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Digital Demodulation of Interferometric Signals 

Tristan J. Tayag and R. Collins Watson 
Texas Christian University 

USA 

1. Introduction 

The marriage of optical sensing techniques with sophisticated digital signal processing has 
resulted in a myriad of practical metrology systems. Optical metrology systems offer many 
attractive measurement features. These systems are inherently non-contacting, non-
destructive, and immune from electromagnetic interference. In addition, since light is used 
as the sensing probe, the measurement system is capable of high sensitivity, fine resolution 
(both spatial and temporal), and absolute calibration. 

The leap from the vibration stabilized table of the laboratory to the harsh milieu of the 
factory floor has been a major challenge for optical metrology systems. However, on-going 
advances in digital processor speed and algorithmic complexity have in large part made this 
leap possible. Full-field optical inspection methods include holographic interferometry, 
speckle metrology, and interferometric computed tomography (Tayag & Bachim, 2010). 
These techniques have been applied to a wide range of applications in biological tissue 
characterization, the automotive industry, dentistry, the semiconductor industry (Pitt et al., 
2003; Tayag et al., 2003; Tayag et al., 2010; Weber et al., 2004), and fiber optic and bulk optic 
characterization (Osten et al., 2010). Here, we focus our attention on digital demodulation 
applied to “point measurements” as opposed to full-field measurements. 

In this chapter of Modern Metrology Concerns, we present recent digital signal processing 
techniques used in interferometry. Application areas range from biotechnology to industrial 
to military. Specific examples will be cited throughout the literature as well as from our own 
research. Our research in digital demodulation techniques include applications in 
myofibroblast cell contraction (Kern et al., 2003), ballistic shock characterization (Kumar et 
al., 2009), and down-hole oil well drilling. In addition, we present a new (unpublished) 
digital demodulation algorithm. The novelty of our technique lies in the frequency domain 
manipulation of the well-known phase-generated carrier modulation approach. 

Section 2 contains background information on interferometry and practical modulation 
techniques. The Michelson, Mach-Zehnder, Sagnac, and Fizeau optical configurations will 
be described. Once the basic optical geometries are established, we describe the modulation 
and demodulation techniques which are needed in practice. These techniques convert the 
measured phase change into the desired displacement, velocity, or index change. 

Our novel digital demodulation algorithm will be presented in Section 3. The application of 
this research is in sensing down-hole drill bit parameters for oil well drilling systems. We 
present a new demodulation algorithm for phase-generated carrier based interferometers. 
The theoretical background is presented along with simulation results.  
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Section 4 will follow with a summary and directions for future research. 

2. Interferometry 

Measurements made with interferometers are based on the interference pattern formed by 
two or more electromagnetic fields. In this discussion, we confine ourselves to the 
interference of two electromagnetic fields in the visible region of the spectrum. A stable 
fringe pattern results when the two interfering fields satisfy the following conditions: 

 The two fields have the same optical wavelength. 

 The two fields maintain a fixed phase relationship. 

 Each of the two fields has its electric field vector linearly polarized. 

 The two fields have collinear polarization vectors. 

To achieve these conditions, the source may be a linearly polarized single mode (temporal 
and spatial) laser. The light from this laser is split into two beams known as the reference 
and signal beams. The output optical power resulting from the interference of these two 
fields takes the form of a raised cosine which varies as a function of the optical path length 
difference between the reference and signal beams (see Fig. 1). 

 

 

Fig. 1. Optical output power versus path length difference for an interferometer. 

Practical metrology systems require fine resolving capabilities as well as large dynamic 
range. Fractional fringe interferometers are capable of resolving displacements that are 
many orders of magnitude less than the optical probe’s wavelength. This high resolution is 
achieved when the interferometer is operated at quadrature, the point of maximum 
sensitivity. As shown in Fig. 1, operating the interferometer at quadrature yields large 
changes in the optical output power for small changes in the path length difference between 
the reference and signal beams. To achieve large dynamic range, interferometers may 
employ fringe counting techniques for changes in the optical path difference, which exceed 
half of the field’s wavelength. 
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A number of two beam interferometric configurations have been developed over the past 
two centuries. In the next section, we will review four of these optical configurations. 

2.1 Optical configurations 

In 1881, the American physicist, Albert A. Michelson, developed the basic interferometric 
configuration shown in Fig. 2. Light from the optical source is split into the signal and 
reference beams with a beamsplitter. The reference beam reflects off a mirror and retraces its 
path. The signal beam reflects off the specular surface of the object whose displacement is to 
be measured. The two beams are recombined using the original beamsplitter. A portion of 
each of the reference and signal fields is incident on the detector. If the optical path length 
difference between the reference and signal fields is zero (or an integral multiple of 
wavelengths), the interference is constructive. If the optical path length difference is π (or an 
odd multiple of half wavelengths), the interference is destructive. 

 

 

Fig. 2. Michelson optical configuration. 

The Mach-Zehnder optical configuration shown in Fig. 3 provides flexibility over the 
Michelson configuration by using a second beamsplitter to combine the reference and signal 
beams. With the environment of the reference beam remaining constant, changes in the 
refractive index through which the signal arm passes may be measured. Because of its 
suitability for a “push-pull” arrangement, this configuration is used in optical modulator 
technology (Kaplan & Ruschin, 2000) as well as optical sensor technology (Porte et al., 1999). 

 

Fig. 3. Mach-Zehnder optical configuration. 

The Sagnac or cyclic optical configuration is shown in Fig 4. This configuration is unique in 
that the two beams follow the same path around a closed circuit, but in opposite directions. 
This sensor measures the non-reciprocal phase changes that arise between light propagating 
in clockwise and counter-clockwise directions. In gyroscope sensing applications, the phase 
shift gives a measure of the rotation of the loop about its axis (Saida & Hotate, 1999; Barbour 
& Schmidt, 2001; Tselikov et al., 1998). 
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Fig. 4. Sagnac optical configuration. 

The optical configuration shown in Fig. 5 is attributed to the French physicist, Hippolyte L. 
Fizeau. In this configuration, interference occurs between light reflected from the target and 
the partial reflection from the facet of the fiber probe. High stability (i.e., low phase drift) is a 
key advantage of this configuration since the fiber/target separation distance is typically very 
small to accommodate sufficient light coupling back into the fiber. Another advantage of this 
system is the common path travelled by the majority of the reference and signal beams. In the 
fiber optic embodiment shown in Fig. 5, this means that the single mode optical fiber does not 
have to be polarization preserving, since both beams will undergo the same polarization 
evolution as they travel through the fiber. Each of the interferometric configurations described 
in this section, encodes a displacement, index change, or rotation rate into a phase shift 
between two interfering light beams. Practical techniques for extracting the desired parameter 
from the phase shift information form the topics of the next section. 

 

Fig. 5. Fizeau optical configuration. 

2.2 Modulation and demodulation techniques 

Interferometer modulation and demodulation techniques have been broadly classified into 
homodyne and heterodyne approaches. Homodyne modulation techniques refer to those 
systems where the two interfering beams of light are of the same optical frequency. The 
homodyne techniques may be further sub-divided into active homodyne and passive 
homodyne. In the early days of interferometry, the scientist would wait until the 
interferometer drifted into the quadrature operating point before starting data collection. 
Today, active feedback control is used to adjust the reference path and maintain the 
interferometer at quadrature. Digital signal processing of the modulated signal is applied to 
compute the feedback control signal. 
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In passive homodyne modulation, techniques are used to generate output signals which 
after digital processing eliminate the signal fading that occurs as the interferometer drifts 
from the quadrature condition. In this way, no feedback control loop is needed to maintain 
the optimum operating point. 

Heterodyne modulation techniques refer to those systems where the two interfering beams 
have differing optical frequencies. A frequency shift in one of the beams may be accomplished 
by acousto-optic frequency modulation (Culshaw & Giles, 1982), frequency ramping the 
optical source (Jackson et al., 1982), or piezoelectric-induced path length changes (Jackson et 
al., 1980; Cole et al., 1982). These heterodyne modulation approaches have been categorized as 
true-heterodyne, pseudo-heterodyne, and synthetic-heterodyne techniques.  

In practical application, the boundaries between the homodyne and heterodyne approaches 
as well as their sub-divisions become blurred. In the remainder of this section, we describe 3 
digital demodulation methods for interferometric sensors. 

The phase-generated carrier demodulation technique was first proposed by Dandridge, 
Tveten, and Giallorenzi in 1982 (Dandridge et al., 1982). It is a homodyne demodulation 
technique which eliminates signal fading as slow environmental perturbations drift the 
interferometer’s path length difference away from quadrature. In this technique, a 
sinusoidal modulation with known frequency and amplitude is imposed on the 
interferometer’s phase difference. Detection and mathematical manipulation of 
interferometer signal allow the desired phase shift to be separated from environmental 
perturbations. The signal processing involves detection of the signal amplitudes at the 
carrier’s fundamental and second harmonic frequencies.  The time derivative of each of 
these signals is computed and they are cross-multiplied with the original signals. Integration 
of the difference of these signals results in the desired phase change. We have analyzed the 
quantum-noise-limited sensitivity of interferometers using a phase-generated carrier 
modulation scheme (Tayag, 2002). 

Dandridge et al. first demonstrated this phase-generated carrier demodulation technique 
using analog electronics. Since that time, a commercially-available demodulation system based 
on the phase-generated carrier has come on the market (Bush et al., 1996; Cekorich et al., 1997; 
Davis et al., 1998). This system is based on real-time digital processing of the interferometer’s 
signal in the time domain. We have used this demodulation system to characterize the 
contraction of myofibroblast cells within a collagen matrix (Kern et al., 2003). In Section 3 of 
this chapter, we present a new demodulation algorithm whose kernel is based on a frequency 
domain analysis of the interferometer’s phase-generated carrier signal. 

The J1…J4 demodulation method (Sudarshanam & Srivivasan, 1989) is a passive homodyne 
technique which requires no feedback for stabilization of the interferometer at quadrature. 
This technique is applicable to measuring the amplitude of sinusoidally vibrating structures. 
In this approach, the photodetected interferometer output is expanded using a Fourier-
Bessel series. In fact, the “J1…J4” name of this method refers to the Jn(x) Bessel functions of 
the first kind of order n in the Fourier-Bessel expansion. Jin et al. (Jin et al., 1991; Jin et al., 
1992) modified this method to extend the desired phase modulation index. Marcal et al. 
(Marcal et al., 2007) have used this digital demodulation technique with a Michelson 
interferometric configuration to characterize the frequency response of a novel piezoelectric 
actuator. We have used a similar digital demodulation algorithm to characterize 
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microelectromechanical system (MEMS) structures (Pitt et al., 2003). Our fiber optical 
configuration for this system was based on the Fizeau interferometer. 

A final digital demodulation technique we will review is based on the use of a 3x3 fiber 
optic coupler in the optical system (Kwon et al., 1999; Sheem, 1981; Sheem et al., 1982). 
Again, the demodulation method is classified as a passive homodyne technique. The optical 
configuration is shown in Fig. 6 and is basically a Mach-Zehnder optical configuration, but 
uses a 3x3 fiber coupler to combine the beams. Koo, Tveten, and Dandridge (Koo et al., 1982) 
were the first to introduce this passive stabilization technique for fiber optic interferometers. 
Todd et al. (Todd et al., 1999) later applied digital demodulation techniques to Koo’s 3x3 
fiber coupler-based system.  

The unbalanced path lengths and 3x3 coupler of the Mach-Zehnder interferometer shown in 
Fig. 6 are necessary for the interferometer to function as a wavelength discriminating sensor. 
The outputs from the 3 photodetectors are shifted from each other by 2π/3 radians. With a 
priori knowledge of the coupler and detector characteristics, the post-detection digital 
processing can extract the interferometer’s phase shift corresponding to a wavelength shift 
in the optical signal. This interferometric wavelength discriminator has been used to 
interrogate and multiplex a network of fiber Bragg grating sensors (Johnson et al., 2000) and 
as a velocity sensor which measures the Doppler shift in the light reflected from a moving 
surface (Fabiny & Kersey, 1997). We have also used this system as a Doppler velocimeter to 
measure the motion of armored plates experiencing ballistic shock (Kumar et al., 2009). 

 

Fig. 6. Interferometric velocimeter based on a 3x3 fiber coupler and homodyne 
demodulation technique (Kumar et al., 2009). 
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2.3 Summary 

In this section, we have reviewed the classical optical configurations and 
modulation/demodulation techniques of interferometric systems. There exists a close 
relationship between the optical configuration and the modulation technique. Our focus has 
been on those systems which exploit digital processing in their demodulation methods. It is 
interesting to note that all the interferometric systems we have presented are based on 
passive homodyne demodulation. This is not surprising, since the digital processor and its 
associated demodulation algorithm are replacing the optical hardware (acousto-optic 
modulators or swept frequency lasers and their drive electronics) and electronic hardware 
(piezoelectric transducers, analog differentiators, integrators, and lock-in amplifiers) 
necessary in active homodyne and heterodyne systems. In this way, the overall 
interferometric system is greatly simplified with the burden of complexity falling on the 
software. This results in a more robust and less expensive metrology system.  

3. Frequency domain demodulation of a phase-generated carrier 

Since the time and frequency domains represent different ways of describing the same 

signal, it is reasonable to consider an algorithm based on frequency domain analysis as an 

alternative to the phase-generated carrier time domain algorithm discussed in the previous 

section. In this section, we describe the kernel of a novel algorithm for the demodulation of 

an interferometric signal based on a phase-generated carrier modulation scheme. Following 

this section, practical implementation of the algorithm is discussed with simulation results 

verifying the algorithm. Finally, the frequency domain demodulation algorithm is 

summarized with suggestions for further research. 

3.1 Algorithmic development 

Two-beam interferometers produce an optical interference pattern, which varies with 

optical path length difference, ( )R t , between a signal arm and a reference arm.  It is well-

known that the optical power, ( )P t , of this interference pattern, takes the form  

 ( ) cos ( )dc acP t P P R t  , 

where dcP  is the dc optical power and acP  is the 0-to-peak modulation index of the 

interference pattern. This optical power is incident on a photodetector for conversion to an 

electronic signal. Since PIN photodiodes are characterized by a responsivity, which is 

constant with respect to the incident optical power, the photo-generated current takes the 

same mathematical form of a raised cosine. If the electronic signal from the receiver is a 

voltage, then this signal takes the form 

 ( ) cos ( )dc acV t V V R t  , 

where dcV  is the dc voltage level and acV  is the 0-to-peak modulation index of the 

interference pattern. The objective of the demodulator is to sample this electronic signal, 

process the signal samples in real-time to determine the phase ( )R t , and produce an analog 

signal output, which is proportional to the phase ( )R t . 
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The demodulation algorithm is based on a phase generated carrier modulation technique. A 
key assumption is that a sinusoidal carrier signal is imposed on the interferometer’s optical 
signal such that the interference pattern becomes 

  ( ) cos ( ) sin 2dc acV t V V R t M Ft W      , (1) 

where M  is the phase index of the sinusoidal carrier, F  is the frequency of the carrier, and 

W  is the phase of the carrier. Since the sinusoidal carrier appears as a phase term in the 

interferometer’s cosinusoidal interference pattern, this form of modulation is referred to as a 

“phase-generated carrier.”  

The output voltage of Eqn. (1) describes the interferometer’s output signal. Let us rewrite 

this equation with the angular frequency of the carrier signal defined by 2o F   rad/s: 

  ( ) cos sindc ac oV t V V R M t W      . (2) 

We may set our sinusoidal carrier signal such that M   rad and 0W   rad. Then Eqn. (2) 

becomes 

  ( ) cos sindc ac oV t V V R t      . (3) 

Trigonometric expansion of the cosine term yields 

         ( ) cos cos sin sin sin sindc ac o oV t V V R t R t              . (4) 

Now, note the Bessel expansions 

    0 2
1

cos sin ( ) 2 ( )cos 2o n o
n

t J J n t    




          and  (5) 

    2 1
1

sin sin 2 ( )sin 2 1o m o
m

t J m t   





         , (6) 

where ( )nJ x  is a Bessel function of the first kind of order n . Substitution of Eqns. (5) and (6) 

into Eqn. (4) reveals the harmonic content of the interferometric signal in the frequency 

domain as 

 

   
     
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0

1

2

2 1
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2
2
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               2 cos cos 2

               2 sin sin 2 1

               2 cos cos 2 .
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ac o
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ac m o
m

ac n o
n

V t V V R J

V R J t

V R J t

V R J m t

V R J n t



 

 

 

 









   




    

   





 (7) 
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The first and second harmonics of ( )V t  are  

      1( ) 2 sin sin
o ac oV t V R J t     and (8) 

      2 2( ) 2 cos cos 2
o ac oV t V R J t   . (9) 

These two frequency components contain sufficient information to determine the desired 

phase, R . By taking the ratio of the amplitudes of these frequencies, the dependence on the 

interference pattern’s modulation index acV  is removed. The Bessel functions are known 

constants, which may be removed from the ratio as follows: 

 
 
 

 
   2

1 2

( )  amplitude sin
tan

cosJ ( )  amplitude

o

o

J V t R
R

RV t









    
  

. (10) 

The phase R  may be computed from this quotient over an entire 2  rad phase range using 

an inverse tangent approximation. This forms the kernel of the frequency domain 

demodulation algorithm. A fringe counting approach similar to that described by Cekorich 

(Cekorich, 1999), may be used to extend the range of demodulation. In the next section, we 

describe practical DSP techniques to implement the frequency domain demodulation 

algorithm. 

3.2 Simulation results 

We have verified the frequency domain demodulation algorithm through computer 

simulation. In this section, we present those simulation results and describe our DSP 

implementation approach. The frequency spectrum of the interferometer’s output signal is 

shown in Fig. 7. The magnitude spectra are shown for the five different values of the desired 

phase R . The periodic nature of the time domain signals correctly results in a set of discrete, 

harmonically-related sinusoids in the frequency domain. The open circles in Fig. 7 indicate 

the fundamental and second harmonic frequencies which are oscillating at o  and 2 o , 

respectively. Note the consistency between the magnitude spectra of Fig. 8 and Eqns. (8) and 

(9). Specifically, the zeros are apparent at o  for 0 and R   rad and at 2 o  for 2R   rad. 

As described by Eqn. (10), these two frequency components will be used to demodulate the 

interferometer. 

A significant aspect of the frequency domain algorithm is the conversion of the sampled 

time domain signal into a frequency domain representation. Computation of the frequency 

spectrum is conveniently performed via the well-known fast Fourier transform (FFT) 

algorithm. Since only 2 spectral components are required for this algorithm, the Goertzel 

algorithm provides a slightly more computationally efficient approach. We implemented 

both algorithms, but only present the results for the FFT algorithm here since the Goertzel 

results are equivalent.  

The FFT algorithm results in complex-valued signals at each frequency bin. The magnitudes 

of these complex signals are shown in Fig. 7. Fig. 8 illustrates how the magnitudes of the 
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fundamental and second harmonics vary with the phase, R . These plots are consistent with 

the mathematical form given in Eqns. (8) and (9). The difference in peak amplitudes results 

from the Bessel function weighting factors, i.e.  1 0.5692J     and  2 0.9709J   . Note 

that the magnitude spectrum contains only positive values. Therefore, the magnitude 

spectrum alone is insufficient to unambiguously determine R . To resolve R  over the full 

2  phase interval, the phase spectrum is also needed. Fig. 9 shows the phases of the 

fundamental and second harmonics as a function of R .  

 

 

 

Fig. 7. Normalized frequency spectra of the interferometer signal described by Eqn. (7) at 
five different values of the phase R . The open circles represent the values of the 
fundamental and second harmonic frequency components. 
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Fig. 8. Magnitudes of the fundamental and second harmonic frequencies as a function of the 
phase R . 
 

 

Fig. 9. Phases of the fundamental and second harmonic frequencies as a function of the 
phase R . 
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Fig. 10. Reconstructed amplitudes of the fundamental and second harmonic frequencies as a 
function of the phase R . 

A key to reconstructing the amplitudes of the fundamental and second harmonic 

frequencies is to utilize both the magnitude and phase information provided by the signal’s 

frequency spectrum. This information shown in Figs. 8 and 9 may be used to determine the 

amplitudes of Eqns. (8) and (9). Fig. 10 shows the amplitudes of the fundamental and second 

harmonics reconstructed from the data of Figs. 8 and 9. Notice that the amplitude of the 

fundamental harmonic varies sinusoidally as a function of R  and the second harmonic 

varies cosinusoidally as a function of R . This data applied to Eqn. (10) may be used with an 

inverse tangent approximation to determine the desired phase R  over a full 2  phase 

interval. This forms the kernel of the frequency domain demodulation algorithm. We have 

incorporated a fringe counting routine and verified the frequency domain demodulation 

algorithm through computer simulation. 

In this section, we have verified the theoretical development of the previous section through 
computer simulation and described how to implement the algorithm in practice. A key step 
in the kernel of the frequency domain algorithm is use of both the magnitude and phase 
components of the frequency spectrum. 

3.3 Discussion 

We have presented a frequency domain approach to the demodulation of an interferometer, 

which uses a phased-generated carrier modulation scheme. Through simulation analysis, 

we have shown that the frequency domain algorithm produces correct demodulation results 

by assuming fixed operating parameters (i.e., M   and 0W  ). These are the same 

operating conditions as used in commercially-available time-domain demodulators. 

www.intechopen.com



 
Digital Demodulation of Interferometric Signals 

 

329 

Unfortunately, the frequency domain algorithm suffers from the same limitations as the 

time domain algorithm with regard to the carrier’s modulation depth and phase. Drift of the 

carrier’s modulation depth from M   produces a change in the amplitudes of the 

fundamental and second harmonic frequencies. This dependence manifests itself in the 

Bessel functions in Eqn. (7). If the value of this drift is unknown, it cannot be corrected in the 

computation of Eqn. (10) and errant demodulation results. Similarly, a drift of the carrier’s 

modulation phase from 0W   produces an irreparable change in the amplitudes of the 

harmonic frequencies.  

As a consequence of these limitations, the frequency domain algorithm (like the time 

domain algorithm) requires careful initialization of the carrier’s modulation depth and 

phase. Practical implementation of interferometric systems often use hardware, such as 

piezoelectric transducers, whose modulation depth drifts over time. Therefore, closed-loop 

active feedback is necessary to maintain the requisite modulation depth at M   rad.  

3.4 Summary 

We have presented the kernel of an algorithm for the digital demodulation of an 
interferometer based on the phase-generated carrier modulation scheme. This algorithm 
exploits both the magnitude and phase information in its frequency domain manipulation 
of the signal. The algorithm suffers from requirement that active feedback control is 
needed. 

4. Conclusion 

In this chapter, we have reviewed digital demodulation algorithms for interferometric 
metrology systems. Digital demodulation has the potential for producing a more robust and 
less costly sensor system. In general, the savings in optical and electronic hardware is 
traded-off with complex software algorithms. Consider the information shown in Table 1 of 
the specific digital demodulation techniques presented in this chapter. 

Note that each of the digital demodulation methods presented in Table 1 is based on a 
homodyne approach. The heterodyne techniques require additional optical and electronic 
hardware to shift the frequency of one of the interfering optical beams. A key advantage 
of digital demodulation is a significant reduction in cost and hardware system 
complexity.  

We have also presented a new demodulation algorithm for the well-known phase-generated 

carrier modulation scheme. Our algorithm is based on a frequency domain approach and 

requires both the magnitude and phase information present in the signal. This 

demodulation scheme suffers from the need for active feedback control. One possible 

approach to ameliorate this limitation is to investigate the use of a more sophisticated 

modulation signal. In the demodulation algorithm presented in Section 3, the carrier signal 

is a pure sinusoid and the desired output is the fixed phase R . We have studied 

interferometers, which use the phase-generated carrier modulation scheme and detect the 

amplitude of a sinusoidally varying phase ( )R t . These systems produce harmonics, which we 

detect and then compute their ratio to remove the dependence on unknown quantities.  

www.intechopen.com



 
Modern Metrology Concerns 

 

330 

Demodulation 
Technique 

Phase-
generated 

carrier (time 
domain) 

Phase-
generated 

carrier 
(frequency 

domain) 

J1 ... J4 
3x3 fiber 
coupler 

Application 
Biological cell 

contraction 
measurement 

Down-hole oil 
well drilling bit 

parameter 
measurement 

MEMS 
vibrating 

amplitude 
measurement 

Ballistic shock 
(velocity) 

measurement 

Homodyne/Heterodyne Homodyne Homodyne Homodyne Homodyne 

Passive/Active Active Active Passive Passive 

Real-time/Post-
processing 

Real-time 
processing 

Real-time 
processing 

Real-time 
processing 

Post-
processing 

Table 1. Comparison of digital demodulation techniques presented in this chapter. 

It may be possible to design a carrier signal, which produces an appropriate set of 

harmonics that can be mathematically manipulated to cancel out any variations in M  and 

W , yet still be solvable for the fixed phase R . The trade-off would be a true open-loop 

system, which would not require stringent initialization procedures, at the expense of a 

sophisticated carrier modulation signal. Further investigation into the viability of this 

approach is suggested. 
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