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1. Introduction 

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal-dominant late-onset human 
genetic disease (Brais et. al, 1998). The symptoms usually appear around the age of fifty, and 
are characterized by drooping of the eyelid and swallowing difficulties. Both conditions 
may progress until the eyelid nearly or completely covers the eyeball (ptosis) and the ability 
to swallow is lost (dysphagia). In addition, patients suffer from proximal limb weakness; 
muscles of the shoulder and hip girdles may also gradually become weak. OPMD is highly 
prevalent amongst the French Canadian population of the Quebec province where almost 
one in every one thousand people is a carrier. In contrast only one in 100,000 people in 
Europe, including France is a carrier of OPMD. All cases of OPMD in Quebec could be 
traced to a single ancestor in the 15th century (Brunet et. al., 1990). OPMD is also more 
common amongst Bukhara Jews (Blumen et. al., 200). Possibly due to mass immigration 
during the 16th to 17th century, OPMD spread from Europe to many parts of the world (Hill 
et. al, 2001). OPMD patients have also been reported in Mexico, Thailand, Japan and China 
(Rivera et. al., 2008; Uyama et. al., 2000; Witoonpanich et.al., 2004; Ye et. al., 2011). A de 
novo germ line mutation has also been found in a Swiss OPMD patient (Gurtler et. al., 2006). 

The mutation causing OPMD has been mapped to the gene encoding the nuclear poly (A) - 
binding protein PABPN1 at the short arm of chromosome 14 (14q11) of the human genome 
(Brais et. al., 1998). The human PABPN1 gene contains six GCG repeats following the AUG 
initiation codon. In OPMD patients expansion of the six GCG repeats to between 8-13 
repeats have been found. A short poly alanines tract consisting of ten alanines is present at 
the N-terminal end of normal PABPN1. Six of these ten alanines are encoded by GCG while 
the last four alanines are coded by GCA. Compared to other trinucleotide expansion 
mutations such as the CAG expansion in Huntington’s disease, the GCG expansion in 
OPMD is very modest and genetically stable. Mutations introducing two or more alanines 
are dominant whereas a single additional alanine expansion is recessive. Generally, the 
homozygous mutations exhibit more severe phenotypes than the heterozygotes. The 
severity of the disease increases with the increasing length of the GCG expansion, and also 
results in earlier onset of the disease (Messaed & Rouleau, 2009). The precise mechanism of 
trinucleotide repeat expansion in OPMD and other neurodegenerative diseases such as the 
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Huntington is not clear. A slippage model, where the newly synthesized DNA strand 
dissociates and translocates to a new pairing position during DNA replication has been 
proposed. Perhaps this misalignment of the nascent strand in the repetitive tract results in 
the addition or deletion of repeats. Because of the stable nature of the GCG trinucleotide 
repeats of PABPN1 gene this model may not be applicable for the generation of mutation in 
OPMD patients. Unequal cross over during DNA replication may be the underlying 
mechanism for (GCG) repeat. 

2. Structure and cellular function of PABPN1 

Mammalian PABPN1 is a highly conserved nuclear RNA binding protein of 32.8 kDa with 
specificity for the poly (A) tract of eukaryotic mRNAs (Figure 1). It consists of one typical 
RRM domain with consensus RNP1 and RNP2 motifs in the central region of the 
polypeptide, separating the acidic glutamine rich N-terminal domain from the more basic 
arginine rich C- terminal domain (Kuhn et. al., 2003). The RNP domain and the C-terminal 
region of PABPN1 are required for binding to both RNA and its polypeptide partners. 
Interestingly the RNP domain of PABPN1 has no sequence similarity with the RNA binding 
domain of the cytoplasmic poly (A) - binding protein PABPC1 or other RNA binding 
proteins (Kuhn et. al., 2003). Recent crystal structure analyses of human PABPN1 suggest 
that PABPN1 RRM adopts a fold similar to canonical RRM structure consisting of a four 
stranded antiparallel ǃ-sheet structure spatially arranged as ǃ4ǃ1ǃ3ǃ2. However, the fold of 
the third loop and dimerization of the crystal are distinct features of PABPN1 (Ge et. al., 
2008).The nuclear localization signal is located between amino acids 289-306 and overlaps 
with the oligomerization domain ( Abu-Baker et.al., 2005; Calado et.al., 2000). Due to the 
presence of the alanine tract PBPN1 is prone to aggregate formation. However, the 
polyalanine tract is not conserved, and is absent in Drosophila without any detectable loss of 
cellular function (Shinchuk et.al., 2005 ). 

 

Fig. 1. Schematic diagram of various domains of PABPN1 

The main cellular function of PABPN1 is to stimulate the elongation of poly (A) tract of 
eukaryotic mRNA, and at the same time control its length (Wahle, 1995). After the first ten 
adenine residues have been added PABPN1 binds to it as a monomer, and as the length of 
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the poly (A) tract increases additional PABPN1 assembles on the tract at a packing density 
of 15 adenines per PABPN1 molecule (Bienroth et. al., 1993; Kuhn & Wahle, 2004; Wahle, 
1995). Both cleavage and poly adenylation specific factor (CPSF) and PABPN1 stimulate the 
activity of poly (A) polymerase by mutually stabilizing their interaction with mRNA in a 
transient complex. Although both CPSF and PABPN1 alone can stimulate the 
polyadenylation by poly (A) polymerase but the extension of the 3` end is much faster when 
both are present. When the poly (A) tail length has reached 250-300 nucleotides, further 
extension of the poly (A) tract becomes very slow (Wahle, 1995). The oligomerization of 
PABPN1 is functionally important and may serve as a molecular ruler to determine the 
length of the poly (A) tract (Keller et. al., 2000). The wild type PABPN1 exists in equilibrium 
as monomers, dimmers and oligomers and filamentous complexes (Nemeth et. al., 1995). 
Expansion of the poly alanine tract in OPMD mutant PABPN1 enhances its aggregation 
property. However, no loss of cellular function due to this mutation has been detected 
(Messaed & Rouleau, 2009). In addition, PABPN1 can associate with RNA polymerase II 
along the chromatin axis before or shortly after the transcription initiation, and the assembly 
of PABPN1 on the poly (A) tract may be coupled to transcription (Bear et. al., 2003). Studies 
have shown that PABPN1 remains associated with the released mRNA-protein complex 
(mRNP) until it reaches the cytoplasmic side of the nuclear pore. Very little PABPN1 is 
present in the cytoplasmic side of the nuclear envelope suggesting perhaps during or 
shortly after passage through the nuclear pore PABPN1 is displaced by PABPC1 ( Abu-
Baker et. al., 2005; Afonia et. al, 1998; Calado et. al., 2000; Kraus et.al., 1994) . PABPN1 has 
also been shown to interact with the SKI-binding polypeptide (SKIP) transcription factor 
and stimulate myogenesis (Kip et. al., 2001). Depletion of PABPN1 in myoblasts prevents 
myogenesis and reduces the length of the poly (A) tract of mRNAs (Apponi et. al., 2010 ). 
Because, of the vital role of PABPN1 in mRNA metabolism it is not certain that whether the 
observed effect on myogenesis was related to a specific effect on myogenesis or due to 
impairment of global mRNA metabolism. The poly A extension mutant of PABPN1 appears 
to function normally in pol(A) tail elongation process. Since PABPN1 can interact with both 
RNA and polypeptide partners, like other RNA binding proteins additional interacting 
partners such as micro RNAs and signaling polypeptides may soon be detected to suggest 
additional cellular functions for PABPN1 . 

3. Pathology of OPMD 

The most distinctive feature of OPMD is the presence of intranuclear filamentous inclusions 
in skeletal muscle fibers. The inclusions are composed of aggregates of mutant PABPN1 and 
several additional proteins which will be discussed later. The filaments are less than 0.25 nm 
long tubular in structures with an average outer diameter of 8.5 nm and an inner diameter 
of 3 nm. Approximately 2-5% of nuclei of skeletal muscle cells of OPMD patients show the 
presence of nuclear inclusions (Tome et. al., 1997). The myo-pathological patterns of OPMD, 
which progress with age include variations in the diameter of muscle fibers; increase in the 
number of internal nuclei; and increased presence of endomysical connective tissues. Also, a 
variable number of typical rimmed vacuoles are found in OPMD muscle fibers (Uyama et. 
al., 2000). Recently, neuro-pathological abnormalities have also been described in some 
OPMD patients (Boukriche et. al., 2002). Recent studies using a transgenic mouse model of 
OPMD severe muscular atrophy of the fast glycolytic muscles were observed. 
Transcrsiptome analyses of the OPMD mouse muscle showed deregulation of a large 
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number of genes by expression of OPMD mutant PABPN1 but not by the wild type 
PABPN1, and approximately one third of the affected genes were associated with muscle 
atrophy (Trollet et. al., 2010). There is a strong correlation between the presence of intra 
nuclear inclusions (INI) and the PABPN1 mutation. All patients whose muscle biopsy 
showed 8.5nm intranuclear filaments have expanded PABPN1 alleles (Bao et. al., 2002). This 
view was further supported by the formation of large mutant PABPN1 aggregates similar to 
the INI in cell culture models ectopically expressing human PABPN1. In cell culture models 
over expression of both wild type and mutant PABPN1 resulted in aggregate formation 
(Tavanez et. al., 2005). However, the wild type PABPN1 formed aggregates more slowly 
than what was observed with the poly alanine expanded mutant PABPN1 (Schinchuk et.al., 
2005). More apoptotic cell death was also observed in cells with mutant PABPN1 aggregates 
(Bao et. al., 2002; Fan et. al., 2001; Tavanez et. al., 2005).  

4. Misfolded protein aggregates  

Misfolding of proteins may lead to formation of protein aggregates. This process could be 

triggered by many factors including oxidative and temperature stresses. In addition, point 

mutations and expansion of poly alanine or poly glutamine tracts may increase aggregation 

by favoring the assembly of the unfolded or partly folded monomers into the early pre-

fibrillar species which can turn into aggregates with more distinctive morphologies called 

protofilaments or protofibrils. The protofibrils may act as seeds where other misfolded 

polypeptides are recruited to form insoluble fibrillar aggregates (Chiti et. al., 2003). For 

many years it was believed that the ability to form amyloid fibrils is limited to small number 

of proteins. However, more recent studies have uncovered that for some proteins the 

fibrillar aggregates represent a biochemically active form. For examples the aggregated 

fibers known as curli produced by E. coli is important for cell adhesion (Chapman et. al., 

2002); yeast prion Sup35, a translation termination factor (eRF3) forms aggregates (Tuite et. 

al., 2011 ). Many studies support a role of Aǃ amyloid aggregates in sealing capillaries 

following traumatic injuries (Atwood et. al., 2003). Studies have shown that Aplysia 

cytoplasmic poly adenylation element binding protein (CPEB) exists in two different 

structural isoforms, one being the soluble isoform and the other as a prion like protein 

aggregates, and interestingly the CPEB prion is involved in stimulating synaptic growth and 

long term memory (Si et. al., 2003 ). It is therefore, conceivable that the poly alanine 

expansion of PABPN1 results in a gain of function(s). Most RNA binding polypeptides, are 

capable of participating in a variety of cellular processes, thus it is likely that the OPMD 

mutation of PABPN1 results in the loss of some cellular functions while gaining one or more 

new biological activity. Future research needs to be directed towards unraveling additional 

cellular functions for both mutant and the wild type PABPN1. 

Studies using synthetic peptides consisting of varying lengths of the homopolymeric 
alanines were used to determine the length of the alanines tract that leads to inclusions. 
Conformational transition to insoluble aggregates was found to depend on the length as 
well as concentration, temperature, and incubation time. No ǃ sheet complex was detected 
with less than 8 alanines while ala 10- 15 showed significant conversion of monomeric 
peptides to ǃ-sheet aggregates. Homopolymers of 15 or more alanines residues showed the 
highest conversion to aggregates under all conditions examined (Schinchuk et. al., 2005). 
These results agree with the in vivo observations that the OPMD mutant PABPN1 is more 
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prone to form aggregates than the wild type PABPN1. In vitro studies also showed that fibril 
formation can be induced by low amounts of both mutant and wild type fibrils serving as 
seeds. Atomic force microscopy revealed morphlogic differences between wild type and 
mutant fibrils. In addition, the wild type fibrils were less resistant to solubilization by 
chaotropic agent guanidinium thiocyanate than what was observed for the mutant fibrils. 
Examination of the kinetics of fibril formation with PABPN1 fragments containing the 
polyalanine tract in real time using tryptophan fluorescence suggest that fibril formation 
coincides with the burial of the tryptophans in the fibrillar core. These studies did not detect 
any soluble pre-fibrillar intermediates suggesting that the unfolded soluble form directly 
converts into folded insoluble structure (Schinchuk et. al., 2005).  

5. Cellular stress and PABPN1 aggregates 

A variety of cellular stresses results in the formation of misfolded proteins, and in order to 
maintain cell viability and subsequent recovery when physiologically favorable conditions 
return most organisms produce a family of chaperones known as the heat shock proteins 
(HSPs) which helps the proper folding process (Daugaard et. al., 2007 ). It appears that the 
presence of mutant PABPN1 aggregates but not the wild type cohort in the nuclei produces 
a modest stress response resulting in the increase of HSP70 expression. Treatment of cells 
with indomethacin or ZnS04 augmented the stress response and further induction of HSP70 
expression was observed (Figure 2). In addition, expression of HSP27, HSP40 and HSP105 
also increased. Both ibuprofen and ZnS04 treated cells showed reduced level of protein 
aggregates and apoptotic cell death. Furthermore, in the drug treated cells all four HSPs 
were colocalized with the PABPN1 (Wang & Bag, 2008). These results suggest that HSPs 
interact with misfolded PABPN1 and are able to dissociate the aggregates by refolding it 
into its native form. Similar results were obtained by heat shock treatment of cells and over 

 

Fig. 2. Effect of different agents on aggregate formation by PABPN1-A17–GFP. HeLa cells 
were transfected with the PABPN1-A17–GFP expression vector and 48 hours after 
transfection, cells were treated with the indicated agents for 6 h and following a 24 h 
recovery period cells were examined for green fluorescence by confocal microscopy. HSP70 
was detected by immunofluorescence with Texas red conjugated secondary antibody. 

www.intechopen.com



 
Muscular Dystrophy 

 

30

expression of HSP70 alone (Bao et. al., 2002’ Wang et. al., 2005; Wang & Bag, 2008). Studies 
in our laboratory showed that deletion of the ATPase domain of HSP70, which is important 
for its chaperone function abolishes its ability to dissociate the mutant PABPN1 aggregates 
(unpublished).  

6. Effect of PABPN1 on myogenesis 

Despite the essential cellular function of PABPN1 in biogenesis of mRNA the pathologic 
symptoms are only seen in a restricted group of skeletal muscles such as the extraocular and 
pharyngeal muscles. Therefore, in addition to its role in mRNA biogenesis PABPN1 may be 
needed for proper differentiation of myogenic cells, which may be lost in mutant PABPN1 
due to expansion of the poly alanine tract. Studies using a myoblast cell culture model 
showed that over expression of PABPN1 facilitates differentiation of myoblasts into 
myotubes (Kim et. al., 2001). PABPN1 has been shown to interact with SKIP which share 
significant homology to several transcriptional co activators such as Bx42 of Drosophila 
melanogaster (Wieland et. al., 1992), and mammalian NcoA-62 (Baudino et. al., 1998). SKIP 
appears to co-operate with PABPN1 in stimulating E box mediated tarnscription in presence 
of myoD by forming a hetero trimeric complex (Kim et. al., 2001. The N terminal domain of 
PABPN1 alone is necessary for interacting with SKIP. The C terminal domain including the 
RNA binding domains of PABPN1 are dispensable for its role in myogenesis (Kim et.al 
2001). Although the poly alanine expanded PABPN1 also binds to SKIP in vitro (Tavanez et. 
al., 2009) it is not clear whether it can cooperate with MyoD to stimulate E box regulated 
transcription. However, this prospect is conceivable because of the location of poly alanines 
expansion is within the SKIP binding domain of PABPN1. 

In addition to a loss of function in myogenesis the mutant PABPN1 may also gained a 
function albeit fortuitously, by trapping essential myogenic factors. Studies from our 
laboratory have indeed supports this hypothesis. We have shown that both myf 5 and Pax 3 
co-localize with mutant PABPN1 aggregates but not with the wild type PABPN1 (Figure 3). 
Ectopic expression of wild type PABPN1 in C2C12 mouse myoblasts had a small beneficial 
effect on the expression level of various muscle specific proteins including myoD, 
myogenin, muscle creatine kinase, ǂ-actin and slow troponin C. In contrast, expression of 
mutant PABPN1 reduced the abundance of those proteins (Figure 4) (Wang & Bag 2006). 

The experimental results discussed above may explain why skeletal myogenesis could be 
affected but very little is known regarding specific targeting of the craniofacial muscles. To 
address this issue it has been proposed that continuous remodeling of the extraocular 
myofibers could result in selective loss of this muscle cells (Wirtschafter et. al., 2004). Since 
in vivo myonuclei of most skeletal muscles are post mitotic, therefore, continuous myofiber 
remodeling in extraocular muscle will require upregulation of genes in cell cycling and 
renewal of differentiated muscle cells (Wirtschafter et. al., 2004). The negative effect of 
mutant PABPN1 on myogenesis would show more pronounced effect on muscles that 
require more frequent rejuvenation than the other skeletal muscles over many years. 

7. Protein aggregates and cell death 

A direct connection between protein aggregation and cell death is controversial (Andrew et. 

al., 2000; Fan & Rouleau, 2003; Rubinsztein, 2002). Studies using live cell imaging have 
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Fig. 3. Co-localization of Pax3/7 and Myf-5 in PABPN1-A17-GFP-transfected cells. Cells 
grown on coverslips were transfected and 48 h after transfection cells were fixed in 
methanol and incubated with the appropriate antibody. The green fluorescence of PABPN1-
GFP and the red fluorescence of Texas red-conjugated secondary antibody were observed by 
fluorescence microscopy. 

 

Fig. 4. Expression of muscle-specific proteins in PABPN1-A10 (or A17)-GFP-transfected 
cells. Cells were transfected with the appropriate Plasmid DNA after 2 days in the 2 days 
inthe differentiation medium, cells were lysed and the levels of various muscle proteins, 
were determined by Western blotting using jappropriate antibodies The Western blots were 
scanned and the levels of muscle proteins in transfected cells were determined and 
corrected for the difference in loading and transfection efficiency. The polypeptide levels in 
PABPN1-A17-GFP-transfected cells relative to that of the PABPN1-A10-GFP expressing cells 
are given at the bottom of each lane. 
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shown that cells expressing poly glutamine expanded huntingtin survives better than those 

without aggregates. It is believed that aggregation sequesters this protein and improves cell 

survival whereas the soluble oligomeric form of mutant huntingtin is more toxic to the cell 

(Arresate et. al., 2004). Whether the same is true for PABPN1 is not clear. The wild type 

PABPN1 naturally exists in a functional oligomeric form and is also present as aggregates in 

the speckles but these are not known to cause cell death. Two overlapping oligomerization 

domains are found within the C-terminal region of PABPN1. These domains are necessary 

for oligomerization and aggregation. Therefore, if the oligomeric form of mutant PABPN1 is 

toxic to the cell it must assume a different structure than that of the wild type protein. 

Indeed this may be the case since the sub nuclear location of wild type and mutant PABPN1 

are different. The wild type PABPN1 was shown by immuno fluorescent microscopy to co-

localize with the splicing factor SC35 and the nuclear matrix associated protein PML while 

the mutant PABPN1 did not (Messaed et. al., 2007; Tavanez et. al., 2005). However, this 

observation is paradoxical since both proteins seems to function normally in the poly 

adenylation process, and presence of wild type PABPN1 in the speckles is related to its role 

in transcription and splicing coupled polyadenylation. In contrast to the pro-apoptotic effect 

of mutant PABPN1 the wild type PABPN1 demonstrated anti-apoptotic function in 

mammalian cells. The wild type PABPN1 apparently up regulates the translation of anti 

apoptotic protein X-linked inhibitor of apoptosis (XIAP) which prevents activation of 

caspase 3 by inhibiting caspase 9 (Davies & Rubinsztein, 2011 ). Thus a loss of anti-apoptotic 

function of mutant PABPN1 may be responsible for cell death in OPMD muscles. 

Several studies using cultured non-muscle cells as experimental models showed that 

strategies that reduced protein misfolding also decreased aggregate formation and cell 

death. Ectopic expression of the molecular chaperones HSP40 and HSP70 in cells transfected 

with the mutant PABPN1 reduce aggregate formation and cell death (Abu_Baker et. al., 

2003; Bao et. al., 2002; 2004). Also anti-amyloid compounds such as Congo red and 

doxycyclin can reduce PABPN1 aggregate formation and cell death in a cell culture model 

(Bao et. al., 2004). We have shown that ZnSO4, 8-hydroxyquinoline, indomethacin and 

ibuprofen induced HSP 70 expression, and nuclear localization of both HSP70 and the 

constitutive chaperone HSC 70 in mutant PABPN1 expressing HeLa cells, and reduced the 

formation of mutant PABPN1 aggregates and cell death (Wang et. al., 2005)  

In several chronic neurodegenerative disorders including Alzheimer's, Huntington's, and 

Parkinson's, caused by the formation of protein aggregates, there is evidence that 

programmed cell death (apoptosis) may be involved (Desjardins & Ledoux, 1998). Apoptotic 

cell death has also been observed in cell models and transgenic mouse models of OPMD 

(Fan & Rouleau, 2003; Hino et. al., 2004; Dion et. al., 2005). However, the molecular 

mechanisms causing apoptosis remain elusive. Many studies suggest that in the aggregate 

containing cells, apoptosis proceeds through the up regulation of the tumor suppressor 

protein p53 (Bae et. al., 2005; Biswas et. al., 2005; Hooper et. al., 2007). Stabilization of p53 

within the cell further leads to the activation of down stream proteins like PUMA (p53-

upregulated modulator of apoptosis), Bax (Bcl-2-associated X protein) and Bad (Bcl-2-

associated death promoter) that change the permeability of mitochondrial and endoplasmic 

reticulum membranes (Biswas et. al., 2005; Mattson, 2004). These events lead to the release 

of cytochrome C from mitochondria and calcium from the ER, which further activates the 
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enzyme called caspase (Mattson, 2004). The cascades of proteolytic activities initiated by 

caspases are believed to trigger various morphological and biochemical aspects of the cell 

death process. Furthermore, in Huntington’s disease, the GAPDH-Siah1 apoptotic pathway 

(Hara et. al., 2005) facilitates nuclear translocation of mHtt protein and the resultant 

neurotoxicity (Bae et. al., 2006). In addition to mitochondrial alterations, ER stress, due to 

the presence of misfolded polyglutamine has also been linked to the cell death in 

Huntington’s and Alzheimer’s disease models (Zhao & Ackerman, 2006). 

We have demonstrated that although in OPMD cell death is restricted to a sub class of 

skeletal muscles, non muscle cells in culture also underwent apoptosis. This was not 

unexpected since PABPN1 is ubiquitously expressed. We found that in HeLa cells 

aggregation of the poly alanine expansion mutant PABPN1, favors apoptosis over necrosis 

or ER stress as cell death pathway. At the molecular level, cascades of biochemical events 

lead to apoptotic cell death due to the accumulation of mutant PABPN1 aggregates. Our 

results suggest that the apoptotic response to the accumulation of mutant PABPN1 

aggregates was initiated by nuclear translocation of the glycolytic enzyme GAPDH. In the 

last decade several studies have shown that GAPDH is a multi-functional protein (Chuang 

et. al., 2005). This enzyme usually resides in the cytoplasm as a tetrameric active enzyme. As 

a response to cellular stress, the catalytic cysteine 150 of GAPDH is S-nitrosylated by nitric 

oxide, generated by the induction of inducible nitric oxide synthase (iNOS). It has been 

shown that Nitrosylated GAPDH binds to Siah1, an E3 ubiquitin ligase, and is transported 

to the nucleus as an inactive enzyme by piggy backing Siah1 (Hara et. al., 2005). The 

downstream target of GAPDH in the nucleus is p53 (Sen et. al., 2008). In our study, 

following ectopic expression of mutant PABPN1, we observed that the abundance of total as 

well as phosphorylated p53 was increased (Figure 5). p53 a tumor suppressor protein with 

wide ranging biological function including cell cycle arrest, apoptosis, and its abundance is 

known to increase in response to a variety of cellular damage (Green & Kroemer, 2009). In 

cells under stress, post translational modifications, especially phosphorylation and 

acetylation contribute to p53 stabilization and hence its activation (Sakaguchi et. al., 1998). It 

has been proposed that phosphorylation of p53 at ser 46 modulate the p53 gene promoter 

selection thereby dictating the fate of the cell to undergo p53 mediated apoptosis and/or 

growth arrest (Mayo et. al., 2005). The importance of phosphorylation in p53 mediated 

apoptosis was further underlined, by demonstrating that mutation of Ser46 to Ala decreases 

the ability of p53 to induce apoptosis (Oda et. al., 2000). It is known that p53 mediated 

apoptosis can be carried out by both transcription dependant and independent manner 

(Chuang et. al., 2005; Pietsch et. al., 2008). We found that in mutant PABPN1 cells, 

abundance of p53 and its phosphorylated isoform (p-p53) increases (Figure 5). Furthermore 

we also observed a redistribution of p53 in the nucleus and the mitochondria of mutant 

PABPN1 transfected cells (Figure 6). There was also a concomitant rise in the p53 

transcription targeted pro apoptotic protein: Puma (Figure 5). 

Thus, it appears that in mutant PABPN1 cells, activated p53 could be translocated to the 

nucleus and triggered the transcription dependant apoptosis (Wang et. al., 2007). This might 

be the reason why we did not observe acetylation of p53, since p53 acetylation occurs 

predominantly in transcription independent apoptosis (Yamaguchi et. al., 2009). However, 

both the transcription dependant and independent pathways are not necessarily mutually 
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Fig. 5. PABPN1-A17 upregulates p53 and p53 mediated transcription: Following 
transfection, cells were harvested after 72 hours in SDS loading buffer. Whole cells extracts 
from PABPN1-A10, 17–GFP and mock-transfected HeLa cells were analyzed for apoptosis 
related proteins by western blotting. ǃ-actin and GAPDH were used as loading controls.  

exclusive. In fact, it has been suggested that the transcription dependent nuclear action of 

p53 cooperates with its transcription-independent, cytosolic/ mitochondrial action through 

activation of the PUMA gene (Chipuk et. al., 2005). Upon activation, Puma triggers 

apoptosis by releasing the p53 from its association with Bcl2 to activate Bax (Uo et. al., 

2007;Wang et. al., 2007; Zhang et. al., 2009). Puma may also directly interact with Bax, 

promoting its mitochondrial translocation (Chipuk et. al., 2004; Zhang et. al., 2009). Puma 

may release p53 from its complex with Bcl2. The released p53 then could oligomerize the 

monomeric Bax in the cytosol causing the latter to induce mitochondrial outer membrane 

permeabilization (MOMP) (Dewson et. al., 2003; Jurgensmeier et. al., 1998). The activation of 

Bax by p53 is known to occur by a ‘hit and run’ style transient molecular associations 

(Chipuk et. al., 2004; Moll et. al., 2006; Green & Kroemer, 2009; Pietsch et. al., 2008). 

It will be important to examine if a similar apoptotic signal contributes to cell death in 

muscle cells. In a recent study with the OPMD mouse model over-expression of Bcl2 rescued 

muscle weakness and apoptosis (Davies & Rubinsztein, 2011), therefore suggesting a similar 

Bax/Bcl2 pathway for apoptosis in both muscle and non-muscle cells. However, in the 

OPMD mouse the effect of Bcl2 on muscle weakness was transient, thus other cell death 

pathways may also contribute to cell death when Bax is inactivated by Bcl2. It is conceivable 

in the light of our observations in HeLa cells that increase in p53 level might eventually 

release Bax from Bcl2 mediated inactivation by sequestering Bcl2.  

There are several pathways for apoptosis. The precise mechanism of apoptosis depends on 

developmental programs and the nature of the inducer (Green & Kroemer, 2009; Pietsch et. 

al., 2008). The Puma/Bax dependent pathway is usually triggered by a variety of cellular 
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stress such as heat shock and oxygen stress (Uo et. al., 2007; Zhang et. al., 2009). The results 

of our study suggest that accumulation of misfolded protein aggregates also induces stress 

related apoptosis. In this context it is interesting to note that as discussed in a previous 

section a small but reproducible induction of a number of heat shock proteins including 

HSP70, HSP27, HSP40, and HSP105 was observed in mutant PABPN1 expressing cells 

(Wang & Bag 2008). Furthermore, all of these HSPs were found to be translocated to the cell 

nucleus and co-localize with the mutant PABPN1 aggregates. Further induction of HSPs 

using ibuprofen or indomethacin was shown to reduce the aggregate burden and apoptosis 

in mutant PABPN1 expressing cells (Wang & Bag 2008). HSP 70 has been shown to prevent 

heat stress induced apoptosis in cultured cells by preventing Bax translocation without 

directly interacting with Bax (Stankiewicz et. al., 2005). The mechanism how HSP70 

induction with ibuprofen in mutant PABPN1 expressing cells prevents cell death will be of 

interest for further investigation. 

 The accumulated evidence supports a biochemical catastrophe model where loss of 

function combined with adventitious gain of function due to poly alanine expansion leads to 

cell death. The gain of function includes but not limited to increased aggregate formation, 

interaction with HSPs, trapping of various transcription factors and mRNAs. In studies 

using mtHtt aggregate formation in C. elegans it was shown that presence of mtHtt 

aggregates interferes with proper folding of normal cellular proteins and cell death could 

result from not only the aggregate burden of the mutant protein but also by the misfolding 

of many normal proteins which results in at the least reduction in the abundance of 

biologically active important cellular proteins (Gidalevitz et. al 2006). Since most studies 

measured protein abundance using western blotting techniques which does not measure the 

level of biological activity of the protein these changes has remained under explored.  

The following hypotheses might explain the late onset and specificity of cellular targets in 

vivo of OPMD mutation: I) although aggregates can be cleared through proteasome 

degradation pathway, this pathway is not sufficient to completely prevent accumulation of 

aggregates; ii) aging is also associated with collapse of protein homeostasis resulting in 

accumulation of misfolded normal cellular proteins (Taylor & Dillin, 2011) and when this is 

combined with a mutation in an aggregate prone protein such as the PABPN1, it greatly 

increases accumulation of both mutant PABPN1 and many normal nuclear proteins in the 

intranuclear aggregates; iii) aging may also affect the ability to clear the aggregates through 

proteasome mediated decay; iv) although both muscle and non muscle cells undergo 

apoptosis, non-muscle cells are renewed through stem cells, in contrast since myogenesis is 

affected due to loss of function of mutant PABPN1, regeneration of differentiated muscle 

cells are affected; iv) skeletal muscles in adults are renewed only when injury occurs but in 

contrast the adult extraocular muscles undergo continuous remodeling (Wirtschafter et. al., 

2004), therefore, extraocular muscles are more susceptible to the loss of myogenic role of 

mutant PABPN1. 

8. Novel therapies for OPMD 

Mouse and Drosophila models have been used to develop new therapies to treat OPMD. 

Administration of anti-amyloid agent doxycyclin to OPMD mice significantly reduced 
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aggregate formation in muscle cells. In addition to its anti-amyloid properties doxycyclin 

also acts as an anti apoptotic agent to protect muscle cells (Davies et. al., 2006; 2008). In 

another study cystamine protected against the cytotoxicity of mutant PABPN1 in the OPMD 

mouse. Cysatmine inhibits transglutaminase 2 which is elevated in OPMD muscle cells 

(Davies et. al., 2010). Studies using the Drosophila model of OPMD single chain antibody 

against PABPN1 also produced nearly complete rescue of OPMD muscles and restored 

muscle gene expression (Chartier et. al., 2009). In a nematode model of OPMD the inhibitor 

of Sir2 sitinol also showed promising results in protecting muscle cells from apoptosis 

(Catoire et. al., 2008). Gene therapy approach using Bcl2 over expression also rescued 

OPMD mouse from muscle degeneration (Davies & Rubinsztein, 2011).  

Several anti amyloid agents such as the disaccharide trehalose, and Congo red also worked 

in cell culture models of OPMD (Davies et. al., 2006). In our laboratory we have used 

ibuprofen, indomethacin, 8-hydroxy quinoline and ZnSO4 to induce HSP 70 expression in 

HeLa cells. All of these agents significantly reduced the aggregate burden and cell death 

(Wang et.al., 2005). However these compounds have not been tested in an animal model yet. 

Ibuprofen’s effectiveness was tested in a mouse model of Alzheimer disease without 

success. However, its conjugation with glutathione greatly improved its effectiveness in 

reducing aggregate formation and cell death in Alzheimer rats (Pinnen et. al., 2010). Zn+ is 

an essential mineral nutrient and many people supplement their diet with it, as such, it is 

potentially a desirable treatment option. Similarly 8-hydroxy quinoline is also an approved 

agent used in animal feed as antimicrobial and antparasitic agent (Raether & Hanel, 2003). 

Its effective dose in the cultured cell is within the range of non-toxic dose. Various 

derivatives of this drug demonstrated their ability in reducing amyloid plaques in clinical 

trials on Alzheimer patients (Gouras & Beal 2001; Di Vaira et. al., 2004). In addition to the 

use of various pharmacological approaches in developing new therapies for OPMD, in situ 

myoblasts transfer by local administrations (Mouly et. al., 2006) or localized gene therapy of 

affected muscles using Bcl2 or HSP 70 gene expression should be considered. 
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