputing Conference (SC2000), ACM
Press and IEEE CS Press, Dallas, TX, USA.

Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J., Sahay, V., Kambadur,
P., Barrett, B., Lumsdaine, A., Castain, R., Daniel, D., Graham, R. & Woodall, T. (2004).
Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation,
Proceedings of the 11th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI’04),
Vol. 3241 of Lecture Notes in Computer Science, Springer-Verlag, Budapest, Hungary.

Gabriel, E., Resch, M., Beisel, T. & Keller, R. (1998). Distributed Computing in a
Heterogeneous Computing Environment, Proceedings of the 5th European PVM/MPI
Users’ Group Meeting (EuroPVM/MPI’97), Vol. 1497 of Lecture Notes in Computer
Science, Springer-Verlag, Liverpool, UK.

Geist, A. (1998). Harness: The Next Generation Beyond PVM, Proceedings of the 5th European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI’98), Vol. 1497 of Lecture Notes in
Computer Science, Springer-Verlag, Liverpool, UK.

Gropp, W. (2002). MPICH2: A New Start for MPI Implementations, Proceedings of the 9th
European PVM/MPI Users Group Meeting (EuroPVM/MPI’02), Vol. 2474 of Lecture Notes
in Computer Science, Springer-Verlag, Linz, Austria.

Gropp, W. & Lusk, E. (1996). MPICH Working Note: The Implementation of the
Second-Generation MPICH ADI, Technical Report , Mathematics and Computer
Science Division, Argonne National Laboratory (ANL).

Gropp, W., Lusk, E., Doss, N. & Skjellum, A. (1996). A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard, Parallel Computing
22(6): 789–828.

Gropp, W., Lusk, E. & Skjellum, A. (1999). Using MPI: Portable Parallel Programming with the
Message-Passing Interface, Scientific and engineering computation, second edn, The
MIT Press.

Gropp, W. & Smith, B. (1993). Chameleon Parallel Programming Tools – User’s Manual,
Technical Report ANL-93/23, Argonne National Laboratory.

176 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era 27

Gu, Y. & Grossman, R. (2003). SABUL: A Transport Protocol for Grid Computing, Journal of
Grid Computing 1(4): 377–386.

Gu, Y. & Grossman, R. (2007). UDT: UDP-based Data Transfer for High-Speed Wide Area
Networks, Computer Networks 51(7): 1777–1799.

Hessler, S. & Welzl, M. (2007). Seamless Transport Service Selection by Deploying a
Middleware, Computer Communications 30(3): 630–637.

Imamura, T., Tsujita, Y., Koide, H. & Takemiya, H. (2000). An Architecture of STAMPI:
MPI Library on a Cluster of Parallel Computers, Proceedings of the 7th European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI’00), Vol. 1908 of Lecture Notes in
Computer Science, Springer-Verlag, Balatonfüred, Hungary.

Intel Corporation (2010). SCC External Architecture Specification (EAS), Technical report, Intel
Corporation.

Kamal, H., Penoff, B. & Wagner, A. (2005). SCTP versus TCP for MPI, Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’05), ACM Press and IEEE CS Press,
Seattle, WA, USA.

Karonis, N., Toonen, B. & Foster, I. (2003). MPICH-G2: A Grid-enabled implementation of the
Message Passing Interface, Journal of Parallel and Distributed Computing 63(5): 551–563.

Kielmann, T., Hofmann, R., Bal, H., Plaat, A. & Bhoedjang, R. (1999). MagPIe: MPI’s Collective
Communication Operations for Clustered Wide Area Systems, Proceedings of the 7th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM
Press, Atlanta, GA, USA.

Matsuda, M., Ishikawa, Y., Kaneo, Y. & Edamoto, M. (2004). Overview of the GridMPI Version
1.0 (in Japanese), Proceedings of Summer United Workshops on Parallel, Distributed and
Cooperative Processing (SWoPP’04).

Mattson, T. & van der Wijngaart, R. (2010). RCCE: a Small Library for Many-Core
Communication, Technical report, Intel Corporation. Users’ Guide and API Manual.

Mattson, T., van der Wijngaart, R., Riepen, M., Lehnig, T., Brett, P., Haas, W., Kennedy, P.,
Howard, J., Vangal, S., Borkar, N., Ruhl, G. & Dighe, S. (2010). The 48-core SCC
Processor: The Programmer’s View, Proceedings of the 2010 ACM/IEEE Conference on
Supercomputing (SC10), New Orleans, LA, USA.

Message Passing Interface Forum (2009). MPI: A Message-Passing Interface Standard – Version

2.2, High-Performance Computing Center Stuttgart (HLRS).
Multicore Association (2011). Multicore Communications API (MCAPI) Specification, The

Multicore Association.
Nagamalai, D., Lee, S.-H., Lee, W. G. & Lee, J.-K. (2005). SCTP over High Speed Wide Area

Networks, Proceedings of the 4th International Conference on Networking (ICN’05), Vol.
3420, Springer-Verlag, Reunion, France.

Pierce, P. (1988). The NX/2 Operating System, Proceedings of the 3rd Conference on Hypercube
Concurrent Computers and Applications, ACM Press, Pasadena, CA, USA.

Pöppe, M., Schuch, S. & Bemmerl, T. (2003). A Message Passing Interface Library for
Inhomogeneous Coupled Clusters, Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS’03), IEEE CS Press, Nice, France.

Sivakumar, H., Bailey, S. & Grossman, R. L. (2000). PSockets: The Case for Application-level
Network Striping for Data Intensive Applications using High Speed Wide Area
Networks, Proceedings of the High Performance Networking and Computing Conference
(SC2000), ACM Press and IEEE CS Press, Dallas, TX, USA.

177Hierarchy-Aware Message-Passing in the Upcoming Many-Core Era

www.intechopen.com



28 Will-be-set-by-IN-TECH

Skjellum, A. & Leung, A. (1990). Zipcode: a Portable Multicomputer Communication
Library atop the Reactive Kernel, Proceedings of the 5th Distributed Memory Concurrent
Computing Conference, IEEE CS Press, Charleston, SC, USA.

Stevens, R., Fenner, B. & Rudoff, A. (2006). UNIX Network Programming – The Socket Networking
API, Vol. 1, third edn, Addison-Wesley.

Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla,
M., Zhang, L. & Paxson, V. (2007). Stream Control Transmission Protocol, Request for
Comments (RFC) 4960, Network Working Group.

Tanenbaum, A. (2008). Modern Operating Systems, third edn, Prentice-Hall.
Urena, I. A. C., Riepen, M. & Konow, M. (2011). RCKMPI - Lightweight MPI Implementation

for Intel’s Single-Chip Cloud Computer (SCC), Proceedings of the 18th European MPI
Users Group Meeting (EuroMPI 2011), Vol. 6960, Springer, Santorini, Greece.

Vajda, A. (2011). Programming Many-Core Chips, Springer.
Welzl, M. & Yousaf, M. (2005). Grid-Specific Network Enhancements: A Research Gap?,

International Workshop on Autonomic Grid Networking and Management (AGNM’05),

IEEE CS Press, Spain.
Wilkinson, B. & Allen, M. (2005). Parallel Programming: Techniques and Applications Using

Networked Workstations and Parallel Computers, second edn, Prentice-Hall.
Winer, D. (1999). XML-RPC Specification, UserLand, Inc.
Winett, J. M. (1971). The Definition of a Socket, Request for Comments (RFC) 147, Massachusetts

Institute of Technology, USA.

178 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carsten Clauss, Simon Pickartz, Stefan Lankes and Thomas Bemmerl (2012). Hierarchy-Aware Message-

Passing in the Upcoming Many-Core Era, Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons, Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3, InTech, Available from:

http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-and-

new-horizons/hierarchy-aware-message-passing-in-the-upcoming-many-core-era



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


