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1. Introduction 

The Chapter is devoted to consideration of metrological aspects of intrinsically 
interconnected characteristics of light fields, such as intensity, polarization and coherence. 
Conceptually, all these quantities are derived from the Wolf’s coherency matrix [1]. 
However, new insight on interconnection of them is provided by the novel singular-optical 
approach [2, 3] predicting existence of important regularities in electromagnetic fields which 
were early considered as quite random ones. So, phase singularities of scalar 
(homogeneously polarized), polarization singularities of vector (inhomogeneously 
polarized) fields, as well as singularities of correlation functions of partially coherent, 
partially polarized fields constitute specific skeletons, i.e. “bearing” elements of a field. 
Knowing the loci and characteristics of such elements, one can judge on behavior of a field 
at its other areas, at least in qualitative manner, but quite reliably [4]. This circumstance 
opens quite new possibilities for metrology of optical fields and leads to prospective 
practical applications of new metrological techniques. 

We discuss here interconnections of polarization and coherence characteristics of light fields 
in various manifestations of them, both as one-point and two-point functions. For that, in 
development of earlier approaches, we show the framework for generalization of 
polarization metrology on a wide class of combined optical beams assembled as mutually 
incoherent (or partially mutually coherent) components, which can be orthogonal in 
polarization. Such generalization provides taking into account partial polarization and 
associated vector singularities, which can be used in non-destructive optical diagnostics as 
well as in optical telecommunications with polarization coding. 

Further, we represent point-by-point Stokes-polarimetric technique and singular-optical 
concept of polarization diagnostics. Feasibilities of combined application of conventional 
interferometry and local Stokes-polarimetry are substantiated. 

Important part of this review is devoted to description of feasibilities for experimental 
measuring of coherence by measuring of spatial polarization distributions of 
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inhomogeneously polarized fields. We represent the newest metrological tool connected 
with novel concept of optical currents (optical flows). Namely, we show that some intimate 
characteristics of complex optical fields with arbitrary degree of spatial coherence and 
arbitrary degree of polarization may be “deciphered” indirectly, by observation of the 
influence of such fields on embedded micto- and nanoparticles. This original metrological 
approach seems to be prospective for development of so-called optical traps and tweezers 
for manipulation of isolated particles of micro- and nanoscales. 

Separate section of the Chapter is devoted to application of local Stokes-polarimetry in 
diagnostics of biological tissues, in the context of early (pre-clinical) diagnostics of some 
widespread diseases. We represent both experimental and data processing techniques 
leading to high-sensitive and reliable diagnostics. 

All considered metrological approaches and techniques are original, generated by recently 
by the members of our team. 

Some prospects of further investigations in the direction represented in this Chapter, as well 
as necessity and possible ways for overcoming some present shortcomings of optical 
metrology in the field of coherence and polarization, are outlined in the last section.    

2. Historical outlook 

The notion of coherence is the most fundamental concept of modern optics. As it has been 
shown by E. Wolf [5], this notion is intrinsically connected with other characteristics of light, 
such as intensity and polarization. One can distinguish between these characteristics mainly 
in didactic purposes. But in every practically important case we meet the problem of tight, 
inseparable interconnection of them. So, one cannot define coherence, in part aspiring to 
associate it with visibility of interference pattern, ignoring for that the states of polarization 
of superposed beams. Note, that attempts to explain the Young’s interference experiment for 
“completely unpolarized” light lead sometimes to questionable conclusions [6]. At the same 
time, the most fundamental definition of polarized light is given just through the measure of 
mutual coherence of the orthogonally polarized components of a beam. At last, all three 
mentioned characteristics of a light beam are comprehensively expressed through known 
combinations of the Wolf’s coherency matrix elements [1]. 

Incidentally, urge towards to associate coherence just with obvious interference (intensity 
modulation) effect does not always lead to true understanding the coherence phenomena. It 
is not enough that interference fringes are absent in superposition of completely mutually 
coherent but orthogonally polarized beams (it is well-known from the Fresnel-Arago laws 
and experiments). There are quite new concepts showing the absence of interference effect 
for superposing two waves of equal frequencies with strictly (deterministically) connected 
complex disturbances even with the same state of polarization. Refined example of this kind 
was given by L. Mandel in his concept of “anticoherence” [7]. In very simplified form, the 
Mandel’s concept can be formulated in terms of conventional (static) holography.  

As it is well known, a simple thin hologram reconstructs in plus-minus first diffraction 
orders two conjugate fields producing so-called main and conjugate images [8]. Having 
reliable techniques for optical phase conjugation, one can try to add two complex 
conjugated copies of the signal at one plane, to say at a plane of hologram. What is the 
result? Intensity of superposition of two such waves is determined as 
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     2
1 2exp expI a i t b i t                kr kr , (1) 

where a  and b  are amplitudes of two conjugated waves that are believed constants 
(stationary optical fields [9]), 2 T   is angular frequency of oscillations ( T  being a time 
period) that is the same for both superposed counterparts, k  is the wave vector, r  is the 
position vector of the observation point, 1,2  are the initial phases of two waves, and ...   
denotes time averaging. It is easy to see that, in contrast with common interference, the 
temporal multiplier does not vanish in this expression: 

    2 2 2 2
1 22 cos 2I a b ab t a b             kr ,  (2) 

so that the averaging results in vanishing the “interference” term. This conclusion is 
illustrated in Fig. 1, from which one can see that summation of two complex conjugated 
beams, u  and *u , everywhere along the Arrow of time gives rise to the real value of 
constant magnitude. Thus, interference between deterministically, unambiguously 
connected two waves of equal frequency and identical state of polarization is absent. Of 
course, if one implements phase conjugation of one of two waves figuring in Eq. (1), 
interference effect will be provided due to compensation of the temporal multiplier and, as a 
consequence, inefficiency of time averaging. 

 
Fig. 1. Superposition of two complex conjugated replicas of a signal results in a real signal  
of constant amplitude along the Arrow of time, without interference effect.  

What is less discussed within the framework of classical (wave) theory of partial coherence 
is the influence of an “observer” on coherent properties of studied beams. This problem is 
quite typical for quantum optics [10 - 12] (as well as for quantum physics in general [13]). 
But the results obtained along last quarter of a century compel to take into account influence 
of the conditions of observation and detector characteristics on evaluation of the coherence 
of light in classical approach also. Let us give some arguments for this point. 

When we consider interference of two waves with close but non-equal frequencies ( 1 2  , 
   ), we observe moving intensity fringes. This effect is widely used in the optical 
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heterodyning (optical nonlinear mixing) technique. If the “register” is stationary and 
possesses low temporal resolution, averaging over large enough temporal interval results in 
smoothing of interference fringes, so that visibility 0V  ; we conclude that two waves are 
mutually incoherent. But, on the other hand, using a “register” with higher temporal 
resolution, which moves in the direction and with speed of propagation of moving intensity 
waves, we recognize the same two waves as mutually coherent that form observable 
interference fringes in moving coordinates! To say, one can register a hologram form such 
waves at the properly moving “register” (though this task is not simple in practice). 

Once more example related to the problem of interest is the influence of spectral resolution 
(or, more strictly, inhomogeneous spectral sensitivity) of the detector on our conclusions 
concerning spatial coherence of the elaborated optical field. If one uses in the classical 
Young’s two-pinhole interference arrangement a source with uniform spectral density, then 
a detector with uniform spectral sensitivity “evaluates” the field as completely spatially 
incoherent for arbitrary sampling points at the beam cross-section due to superposing 
numerous scaled in wavelength spectral interference patterns, so that minima of intensity 
(of the field of homogeneous spectral distribution!) are absent in the resulting pattern. Such 
detector is “blind” to spatial coherence of such optical field. Nevertheless, the human eye detects 
spatial coherence of a field due to non-uniform spectral sensitivity of visual receptors and 
inhomogeneous spatial distribution of colors over analyzed field. Of course, the same is true 
for evaluation of temporal coherence, to say, in the arrangement of the Newton’s rings in 
white light. 

Less trivial case has been considered by Wolf [14, 15, see also numerous useful references 
herein] in the context of induced spectral changes resulting in remarkable transformations of 
temporal coherence of polychromatic optical fields due to the presence of material 
intermediary, as diffraction or scattering object. 

The next, and more closer to our consideration, example  pseudodepolarization [16] (in 
modern terminology, “global” depolarization [6]) resulting from stationary scattering of 
laser radiation in multiply scattering media, such as turbid media, multi-mode waveguides, 
the most of natural objects, including biological ones. Here the role of detector becomes 
fundamental. Really, the universal approach to determine all polarization characteristics of a 
field (both the state of polarization and the degree of polarization [17]) consists in Stokes-
polarimetry of the analyzed field. For that, Stokes-polarimetric analysis gives quite different 
results for local and “global” (space-averaged) measurements. So, the point-wise measuring 
Stokes parameters shows complete (unity) degree of polarization, but the state of 
polarization changes from point to point. Space averaging over ten and more speckles 
shows seeming depolarization. This case is the central subject of study of vector singular 
optics [18]. 

The mentioned examples illustrate, in part, importance of taking into account of temporal 
and spatial resolution of the used detector, as well as a choice of the coordinates (stationary 
or moving) for metrological estimation of coherence and polarization of light, and even 
understanding (definition) of these phenomena. 

Let us briefly highlight another two positions that are important for our consideration. 
Firstly, as it has been pointed out by I. Freund [19], we do not ready to investigate 
experimentally the problem of coherence and polarization of optical light in general, 3D 
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case, when paraxial approximation violates and one cannot neglect any of three Cartesian 
coordinates for description of behaviour of the electric vector. As an example, Freund 
references the study of polarization of relict – cosmic microwave radiation (CMR) [20] that is 
believed to be almost isotropic (nondirectional) [21]. Measuring the Stokes parameters for 
such radiation is, to all appearance, not well-grounded. It is the same that measuring the 
Stokes parameters in various directions from interior of a cloud of light-scattering small 
particles, what approach is not generally accepted [22, 23]. Nevertheless, it is the only what 
we have! 

The second example concerns directly to one of the problem discussed in the following 
sections of this overview, viz. so-called optical currents (flows) [24]. Though it is prematurely 
now to solve comprehensively this problem, especially in experimental aspect, it is clear that 
micro- or nanoparticles serving for diagnostics of inhomogeneously polarized and partially 
coherent optical field [25 - 30] affect this field as absorbing and retransmitting particles with 
their own characteristics, so that the state of a field, in general, changes under influence of 
such secondary radiators. 

Pronouncing call of the times in the topic under consideration consists in involving the 
ideas, approaches and techniques of Singular Optics [2]. It is seen, in part, from recent 
important review [3] devoted to the structure of partially coherent optical fields. 
Investigations in this scientific domain have been actually stimulated, in part, by papers [31 
- 34].  For that, many usual and new results of the theory of partial coherence and partial 
polarization become essentially urgent just in the singular optics concept. On the other 
hand, there are good reasons to wait that attracting the fundamentals of the theory of partial 
coherence will lead to development of new practical applications of singular optics. So, two 
mentioned areas are of “mutual benefits”. 

Moreover, as it has been argued in papers [30, 35, 36], “Usual beam parameters either 
characterize a beam ‘in a whole’ (power, momentum, beam size and divergence angle) or describe 
its ‘shape’ via certain spatial distributions (amplitude, phase, polarization state, etc.)… Usual 
beam parameters provide only rough and, sometimes, distorted picture of internal processes that 

constitute a real ‘inner life’ of a light beam. These processes are related to the fundamental 
dynamical and geometrical aspects of light fields, and are associated with the permanent energy 

redistribution inside the beam ‘body’, which underlies the beam evolution and transformations. 
The internal energy flows provide a natural and efficient way for ‘peering’ into the light fields and 

studying their most intimate and deep features.” It is of interest, in the context of this review, 
to correlate this statement with the Wolf’s methodology of observable quantities that is 
the most influential concept of physical optics since 1954: “optics of observable quantities, 
such as correlation functions and averaged in time intensities” [17]. Paradoxial 
contradiction between two undoubtedly true statements is apparent. Really, this 
contradiction is just eliminated as one takes into account that internal energy flows 
(“optical currents” [24]) may be revealed only by carrying out the experiments with 
observable quantities. Similarly, vibrational phase [18] of an optical wave is unobservable, 
while its difference with a phase of coherent reference phase is liable to registration just as 
the phase of the mutual coherence function of two waves. More globally, two mentioned 
approaches are complementary, being intimately interconnected, similarly to approaches 
of statistical physics and thermodynamics. 
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To facilitate understanding the material of the following sections, let us briefly remind the 
main light beam characteristics involved in our consideration. The key notion of 
geometrical optics is a ray; a bundle of rays constitutes an optical beam. The only 
information provided by rays is the direction of propagation of light. More diverse, more 
fundamental and more informative parameters of light are derived within the framework 
of wave optics. There are wave amplitude and phase (both quantities are unobservable 
directly though lying in the basis of theory [17]); polarization that is determined by the 
amplitude ratio and phase difference of orthogonal components of a beam; the degree of 
polarization is determined by correlations between these components; coherence 
parameters characterizing concordance of light disturbances at two (or more) spatial-
temporal points of light field. These base characteristics defined in seminal book [17] as 
well as in numerous other handbooks in optics, are added by the Poynting vector 
determining the direction of propagation of light beams in terms of electrodynamics, and 
by more complex polarization parameters than simple azimuth of polarization and 
ellipticity inherent in elementary wave optics. In our study, much attention will be paid to 
the Stokes parameters, polarization parameters intrinsically connected with both energy 
and coherent characteristics of light beams. These notions will be specified in the 
corresponding sections of the chapter. 

Organization of the review is not quite usual. The most of review papers written up to now 
on the topic of interest are of theoretical nature, sometimes with valued simulation 
background. Relatively less attention is paid to experimental aspects of the problem. 
Partially, this gap is filled by recent books and book chapters written by the authors of this 
review [37, 38]. But the scope of experimental results rapidly grows, and this outlook does 
not repeat our previous papers. So, we represent here several independent experimental 
current views on the problem of metrology of coherent and polarization properties of 
optical fields, with especial accent on singular optical prerequisites and consequences of our 
experimental approaches. In spite of forced incompleteness of this consideration, the 
authors hope that it would stimulate further experimental investigations in this field and 
lead to broadening of practically significant applications of Singular Optics of Partially 

Coherent and Inhomogeneously Polarized Optical Fields. 

3. Investigation of optical currents in completely coherent and partially 
coherent vector fields 

In this section we present the computer simulation results on the spatial distribution of the 
Poynting vector and illustrate motion of micro and nanoparticles in spatially 
inhomogeneously polarized fields. 

The Poynting vector S , is defined, in its simplest form, as the vector product of the vectors 
of electric field, E , and magnetic field, viz. H ,  S E H . This form is referred to as the 
Abraham form of the Poynting vector. By definition, the Pointing vector for a plane wave is 
perpendicular to vectors E  and H , being representing the energy flux (in W/m2) of an 
electromagnetic field. As it will be seen from the following consideration, in light fields with 
complex wave fronts and with variable in space (inhomogeneous) state of polarization the 
Poynting vector can exhibit much more sophisticated behavior, being also changing from 
point to point at the beam cross-section and leading to new applications of light.   

www.intechopen.com



 
Optical Measurements: Polarization and Coherence of Light Fields 

 

269 

The use of small particles for diagnostics of microstructure of light is widely used approach [25 
- 30], but mainly in approximation of complete coherence of an optical field. Here, the 
influence of phase relations and the degree of mutual coherence of superposing waves in two-
wave and four-wave configurations on the characteristics of the microparticle’s motion is 
analyzed. The possibility of diagnostics of optical currents in liquids caused by polarization 
characteristics of an optical field alone is demonstrated using nanoscale metallic particles. We 
also discuss the prospects of studying temporal coherence using the proposed approach. 

There is the motivation of this study. Experimental investigation and computer simulation 
of the behavior of small spherical particles embedded in optical fields provide a deeper 
understanding of the role of the Poynting vector for description of optical currents in 
various media [24, 36]. So, interference between waves polarized in the plane of incidence 
has been shown to be effective in creation of polarization micro-manipulators and optical 
tweezers. On the other hand, this is a vital step in optimal metrological investigation of 
optical currents in vector fields [39 - 42]. Besides, the study of spatial and temporal 
peculiarities of the motion of particles embedded in optical fields with various spatial 
configurations and with various scale distributions of the Poynting vector leads to new 
techniques for estimating the temporal coherence of optical fields [43]. 

Computation of the spatial distribution of the time-averaged Poynting vector determining 
the forces affecting microparticles and their movement is performed following the algorithm 
proposed by M. Berry [24] who has shown that the vector force affecting a small particle in 
an optical field is proportional to the time-averaged Poynting vector. We will show that the 
study of the motion of microparticles in inhomogeneously polarized fields provides 
reconstruction of the spatial distribution of the time-averaged Poynting vectors, viz. the 
optical currents.  

3.1 Two-wave superposition for changeable degree of mutual coherence of the 
components 

Superposition of two plane waves of equal amplitudes polarized in the plane of incidence 
(Fig. 2a) results in the distribution of the Poynting vector shown in Fig. 2b.  Such 
distribution arises when the interference angle is equal to 90°, and the only periodical 
polarization modulation of the field (in the absence of intensity modulation) takes place in 
the plane of observation [44]. 

The coherency matrix 1 2( , , )W tr r  describes the coherence properties of vector optical fields, 
being characterising the correlation of two fields at two different spatial points 1r  and 2r  
[45, 46], and is determined as 

(2)*(1)
1 2 1 2( , , ) ( , ) ( , )i jW t E t E t r r r r  

where i, j = x, z. Within the framework of such approach the degree of mutual coherence of 
the field is defined as [15]  

 1 2 1 2
1 2

1 1 2 2 1 1 2 2

( , , ) ( , , )
( , , )

tr[ ( , ,0)] tr[ ( , ,0)] ( , ,0) ( , ,0)
ij ij

ij

ii jj
ij

W t W t
t

W W W W
  

 
r r r r

r r
r r r r r r r r

 (3) 
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The distribution of the time-averaged density of the energy current in space determines the 
current magnitude at different points of the plane of observation, being unambiguously 
determined by the degree of coherence of the superposing waves. The direction of the 
resulting current is set by the directions of the Poynting vectors of these waves. 

 
Fig. 2a. Superposition of plane waves of equal amplitudes linearly polarized in the plane of 
incidence having an interference angle of 90°. Periodical spatial polarization modulation 
takes place in the plane of incidence.  

 
Fig. 2b. Spatial distribution of the time-averaged Poynting vectors resulting from 
superposition of two orthogonally linearly polarized waves with an interference angle of 
90°.  

An analysis of the spatial distribution of the time-averaged Poynting vectors shown in Fig. 
2b reveals the periodicity of this distribution, where the lengths of lines shown in the figure 
are proportional to the absolute magnitudes of the vectors. The lines corresponding to the 
singularities of the Poynting vector are shown by the indicated set of points [47 - 49]. 
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Spatial distribution of the time-averaged Poynting vectors, cf. Fig. 2b, shows the trajectories 
of energy transfer. The points at the map of the time-averaged Poynting vectors (Fig. 2b) 
correspond to the areas through which energy transfer is absent, showing: (i) the loci of 
singularities of the Poynting vector; (ii) the points (with constant intensity) forming the 
directions along which light energy is non-vanishing, but is conserved; (iii) the points where 
the vector H  vanishes due to interference, while in this arrangement (90°-superposition of 
plane waves) superposition of strictly coaxial vectors H  of equal amplitudes associated 
with two superimposed plane waves takes place. 

On the other hand, the instantaneous magnitude of the electric (magnetic) field strength’s 
vector of the resulting distribution, which is formed in the plane of observation, is written as  

 cos
(1) (2) ( )e et   E E E a   (or (1) (2) cos( )h ht   H H H a ),  

where, ea , ha  are the unit vectors in the direction of propagation of the electric (magnetic) 
components for the resulting field in the plane of observation;  ( )e h   is the phase 
difference of the electric (magnetic) field components of superposed waves. In this case, the 
instantaneous magnitude of the Poynting vector is  

 cos cos( )( )inst e h e ht t         S E H E H a a , 

and the time-averaged magnitude of the Poynting vector is 

 
1

( )cos( ) ( ) cos( )
2 2ave e h e h e h   


      
E H

S a a E H . (4) 

Because the phase difference of the electric field changes from point to point (polarization 
modulation), the time-averaged magnitude of the Poynting vector is modulated in space 
taking the maximum (minimum) at different points of the plane of observation, as it is seen 
from Eq. (4). 

Homogeneous intensity distribution and periodical spatial modulation of the Poynting 
vector simultaneously realized in the observation region have previously been discussed 
within the framework of Refs [50, 51]. Spatial polarization modulation at the plane of 
observation is caused by superposition of the xE  and zE  field components with changing 
the phase difference from point to point, cf. Fig. 2a. A photodetector registers only intensity, 

2 2
x zI E E  . The sum of the squared amplitudes of the electrical field components is constant 

at the plane of observation, though the state of polarization changes. The Poynting vector is 
defined, as mentioned above, by the vector product, S E H  . One observes the 
dependence of the result on the phase relation between vectors E  and H  through the 
vector magnitude and its direction. This relation changes from point to point in the plane of 
observation and manifests itself in polarization modulation. An obvious explanation for this 
follows from consideration of the vector product of the components of vector E  ( xE and zE  
components) with vector H . Both the magnitudes of projections xE and zE  and their 
phases change from point to point in the observation plane. As a consequence, the vector 
product changes as well as the Poynting vector. The result of modulation is shown in Fig. 3. 

www.intechopen.com



 
Modern Metrology Concerns 

 

272 

The results of simulating the motion of particles embedded in the field of the considered 
distribution of the Poynting vector are shown in Fig. 4. We have here tacitly assumed the 
particles to be absorbing and of size 0.1 µm. One observes that in the case of the distribution 
resulting from superposition of completely mutually coherent waves, the velocities of 
particle motion along the lines of maxima and zeroes of the Poynting vector are 
considerably different from one another. 

The particle size is here comparable with a half-period of the corresponding distribution; 
however, the resultant force giving rise to the particle motion along the lines close to the 
Poynting vector maxima exceeds the resultant force for lines close to the zeroes of the 
Poynting vector. The results of modulation of particle movement velocity along the peaks 
and zeroes of the averaged field of the Poynting vector are shown in Fig. 4a and Fig. 4b, 
respectively. 

If the degree of mutual coherence of the superposed waves equals 0.2, the spatial 
distribution of the averaged Poynting vectors becomes more homogeneous, the modulation 
depth decreases considerably, and the velocities of microparticles become almost identical. 

When the degree of mutual coherence equals 0.5, the relative velocities of the microparticles 
along the same trajectories are lower in comparison with velocities in case of complete 
mutual coherence of the superposed waves and lie in the vicinity of the average magnitudes 
for coherent and incoherent cases [52]. One observes the dependence on the coherent 
properties of the superimposed waves for the motion velocities of microparticles with 
constant size and form in media with constant viscosity [52]. When analyzing the motion of 
test particles in the region of distributed magnitude of the Poynting vector, the influence of 
the parameters of superposing fields on the character of particle motion can be determined, 
cf. Fig. 4a, 4b. 

 
Fig. 3. The polarization distribution in the registration plane is marked by thin lines. The 
direction and magnitude of the Poynting vector are marked by bold lines. The point at the 
end of the vector determines the energy transfer direction. The modulation of the Poynting 
vector takes place according to the polarization modulation at the plane of observation. 
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a     b 

Fig. 4. The change of the particle motion velocity with time obtained for different 
magnitudes of the degree of coherence of superposing waves in the case of particles moving 
along the peak (a) and the minimum (b) of the field of time-averaged Poynting vector 
magnitude: curves 1, 2, and 3 correspond to the degree of coherence, which equals 1, 0.5, 
and 0.25, respectively.  

When the degree of mutual coherence equals 0.5, the relative velocities of the microparticles 
along the same trajectories are lower in comparison with velocities in case of complete mutual 
coherence of the superposed waves and lie in the vicinity of the average magnitudes for 
coherent and incoherent cases [52]. One observes the dependence on the coherent properties of 
the superimposed waves for the motion velocities of microparticles with constant size and 
form in media with constant viscosity [52]. When analyzing the motion of test particles in the 
region of distributed magnitude of the Poynting vector, the influence of the parameters of 
superposing fields on the character of particle motion can be determined, cf. Fig. 4a, 4b. 

As it was shown in papers [44, 51, 52], the degree of coherence of superposing waves 
determines not only the visibility of an interference distribution, but also the structure of the 
polarization field, viz. it determines the distribution of the Poynting vector. Under the same 
other conditions of the wave superposition, changing the degree of coherence results in changing 
motion velocity of the test particles, what can serve as an estimating parameter for determining the 
coherence properties of superposing waves. These differences in velocities of motion of 
microparticles are explained physically in the following manner: Increasing the share of 
incoherent radiation in the resulting field distribution causes a decrease of the modulation 
depth of the Poynting vector’s spatial distribution, as well as a decrease of the resultant 
force magnitude along the lines of energy transfer, which induces the motion of the 
microparticles. The increase of the degree of coherence brings about an accelerated particle 
motion in the field of averaged energy magnitudes. 

The following diagram (Fig. 5) shows the particle velocity distribution (in this case, 39 
particles), embedded into the field formed by the averaged magnitudes of the Poynting 
vector in the case of superposition of completely mutually coherent waves. With time (~1.2 
sec) practically all particles gain equal velocity magnitudes (see column 7); redistribution of 
particles in the direction of the resultant force and uniform motion along the zero value of 
the Poynting vector take place. 
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Fig. 5. The diagram of particles velocity distribution with time.  

3.2 Superposition of four waves for changeable degree of mutual coherence of the 
components 

In the case of superposition of four waves, see Fig. 6a,  involving two sets of counter-
propagating plane waves of equal intensities, linearly polarized in the plane of incidence 
and oriented at an angle of 90° with respect to each other, the spatial distribution of the 
time-averaged Poynting vectors  is formed as shown in Fig. 6b. 

The 2D periodicity of the Poynting vector’s distribution is evident. As in the previous case, 
the lengths of the time-averaged Poynting vectors are proportional to their magnitudes. The 
nodal points in this distribution correspond to zero magnitudes of the Poynting vector, i.e. 
singularities of the Poynting vector. In the following simulation, the diameters of the 
particles are changed to be comparable with a half-period of the corresponding spatial 
distribution of the Poynting vector. 

 
Fig. 6a. Arrangement of superposition of four plane waves. 
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This follows from the presence of the minimum of the modulation depth at the spatial 
distribution of the Poynting vector. If the phase relations between four superposed beams 
are such that the modulation depth of the spatial distribution of the Poynting vector is 
maximal, the particle velocities will depend on the degree of mutual coherence between the 
interfering beams, see Fig. 7.  

In order to compare the influence of the temporal and spatial parameters of coherence on 
the motion of the microparticles, we have analyzed the maps of the time-averaged Poynting 
vector with a superposition of four plane waves over a large area. During this, we have 
tracked the microparticles’ motion. The dependence of microparticles’ velocities on the 
phase difference of the superposing beams has thus been revealed. So, in the case of pair-by-
pair four opposite-in-phase superposed beams, particles become motionless. For that, the 
“opposite-in-phase” configuration covers the situation where two sets of mutually 
orthogonal standing waves are characterized by the fact that their nodes strictly coincide. 

 
Fig. 6b. 2D distribution of the time-averaged Poynting vectors resulting from the 
superposition of four waves shown in Figure 6a. 

 
Fig. 7. The variation of motion velocity of a test particles in an averaged field of distributed 
Poynting vectors with the change of the degree of mutual coherence of the waves (four 
superposing waves are in phase): curve 1 – one of the waves is incoherent; curves 2, 3, 4 
correspond to the degree of coherence 0.25, 0.5, and 0.75, respectively.  
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Increasing the degree of mutual coherence of the waves sets a more uniform velocity 
magnitude of moving particles. The magnitude of the resultant force causing this motion 
under increasing the degree of coherence, practically, does not change with time, see Fig. 8. 
The maximum depth of modulation for coherent equiphase waves determines the stable 
position of particles. The chaotic state and the average particle velocity value can be taken as a 
possible guideline in estimating the degree of coherence of superposing waves.   

 
Fig. 8. The change of the resultant force of the test particle motion in the time-averaged field 
of distributed Poynting vectors with the change of the degree of mutual coherence of the 
waves (four superposing waves are in phase): curve 1 – one of the waves is incoherent with 
all other waves; curves 2, 3 and 4 correspond to the degree of coherence of the waves 0.25, 
0.5, and 0.75, respectively. 

 
Fig. 9. “Cellular” distribution of the potential traps for microparticles in the case of 
superposition of four waves. 

It is worth emphasizing two issues for the case of superposition of four plane waves. First, 
the dependence of the depth of modulation for the distribution of the time-averaged 
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Poynting vectors on the phase relation of superposing waves. It is here assumed that 
changing the phase relation between the superposed waves causes a transition (in the 
observed pattern) from the situation when the maxima of two systems of mutually 
orthogonal standing waves coincide to the case when the nodes of two such systems 
coincide. Thus, the velocities of particles in such fields depend on the depth of modulation 
of the distribution of the time-averaged Poynting vector, as it is seen in Fig. 8. Second, the 
superposition of four waves linearly polarized in the plane of incidence results in forming 
so-called “cellular” structure in the resulting field distribution, see Fig. 9, which can be used 
for transfer (transporting) of the set of periodically positioned microparticles as an entity to a 
desired zone.  

One considers a future deeper investigation of the peculiarities of motion of microparticles 
to reveal the coherent characteristics of the waves constituting certain spatial polarization 
distributions. 

The use of strongly reflected test spherical particles provides obtaining more realistic notion 
on movement of particles in the field modulated in polarization in the incidence plane. So, 
the test particles are concentrated in zones (planes) of minima of the time-averaged 
Poynting vector and move along these planes. This situation reflects in the most adequate 
manner the processes of particle moving in the fields spatially modulated in polarization. 

3.3 Experimental technique and results 

Direct experimental verification of the results of computer simulation is rather difficult. 
Spatial period of the polarization distribution resulting from superposition of plane waves 
meeting at right angle is less than a wavelength of the laser radiation of the visible range. In 
this case, diagnostics of optical currents presumes the using test particles (preferably 
spherical) of size much less than the period of polarization distribution. That is why, direct 
visualization and diagnostics of such particle currents is hampered. 

 
Fig. 10. Experimental setup: L1, L2 - lasers; TS1, TS2 - telescopic systems; M1, M2, M3,  
M4 - mirrors; PW1, PW2 - half-wave plates for λ=635 nm; PP - plane-parallel plate;  
BS - beam-splitter; MO1, MO2, MO3 - microobjectives; C - cuvette with gold hydrosol;  
IF - interference filter at λ=532 nm; D1(0.7-diam), D2 - diaphragms; S - opaque screen;  
PD - photodetector; A - amplifier; ADC - analog-to-digit converter; PC - computer. 

www.intechopen.com



 
Modern Metrology Concerns 

 

278 

For verifying the results of above consideration and computer simulation, we have studied 
experimentally the influence of the field resulting from superposition of two plane waves 
meeting at right angle with various combinations of their states of polarization on the test 
particles. Experimental arrangement is shown in Fig. 10. To provide right angle between the 
beam axes, we use immerse-oil-microobjective 90x with NA 1.25. Two parallel linearly 
polarized beams converge at the focus of microobjective 1. If the electrical vectors of two 
beams are parallel, the intensity distribution as a set of interference maxima and minima is 
formed at the area of superposition of such beams. We used radiation from a semiconductor 
laser RLTMRL-III-635 (λ=635 nm). For that, the period of an interference pattern is 449 nm. 
For investigation of the influence of the field distribution with such period on the particles, 
particle’s size must be much less than the mentioned period. We have used spherical 
particles of hydrosol of gold with diameter 40 nm, approximately. Hydrosol have been 
obtained following the standard technique [53], by mixing of chloroauric acid (H[AuCl4]) 
and sodium citrate (Na3Cyt). Let us describe the experimental conditions in more details. 
Weight concentration of gold particles in water was 5·10-6kg/m3. Experiment was carried 
out at room temperature, humidity 65% and air pressure 741 mm Hg. Note, our observation 
show that modest changing of the experimental conditions against ones mentioned here do 
not influence appreciably the results of experiment. As a matter of fact, we perform 
experiment with low-power of laser radiation (not exceeding 5 mW). In this case, one can 
neglect acoustic waves arising due to thermal action of laser radiation, which would become 
very important when one operates with high-power impulse laser beams. On these reasons, 
special precautions, such as use of anechoic chamber, are not undertaken in our study.  

Periodical intensity distribution causes movement of the particles and formation of the 
periodical distribution of concentration of particles as the planes coinciding with 
interference minima of the intensity distribution at the area of superposition of two beams. 
These planes can be regarded as the analog of crystallographic planes in crystals. Direct 
visualization of particles and their currents is hampered due to small particle size. However, 
at planes of dense packing of particles self-diffraction takes place. We have observed this 
phenomenon for angles of meeting of two beams less than 40°. For right angle of meeting of 
the beams, the each self-diffracted beam propagates along of and contrary to the propagation 
direction of other of two superposing beams. Thus, it is impossible to discriminate the initial 
and self-diffracted beams. That is why, taking into account the Bragg law, we use, for 
diagnostics of periodical distributions of particles, the test laser beam with another 
wavelength, λ=532 nm. To form the same interference distribution (with the period 449 nm) 
with such wavelength the angle of meeting of two beams could be 72.6°. So, the angle of 
incidence of the probing beam must be 36.3° in respect to bisector of the writing beams. In 
this case, the Bragg law is fulfilled strictly for the probing beam. The mentioned angles are 
the angles of propagation in light-scattering media, in our case in water. 

Two some shifted beams from a green laser (marked by thin line in Fig. 10) propagate in 
parallel to the beams of red laser (marked by thick line). The external green beam is stopped by 
the screen S, while the inner probing beam passes the microobjective MO1 and falls at the angle 
36.3° into the area of interference extrema. Diameters of the focused beams of red and green 
lasers are approximately 12 µm and 10 µm, respectively. Glass cuvette C with gold hydrosol is 
placed at the area of interference pattern. Thickness of the cuvette walls 0.15 mm, and thickness 
of the swept volume is 18 µm. Oil immersion with refraction index 1.515 is placed between 
microobjectives MO1 and MO2. Microobjective MO2 is used for adjusting the optical 
arrangement and output the radiation diffracted on periodical distribution of gold particles.  
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Optical lengths of two legs of an interferometer BS-M2-M3-M4-MO2 are strictly identical. 
So, two beams from red laser are mutually coherent and interfere at the focus of the 
microobjective MO2. Placing a perfect plane-parallel plate PP of thickness 19 mm into one 
interferometer leg leads to disappearance of interference, while the corresponding optical 
path difference exceeds the coherence length of red laser. What is important, introducing 
the plate PP must no be accompanied with shifting beams into interferometer. In such a 
manner, one can control appearance and disappearance of interference extrema at the 
focus of MO1. 

The change of the position of the plate leads to the change of the photodetector signal. Тhus, 
in the case of superposition of radiations from lasers L1 and L2 which are linearly polarized 
at the plane perpendicular to the figure plane removal of the plate PP results in increasing 
signal from a photodetector. It shows forming periodical spatial distribution of gold 
particles and appearance of the diffracted probing beam. The diffracted signal appears for 
radiation power of red laser more than 2 mW. However, it has been observed that for 
radiation power exceeding 50 mW, non-linear effects occur in light-scattering medium. So, 
gold particles absorb radiation and heat environment, acting as a thermal lens. That is why 
we have carried out our experiment for radiation power of red laser 5 mW. Radiation power 
of the probing beam was 0.5 mW, so that it can not affect gold particles. 

If two beams of red laser are polarized in the figure plane (half-wavelength plate PW1 for 
λ=635 nm is inserted) and their convergence angle is equal to 90°, only polarization 
modulation takes place in the incidence plane. In this case the diffracted probing beam is 
present as well. The signal at the photodetector output with and without plane-parallel plate 
is shown in Fig. 11 b. The diffracted probing beam is present, but is approximately of half 
the intensity in comparison with the case illustrated in Fig. 11 a. This experimental result is 
also in accordance with the result of computer simulation. The spatially modulated in 
polarization field (in the plane of incidence) is correlated with concentration of the test 
particles at the planes of minima of the time-averaged magnitude of the Poynting vector, 
and particles move along these planes.  

If two beams form red laser are linearly polarized, but one of them in the figure plane while 
another one perpendicularly to this plane (a half-wave plate PW2 for λ=635 nm is inserted), 
the diffracted probing beam is absent, cf. Fig. 11 c. This shows that at the focal plane where 
the beams from red laser superpose, the periodical distributions of gold particles are absent. 
This experimental result is also in agreement with earlier computer simulation [42]. In other 
words, there are no any ordered optical currents being liable to optical diagnostics, as it has 
been made in previous case. 

Thus, temporal and space peculiarities of particle’s motion in optical fields without intensity 
modulation, but only due to polarization modulation causing the spatial modulation of the 
time-averaged Poynting vector (depending on the degree of mutual coherence of superpose 
waves) opens up new feasibilities for the use of such field characteristics and the parameters 
of microparticles motion for estimating the temporal coherence of the tested field. Here we 
have demonstrated a possibility of influence of only the polarization factor on formation of 
optical currents in liquids by the use of the principles of spatial polarization modulation in 
the observation plane. Besides, we have shown the possibility of diagnostics of optical 
currents using test particles of nanoscale.  
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Fig. 11. Relative signal of a photodetector (a plate PP is inserted on 2 sec and then removed) 
in the case when radiation of red laser is linearly polarized: (a) both beams are polarized in 
the plane perpendicular to the figure plane; (b) both beams are polarized in the figure plane; 
(c) one beam is polarized at the figure plane, while another one is polarized perpendicularly 
to this plane. 

The explained metrology of microstructure of optical fields may be extended, to all 
appearance, on polychromatic waves. The initial steps in this direction have been recently 
made in studies [52, 54 – 60]. 
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4. Polarization singularities in partially coherent light beams 

In this section we describe specific polarization singularities arising in incoherent 
superposition of coaxial orthogonally polarized laser beams. It is shown that in transversal 
cross-section of paraxial combined optical beams of this class, instead of common 
singularities, such as amplitude zeroes (optical vortices) inherent in scalar fields [2], and 
polarization singularities such as C points and L lines inherent in completely coherent 
vector fields [18], phase singularities of the complex degree of polarization (CDP) arise, whose 
description and investigation have been initiated by papers [61 - 65] basing on earlier 
studies [66 - 68] concerned to the Young’s concept of the edge diffraction wave in connection 
with diagnostics of phase singularities of spatial correlation functions of optical fields. There 
are U contours along which the degree of polarization equals zero and the state of 
polarization is undetermined (singular), and isolated P points where the degree of 
polarization equals unity and the state of polarization is determined by the non-vanishing 
component of the combined beam. (Note, discussed here notion of CDP differs from the 
definition of the complex degree of mutual polarization, CDMP [6] that is two-point 
function of an optical beam.) 

Let us briefly argue the relevance of the introduced approach. 

It is known [69] that each level of description of optical phenomena possesses its own set of 
singularities, i.e. the set of elements of a field (points, lines, surfaces, depending on 
considered dimension) where some parameter of a field is undetermined. Importance of 
detecting such elements of a field is caused by the fact that such elements form peculiar 
skeleton of a field, so that if one knows behavior of a field at such singular elements (and at 
nearest vicinities of them), one just can predict, at least in qualitative manner, but with high 
level of validity, behavior of a field at all other areas. 

Conditionally, one can classify singularities of optical fields in the following manner  
[69]: 

 singularities of geometrical optics, 
 singularities of completely coherent scalar (homogeneously polarized) wave fields – 

optical vortices, 
 singularities of completely coherent vector (inhomogeneously polarized) wave fields – 

optical vortices, 
 singularities of  partially coherent wave fields, 
 singularities of quantum optics  “quantum cores”. 

Singularities of geometrical optics are caustics where the field amplitude reaches infinity. 
Singularities of completely coherent wave fields are divided into two sub-classes: (i) for 
scalar (homogeneously polarized) fields and (ii) for vector (inhomogeneously polarized) 
fields. In scalar fields, when polarization can be neglected, so-called wave front dislocations 
take place (which are also referred to as amplitude zeroes or optical vortices). Phase of the 
complex amplitude is undetermined at such elements and is step-like changed at crossing of 
them. In vector fields optical vortices are absent, though they remain in any polarization 
(“scalar”) component. Instead of vortices, polarization singularities arise at cross-section of a 
field, viz. field elements where azimuth of polarization (C points) or handedness (L lines) is 
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undetermined [18]. Vector skeletons of coherent inhomogeneously polarized fields were 
elaborated in details in papers [70 - 72]. By crossing L lines, handedness is step-like changed 
into opposite one; by crossing C point, azimuth of polarization is changed into orthogonal 
one. These types of singularities are blurred in quantum-mechanical description being 
“camouflaged” by so-called quantum vacuum [69], though the distance of influence of such 
quantum core is rather small. Its linear size is of order of magnitude 3  (about 6 Å for He-
Ne laser). 

All mentioned singularities disappear in the case of partially coherent wave fields (though 
they remain in each completely coherent component, mode in a set of which partially 
coherent radiation is decomposed. Instead (beside) of them, new singularities appear 
inherent just in partially coherent fields. Let us emphasize, that singularities of partially 
coherent fields have formed the novel topic in the field of singular optics just at the 
beginning of the Third Millenium [3].   

For that, two situations arise again: (i) scalar case when polarization can be ignored while 
the state of polarization is the same at all point of a field, and (ii) vector case when the state 
of polarization of partially coherent field changes from point to point that requires explicit 
taking into account of vector nature of light. The first (scalar) case became the subject of 
intense investigations in last years [67, 73 - 76]. As a result of these investigations, new phase 
singularities of spatial and temporal correlation functions of quasi-monochromatic light 
fields have been revealed, as well as singularities of spectral components of polychromatic 
(“white-light”) radiation [68, 77 - 82]. For that, vector singularities of partially coherent light 
fields have been revealed just recently [61 - 65]. Such singularities are elaborated in this 
section. 

4.1 U and P singularities in partially spatially coherent combined beams 

Let us consider vector singularities in partially coherent optical beams by giving the 
following simple instructive example. Mutually incoherent and orthogonally polarized 
Laguerre-Gaussian mode LG01 and a plane wave are coaxially mixed. Such components can 
be obtained from one laser (using a computer-generated hologram for forming LG01 mode) 
in interferometric arrangement with optical delay, l , considerably exceeding a coherence 
length of the used laser, l , or using two different lasers. Intensity of a plane wave is set 
deliberately to be less than the peak intensity of the mode, see Fig. 12. 

Thus, we consider two-component mixture co-directional orthogonally polarized beams, 
one of which contains a common phase singularity, viz. optical vortex. Interference between 
such beams with forming common interference fringes is excluded by two reasons: (i) 
specified mutual incoherence of the components: (ii) polarization orthogonality of them. 
Note, even only the second condition per si determines that, independently on the degree of 
mutual coherence of two beams over whole interval from zero (for optical path difference 
exceeding the coherence length) to unity (for zero optical path difference) visually observed 
and photometrically measured pattern remains unchangeable. However, more delicate 
polarization analysis of the combined beam enables to differentiate two limiting cases, viz. 
completely coherent and completely incoherent mixing of orthogonally polarized 
components. 
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Fig. 12. Mixing of vortex-supporting LG01 mode and plane wave with intensity less than 
peak intensity of a mode. 

Let us firstly consider the limiting case when two components are completely mutually 
coherent. For the sake of distinctness (and for substantiveness of further consideration), we 
consider coherent mixing of orthogonally circularly polarized LG01 mode and a plane wave. 
Beside of all, choice of circular polarization basis possesses the advantage that it is invariant 
in respect to rotation of the coordinates, in contrast to linear or elliptical basis, which are 
relative ones [83]. 

 

 

 
Fig. 13. The lines of equal intensities of orthogonally polarized beams at Stokes space: 
equator of the Poincare sphere for circular polarization basis, coherent mixing (a);  
45°-meridian including the poles for linear polarization basis, coherent mixing (b);  
diameter of the Poincare sphere connecting the poles for circular polarization basis,  
incoherent mixing (c). 
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In general, combined beam, everywhere with the unit polarization degree ( 2 2 2
1 2 3 1s s s   , 

where 1 2 3,  ,  s s s  are the normalized second, third and fourth Stokes parameters, respectively 
[17, 83, 84], is elliptically polarized. But at the center of vortex of LG01 mode the field is 
circularly polarized with the state of polarization of a plane wave. A common phase 
singularity (vortex) of orthogonally polarized component of the combined beam lies at the 
bottom of this circular polarization. At the same time, the resulting field is polarized linearly 
at two contours where amplitudes of two components become equal to each other, see Fig. 
13 a.  

For that, owing to helicoidal structure of a wave front of LG01 mode, azimuth of linear 
polarization changes with changing phase difference of a mode and a plane wave. Such 
topological structure can be considered as elementary experimental model of the 
assemblage of C point and surrounding it L contour of conventional singular optics of 
vector fields. Really, similarly to the case of random vector fields, crossing L line where 
handedness is undetermined is accompanied by step-like changing handedness into 
opposite one, corresponding to predominant in intensity component with unchangeable 
azimuth of polarization. For comparison, Fig. 13 b illustrates the line of equal intensities of 
coherently mixed components in linear polarization basis. 

It is of interest that the elementary structure shown in Fig. 13 a is directly related with 
description of polarized light at the circular complex polarization plane that is a 
stereographic projection of the Poincare sphere [84]. So, C point and L contours correspond 
to the pole of the Poincare sphere and its equator, see Fig. 14. 

 
Fig. 14. The complex circular polarization plane. The center of coordinates corresponds to 
left-circular polarization (C point); the circle of unite radius separating red and blue areas 
corresponds to linear polarizations with changeable azimuth of polarization (L contours), its 
contours separate the area of the beam with left handedness (red) and right handedness 
(blue); right-circular polarization point lies at infinity.  
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Let us support this intuitive consideration by formal description. Let us proceed from Jones 
vectors of two components, right-circularly polarized LG01 mode and left-circularly 
polarized plane wave, 

    
 

 
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exp
exp 2LG

i
c w i

i




 
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where c  is the amplitude factor corresponding to inhomogeneous amplitude distribution of 
a mode as a function of dimensionless radial coordinate, and ie   is associated with 
helicoidal change of a phase of a mode under circumference of the central vortex (its explicit 
form for Laguerre-Gaussian mode is well known but is not relevant here). There is Jones 
vector of the combined beam: 
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General coherency matrix of the beam is found as 
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or in explicit form: 
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Combining the elements of coherency matrix, one can find full Stokes parameters: 
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 (9) 

Here we are especially interested in the case when 1c  . One just obtains for this case the 
normalized Stokes parameters: 

 0 1 2 31;      cos ;      sin ;      0.s s s s       (10) 

Vanishing of the fourth Stokes parameter means that polarization at all points of the contour 
where intensities of the mixed components are equal to each other are equally distanced 
from the states of polarization of the components, i.e. neither right-circular nor left-circular 
predominate in intensity. It is in direct correspondence with Fig. 13 a. At all points of such L 
contour polarization is linear with the polarization azimuth  1

2 10.5tan 2s s    , while 
the angle of ellipticity 30.5arcsin 0s   . Besides, the degree of polarization 

2 2
1 2 1P s s   . In correspondence with helicoidal structure of a wave front of LG01 mode, 
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a phase difference of the components changes along the contour of equal intensities that 
results in changing azimuth of polarization. Thus, we obtain direct analog of L contour. 
Further, at the center of vortex of LG01 mode we have 0c  . Again, proceeding from Eq. (9) 
we find the normalized Stokes parameters 1,  0,  0, 1 , i.e. left-circular polarization of a 
plane wave. In the vicinity of such C point polarization is elliptical, with the azimuth of 
polarization changing with azimuthal coordinate and ellipticity decreasing from the vortex 
to L contour, Eq. (10), where handedness is undetermined an step-like changing by crossing 
this contour. It is all in quite correspondence with Fig. 14. 

Thus, for circular polarization basis walking along contour of the combined beam “LG01 
mode + plane wave” where intensities of the components become equal corresponds to 
moving along equator of the Poincare sphere that is determined only by the ratio of the 
second and third Stokes parameters. (For comparison, using linear polarization basis, to say 
0° and 90°, one obtains by the same way the normalized Stokes parameters for the combined 
beam  0 901,  0,  cos ,        0 90sin        that corresponds to points of 45°-
merdian of the Poincare sphere, see Fig. 13 b.) 

Before consideration of the most general case of partial mutual coherence of the mixed 
orthogonally polarized components in the following section, let us consider other limiting 
case, viz. completely incoherent mixing of such components. There is no necessity to 
proceed now from Jones vectors and to form a coherency matrix of the combined beam. One 
can at once determine the Stokes parameters of mutually incoherent components and to sum 
directly them, without accounting phase relations that are irrelevant for incoherent 
summation. The normalized Stokes parameters of orthogonally polarized beams differ only 
in sign of the second, third and fourth parameters:  1 2 31,  ,  ,  s s s  and  1 2 31,  ,  ,  s s s   . 
It is clear that when two components become equal in intensities, the normalized Stokes 
parameters of the combined beam becomes 1,  0,  0,  0 . The field at such elements of a field 
is completely unpolarized. There are just U singularities [61 - 63]. This case is shown in Fig. 
13 c for the case of incoherent mixing of orthogonally circularly polarizer components. 
Trajectory of the imaging point for the combined beam in this case is the diameter of the 
Poincare sphere connecting two poles. U singularity is imaged by the center of this sphere, 
and all other points (beside the center and poles) image partially circularly polarized fields. 
For that, the length of a vector drawn from the center of the Poincare sphere to the imaging 
point inside it equals the degree of polarization. The point where the degree of polarization 
equals unity is referred to as P (completely polarized) point [61 - 63]. Its location is 
determined by the vortex of orthogonally polarized (scalar singular) component. The set of 
P points and U contours corresponding to extrema of the degree of polarization of a field are 
the singularities of the degree of polarization forming the vector skeleton of two-component 
mixture of orthogonally polarized beams. Note, in papers [61 - 64] consideration is carried 
out using the notion of the complex degree of polarization  CDP, associated with 
orientation of the vector of polarization in the Stokes space and undergoing the phase 
singularity at the center of this space. So, U singularities can be considered just as vector 
singularities, viz. singularities of the vector of polarization, when its magnitude equals zero 
and a phase (orientation of the vector) is undetermined. 
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Let us emphasize that the condition of occurring U singularity is equal to the condition of 
occurring L contour in completely coherent limit. It means that loci of C and L singularities 
in completely coherent fields and P and U singularities in partially coherent fields arising 
from completely incoherent orthogonally polarized components, correspondingly, coincide. 

Displacement from U singularity results in predomination of one of two orthogonal 
components in intensity. The state of (partial) polarization is just determined by the 
predominant component. That is why, the degree of polarization can be determined in 
similar form as visibility: 

 1 2

1 2

I I
P

I I





. (11) 

In other words, at each point of the combined beam equal in intensities parts of orthogonal 
components form unpolarized background, at which manifests itself completely polarized 
part corresponding to predominant in intensity component. This is in a complete agreement 
with classical decomposition of partially polarized beam into completely coherent and 
completely incoherent parts, which are added on intensities, without accounting phase 
relations [17, 84]. Note, there are no any device providing such decomposition in practice. 
However, share of completely polarized part can be determined experimentally through the 
Stokes polarimetric experiment, 2 2 2

1 2 3P s s s    or, equivalently, following Eq. (11). In 
theory one put in correspondence to such beams the set of two coherency matrices – for 
completely polarized and completely unpolarized parts of a beam [1, 17]. 

Thus, only two orthogonal states of polarization take place in combined beams of 
considered kind, which are separated by U singularities where the state of polarization is 
undetermined. 

So, the considered limiting cases show the same location of C and P singularities and L and 
U singularities for the same set of components. However, vicinities of such singularities are 
essentially different. Only two orthogonal states of polarization are present in spatially 
partially coherent combined beams, and only the degree of polarization changes from point 
to point within the areas separated by U singularities. 

4.2 Vector singularities for partially mutually coherent mixed components 

Let us consider now the most general case, when two mixed components shown in Fig. 12 are 
orthogonally (circularly) polarized and are partially mutually coherent, so that the degree of 
mutual coherence of the components can be gradually changed from unity to zero. It can be 
implemented in the arrangement of the Mach-Zehnder interferometer with controllable optical 
pass difference between the legs of an interferometer, as shown in Fig. 15.  

A half-wave plate at the interferometer input serves for fine balancing of intensity ratio 
between the legs of an interferometer without changing total intensity at its output. Two 
polarizers inside an interferometer are controllers setting orthogonal linear polarizations. LG01 
mode is generated by a computer synthesized hologram. A quarter-wave plate at the output of 
an interferometer transforms orthogonal linear polarization into orthogonal circular ones. 
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Fig. 15. General arrangement for generation and detection of vector singularities in partially 
coherent beams: L – He-Ne laser; 2  and 4  – half-wave and quarter-wave plates, 
respectively; P – polarizers; A – linear analyzer; SGO – singularity generating object 
(computer synthesized hologram); BS – beam splitters; M –  mirrors; CCD – CCD-camera; 
PC – personal computer. Insets show action 2  and 4  plates at the input and at the 
output of an interferometer; two prisms form optical path delay loop. 

A quarter-wave plate and linear analyzer at the receiving end, together with CCD-camera 
matched with personal computer serve for Stokes-polarimetric analysis of combined 
beams. Two prisms at one of legs of an interferometer enable to control optical path 
difference and mutual coherence of the mixed components. Namely, one can control path 
delay l  from zero to magnitude exceeding a coherence length (length of wave train) l of 
the used laser. Change of the ratio l l  corresponds to change degree of mutual coherence 
of orthogonally polarized components. Thus, for 0 1l l    the combined beam is 
simultaneously partially spatially coherent (due to changing intensity ratio at cross-section 
of the resulting field) and partially temporally coherent (due to non-zero optical path 
difference between the components), one expects for increasing optical path difference the 
following. 

As it has been mentioned above, the condition of arising of L contours and U contours in the 
limiting cases of mixing of orthogonally circularly polarized beams is the same: intensities of 
the components must be equal to each other. If the optical path difference increases from 
zero, field at the L contour remains linearly polarized, but the degree of polarization 
decreases. It follows from that the degree of polarization of a beam is determined by the 
degree of mutual coherence of its arbitrary orthogonal components [1, 17], here right-hand 
and left-hand circular components. It means that U contour nucleates just at the bottom of L 
contour. 

The degree of polarization can be represented equivalently in terms of measured Stokes 
parameters (that will be used in the next section) or theoretically, viz. through the invariants 
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of the coherency matrix, which at the same time determine coherence properties of a field 
[17]: 

 
 
 2

4det
1

Sp
P  

J

J
. (12) 

For that, in general, the degree of polarization is always non less than modulo of the degree 
of mutual coherence of the components, for circularly polarized components 

 rl
rl

rr ll

J

J J
  . (13) 

In general case, rlP  , as the degree of coherence depends on the decomposition basis 
while the degree of polarization is invariant [5]. However, it has been shown [1, 17] that the 
degree of polarization is equal to the maximal degree of coherence, maxrlP  , in the case 
when the components are of equal intensities. This is just the case of L singularities and U 
singularities. It is of the most importance, that change of the optical path difference changes 
weights rl  of completely coherent (and completely polarized) part of the combined beam 
and 1 rl  of its completely incoherent part. Increasing l l  difference corresponds to 
increasing of weight of U singularity against L singularity, so that one can follow gradual 
transformation of L contour into U contour. 

4.3 Experimental reconstruction of “pure” and “mixed” polarization singularities 

Mixing of LG01 mode and plane wave was performed in the arrangement Fig. 15 [66]. 
Intensity of a plane wave was considerably (approximately by the order of magnitude) less 
the peak intensity of a mode, both circularly (orthogonally) polarized. The following results 
have been obtained under such conditions. 

Fig. 16 shows the combined beam whose view, as was mentioned above, within 
experimental accuracy remains the same at arbitrary optical path delay set in the 
interferometer. This photo has been obtained for incoherent mixing of two components for 

3l l   (under condition realized in paper [68]. We measured spatial distribution of the 
Stokes parameters and looked for the elements where 1 2 3 0s s s    ( 0P  , U contours), 
and 3 1s   (P point), see discussion after Eq. (10). In such a manner, we were in a position to 
reconstruct a vector skeleton of partially spatially coherent combined beam formed by 
completely mutually incoherent components, as in Refs [61 - 64]. Experimental error in 
determining the normalized Stokes parameters was at the level 7%; this determines 
reliability with which we reconstructed P point and U contours. P and U singularities for 
this case are shown in right fragment of Fig. 16. Two U contours separate the areas with 
right-circular and left-circular polarization shown by different colors. Within these areas 

2 2
1 2 0s s  , while 3 1.s   Let us emphasize that the full Stokes-polarimetric experiment 

over combined beam cross-section is necessary in this case, as operating only with rotating 
linear analyzer does not provide differentiation partial circular polarization from complete 
elliptical polarization. 
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Fig. 16. The partially coherent combined beam (left) and its vector skeleton formed by P and 
U singularities (right) for completely incoherent mixing of circularly polarized components. 

Separate maps of the Stokes parameters are less representative being only row material for 
finding out the degree of polarization, ellipsometric parameters of a field, and vector 
singularities. That is why, we demonstrate separately from 2D pattern shown in right 
fragment of Fig. 16 1D cross-section of the degree of polarization of this combined beam, see 
Fig. 17. Red curve shows two-lateral radial dependence of P  computed following Eq. (11). 
Blue curve shows experimentally obtained distribution found as the combination of 
measured Stokes parameters, here 3P s . Quantitative discrepancy of two curves (both in 
positions of zeroes and in heights of side-lobes) is obvious and is explained by anisotropy of 
the vortex. Nevertheless, behavior of the experimental dependence is in quite satisfactory 
qualitative agreement with the simulation results. Namely, one observes two zeroes of the 
degree of polarization at the each side of the central optical vortex that are the signs of two 
U contours. Moreover, experiment has proved typical conical vicinity of U contours recently 
predicted and observed in paper [61], which are reliable sign of true singularity of any kind, 
in contrast to local minimum. 

Another limiting case (completely mutually coherent components) for 1l l   
(approximately 0.05) is illustrated in Fig. 18. Again, spatial maps of the Stokes parameters were 
obtained and the elements 3 0s   and 2 2

1 2 1s s   where selected. There are the lines of linear 
polarization. Than, in several selected points of such L lines we determined the azimuth of 
polarization, again, by two ways: firstly as  1

2 1tan s s , and, secondary, as direct 
measurement of the azimuth of polarization by rotating a linear analyzed up to complete 
extinction of a field at the specified point that corresponds to crossed azimuth of polarization 
of the combined beam and the axis of maximal transmittance of analyzer. Description between 
two results for determining of the azimuth of polarization do not exceeded 0.1 rad. 

Perfect extinction of a beam at the specified points just shows that the degree of polarization 
1P   (in contrast to the previous case of completely mutually incoherent components, 

where intensity at the analyzer output is independent on its orientation). Also, for certain 
orientations of a quarter-wave plate and analyzer, the field at each other point can be 
extinguished that shows that everywhere the degree of (elliptical) polarization equals unity. 
It is worth to compare Fig. 18 with a view of the circular complex polarization plane (Fig. 14) 
to be convincing of that, really, such polarization distribution over of a combined beam is 
close experimental analogue of the circular polarization plane. 

U1 

U2 

P

.

www.intechopen.com



 
Optical Measurements: Polarization and Coherence of Light Fields 

 

291 

 
Fig. 17. 1D distribution of the degree of polarization of the combined beam formed by two 
mutually incoherent orthogonally polarized components defined in Fig.12 and shown in 
Fig. 16. 

 

 
Fig. 18. C and L singularities in combined beam assembled from completely mutual 
coherent orthogonally (circularly) polarized LG01 mode and plane wave. At L lines, where 
intensities of two mixed component are equal, the azimuth of polarization changes in 
agreement of prediction illustrated in Fig. 14 Areas of different colors correspond to 
opposite handedness. 

L singularities

C singularity

.
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At last, we have elaborated experimentally intermediate case, when 0 1l l   , lying 
between ones considered above. For step-by-step increasing optical path difference between 
the same orthogonally (circularly) polarized components, we obtained spatial distributions 
for the Stokes components 0 90 45 45,  ,  ,  ,  ,  r lI I I I I I   and found from them the Stokes 
parameters. Further, the degree of polarization and ellipsometric parameters of the 
combined beam were determined as the combinations of these parameters. 

Before formulating the conclusions from our observations, let us represent one of row 
(intermediate) results undergoing following processing. Fig. 19 illustrates combined beams 
“LG01 mode + plane wave” (with large intensity ratio, so that one does not visualizes a plane 
wave) for relative optical path differences close to unity (coherent limit illustrated in Fig. 18) 
and slightly exceeding a half of the coherence length of used laser, left fragments of Fig. 19. 
Other fragments of this figure are the intensity distributions 45I  (central column) and 45I  
(right column) used for forming the third Stokes parameters. (Other pairs of intensity 
distributions show the same tendency). Though two orthogonally polarized components do 
not interfere, their equal polarization projections selected by properly oriented polarizer can 
interfere depending on their mutual coherence. If the degree of mutual coherence of the 
components is not zero, their equally polarized projections interfere with forming typical 
patterns indicating phase singularity. To have enough spatial resolution for determining place 
of vortex, we set non-zero interference angle between the components (which as small enough 
to be no influencing on accuracy of polarization measurements). For that, instead of snail-like 
pattern typical for coaxial mixing of LG01 mode and a plane wave, we obtained interference 
forklets. Comparison of the central and left columns of Fig. 19 shows that spatial intensity 
distributions for orthogonal polarization projection of the combined beam are complementary 
in a sense that dark forklet is replaced by bright one. 

The main conclusion follows from comparison of fragments b and e (c and f). Decreasing of 
the mutual coherence of the mixed components and decreasing of the degree of polarization 
of the combined beam are accompanied by decreasing of ability of equal polarization 
projections of the mixed components to interfere that manifests itself in decreasing of 
visibility of interference pattern. So, in fragments b and c of Fig. 19 ( 0.05l l  ) the 
measured visibility is 0.97, while in the fragments Fig. 19 e and f ( 0.56l l  ) visibility is 
0.24 (with experimental error non exceeding 5%). It shows the feasibility allows determine 
the degree of mutual coherence of two orthogonally polarized beams by measuring the degree of 

polarization of the combined beam formed by such components found from Stokes 
parameters. Namely, in our experiment rl  for 0.56l l   also equals 0.24. For the reasons 
discussed in Section 3, such measurements are preferably be performed at the elements of 
the combined beam where intensities of two beams are equal to each other (where L and U 
singularities co-exist in case of partial mutual coherence of the components), while at such 
singular elements of the combined beam rlP  . 

Thus, vector singularities occurring in light fields, which are simultaneously partially 
spatially and partially temporally coherent have been considered. It has been shown that in 
the case of partially coherent mixing of two orthogonally circularly polarized components 
conventional vector singularities, viz. C points and L lines submerged in a field of elliptical 
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polarizations coexist with singularities arising just in partially coherent fields, such as U and 
P singularities as the extrema of the degree of polarization. Gradual transformation of C and 
L singularities into P and U singularities, respectively, accompanying decreasing degree of 
mutual coherence of the components has been experimentally shown. So, conventional 
polarization singularities of completely coherent fields (C points and L lines) are vanish in 
incoherent part of the combined beam, so that the only polarization of the component 
predominant in intensity remains in the vicinities of P points and U lines. 

 
 

 
Fig. 19. The combined beams “LG01 mode + plane wave” with relative optical path 
differences 0.05l l   (a) and 0.56l l   (d); the corresponding intensity distributions 
behind a linear analyzer for determining the third Stokes parameters: +45° (b and e) and –
45° (c and f). Decreasing visibility of interference fringes in fragments e and f corresponds to 
decreasing in parallel the degree of mutual coherence of the mixed components and the 
degree of polarization of the combined beam. 

5. Feasibilities for experimental analysis of characteristics of the Poynting 
vector components 

In this section, potentiality of experimental analysis for the time-averaged Poyntig vector is 
considered. In part, we will show that combined application of conventional interferometry 
and Stokes-polarimetry should allow of unambiguous determining characteristics of the 
time-averaged Poynting vector components at each point of electromagnetic field. 

(a) (b) (c) 

(d) (e) (f) 
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One of theoretical aspects in rapidly developing area of the modern optical technology, 
elaboration of new kinds of optical tweezers [25 - 30, 85] is connected with the fact that the 
vortex beams and polarized waves (both homogeneous and inhomogeneous) possess an 
angular momentum [85 - 87]. Existence of controlled angular momentum provides a 
possibility for controlled rotation of micro-objects locked by corresponding optical traps. 
Angular momentum of a field can be specified at each spatial point. One may also consider 
angular momentum averaged over some spatial area. As it is known [86, 88], angular 
momentum may be divided into a spin momentum associated with circular polarization, 
and an orbital one produced by specific beam structure. However, density of the angular 
momentum, zj , (at least, of its orbital part) depends upon the location of the axis 0r  (i.e., 
“purchase”) with regard to which the parameter zj  is calculated. As a result, some 
ambiguity appears. At the same time, another physical value closely associated with the 
angular momentum, viz. the space distribution of characteristics of the time-averaged 
Poynting vector (more accurately, its transverse component), represents a univocal function 
of coordinates of each field point. 

Distribution of parameters of the time-averaged Poynting vector for Laguerre-Gaussian beams 
has been considered in [89, 90]. However, behavior of the time-averaged Poynting vector was 
analyzed only for homogeneously polarized fields and “symmetrical” beams [86, 89]. 

At the same time, analyzed fields may be more complicated, in part, when their polarization 
is inhomogeneous. Distribution of the transverse component of the Poynting vector for such 
fields may be characterized by a set of certain points, i.e., by the net of Poynting vector 
singularities [87]. The importance of these points comes from the fact that the characteristics 
of this singular net, such as the Poynting field skeleton, determine qualitative behavior of 
the Poynting vector at each of the field points [37]. For instance, vortex Poynting 
singularities [91] are the points, around which circulation of the transverse component of the 
Poynting vector takes place. In other words, one deals here with the points which are the 
intersections of the observation plane and the axis of the angular momentum. Thus, spatial 
distributions of characteristics of the time-averaged Poynting vector components would 
contain important information on the field, which is concerned with the energy flows [24, 
30, 35, 36]. 

Nevertheless, one can state that no the technique for experimental analysis of the time-
averaged Poynting vector components and their singularities has been developed up to 
now. Here we would like to demonstrate that the components of the time-averaged 
Poynting vector can be experimentally analyzed by using conventional optical methods. 

It has been shown [37, 87] that the instantaneous components of the Poynting vector may be 
written as 
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where 
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 (16) 

,i x y , ,i iA   – denote, respectively, amplitudes and phases of the corresponding field 
components, ,  l l

i iA   are their partial derivatives, and /k c  represents the wave number. 
Note, here the axis z  coincides with the preferential direction of the wave propagation. 

One can show after some algebraic transformations that the averaged components of the 
Poynting vector are as follows: 
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 (17) 

The second and the third terms in the brackets appearing of the first two rows of Eq. (17) 
may be rewritten as follows: 
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
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where ,i x y . Then, the system of Eqs. (17) is transformed to 
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 (19) 

As it follows from Eqs. 19, one of the possible ways of the Poynting vector components 
measurement is complete analysis of orthogonal components: 

Measurement of the components intensities (for the defining of components amplitudes and 
their corresponding derivatives). 

Phasometry (interferometry) of the components (for the defining of components phases and 
their corresponding derivatives). 
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However, the phase difference between orthogonal components   is included in relations 
(19). Note that: 

i. as it is known [17] measurement of the “absolute” phase in optics is “problematic”. 
Only phase difference between object wave and referent one is fixed. In other words, 
the phase is measured within the constant component.  

ii. the experimental arrangement for simultaneous measuring of component phase with 
the same constant components is practically impossible. 

Consequently, the phase difference   cannot be measured within the enough accuracy by 
the components analysis. Such value may be easily measured by the Stokes polarimetry [83]. 
Stocks parameters for monochromatic wave have the form [17]: 
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Value   may be determined as: 

 1 3

2
tan

s

s
  , (21) 

and the Eqs. 19 may be used for the analysis of Poynting vector components. If one takes 
into account Eqs. (20), the relations (19) are transformed to the form: 
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Thus, components of the Poynting vector may be defined by the Stokes parameters and 
derivatives of components phases. Note, that phasometry of only one component (let us y -
component for certainty) is necessary, because a phase of the orthogonal component is 
determined as x y    . Obviously, in practical sense, the phasometry of the smooth 
component (without any singularity in the analyzed area) is preferable. 

As it is known (see, for example, [92] which is the closest for the topic of our study),  
three kinds of measurement are necessary for defining of phase of scalar field at each field 
point: 

Intensity of component field 2
i iI A . 

Intensity of referent wave 2
r rI A . 

Intensity of total field sI . 
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The component phase (within the constant component) may be derived from the relation: 

 ( )
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2
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Naturally, the phase derivatives k
i , included in Eqs. (19), (22) are independent on the 

constant component. 

Thus, joint applying of the conventional interferometry and Stokes-polarimetry allow us 
unambiguously determine the characteristics of the Poynting vector components at each 
point of an optical field. 

6. Complex degree of mutual polarization of laser fields formed by 
birefringent matrices of biological tissues. Polarimetric metrology in 
diagnostics of structure and physiological state of biological tissues 

Optical diagnostics of complex, inhomogeneous in phase objects, such as biological tissue (BT) 
includes relatively independent directions, viz. photometric, polarimetric and correlation. On 
the base of these directions, laser polarimetry of BTs has been formed as a new and intensively 
developed branch of applied optics metrology [93 - 97]. Within this branch, one considers 
morphological structure of BTs as two-component amorphous-crystalline structure. 
Crystalline component or extracellular matrix of BTs of the main types is formed by the net of 
coaxial cylindrical protein fibrils possessing the properties of uniaxial bireringent crystals.  

Laser polarimetry has been shown to be efficient tool under single-scattering regime for 
finding out the set of interconnections among statistical (the first to the fourth statistical 
moments) and fractal (log-log dependence of power spectra) parameters, which characterize 
coordinate geometrical-optical structure of extracellular matrix of BT, on the one hand, and 
polarization parameters (coordinate distributions of the azimuth of polarization and 
ellipticity) at its image, on the other hand. The mentioned success in diagnostic application 
of laser polarimetry of optically thin BT layers stipulates further development of new 
statistical approaches for analysis of concordance of the states of polarization at various 
points of an object field formed by multy-layer BT, in part by applying the concepts of the 
complex degree of mutual polarization (CDMP) [6, 32, 98, 99] and determining on this base 
the complex degree of mutual anisotropy [100] of polycrystalline protein nets. It is of vital 
importance for development of new techniques for reliable estimating physiological state of 
optically anisotropic BTs.  

Spatial modulation of correlation and polarization characteristics is intrinsic to laser 
radiation scattered by object fields, including images of BTs [4, 5, 93, 101 - 103]. Optical 
coherent tomography [104, 105] and its new branch, polarization-sensitive optical coherent 
tomography [95, 96, 101, 106, 107], are among the most promising techniques for obtaining 
information on such modulation. This diagnostic technique is based on measuring 
coordinate distributions of the Stokes parameters at BT images that give a possibility to 
obtain important data both on BT’s microstructure and on magnitude and coordinate 
distribution of optical anisotropy of architectonic nets formed by birefringent protein fibrils. 
Further progress of polarization-sensitive optical coherent tomography presumes 
development of new techniques for polarimetric, interferometric and correlation analysis 
and processing of inhomogeneous in polarization images of BTs. Let us consider these 
techniques in more details. 
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6.1 Polarimetric approach 

Laser radiation, similarly to natural light, can be absorbed and scattered by BT. Each of these 
processes leads to enrichment of the field by information on micro- and macrostructure of 
the studied medium and its components. Spectrophotometric techniques are among the 
most widely used now for diagnostics of BTs. These techniques are based on the analysis of 
spatial and temporal changes of intensity of a field scattered by optically inhomogeneous 
samples. At the same time, other diagnostic techniques are also intensively developed, being 
based on fundamental concepts of polarization and coherence. 

Spatial fluctuations of the parameters of optical fields are traditionally characterized in 
terms of the field’s coherent properties [1]. The concept of the measure of coherence between 
two light disturbances is associated with ability of such disturbances to produce interference 
pattern and, consequently, with visibility of an interference pattern [17, 108]. It is just the 
measure of the sum of correlations between equal polarization projections of electrical fields 
at two specified ponts.  

Another type of correlation characteristics of scattered laser fields is the degree of 
polarization defined as the maximal magnitude of correlations between the orthogonal 
polarization projections of a field at the fixed point [17]. Polarization properties of a field are 
experimentally investigated by measuring intensity of radiation passed various optically 
active elements of a medium. The techniques based on the use of the coherency matrix and 
the degree of polarization related to correlation of orthogonal in polarization components at 
one point of a field are often referred to as the polarization techniques [93].  

Intense development of vector (polarization) approach in the study of morphological 
structure and physiological state of various BTs [96] formed the basis for elaborating model 
concepts on optically anisothropic and self-similar structure of BTs [98, 109 - 112]. So, Cowin 
[113] analyzes hierarchical self-similar structure of typical connective tissue, viz. tendon 
(tropocollagen, microfibril, subfibril, fascia etc.) Cowin emphasizes that threadlike structural 
elements are discrete, being characterized by scale recurrence over large interval of “optical 
sizes” (from 1 m to 103 m). For that, optical characteristics of such structure of BT 
correspond, generally, to “frozen” optically uniaxial liquid crystals. 

The same approach for describing morphological structure of BT has been applied in Refs 
[111, 112], where a BT is considered as two-component amorphous-crystalline structure. 
Amorphous component of BT (fat, lipids, unstructured proteins) is isotropic in polarization, 
i.e. optically inactive.   

Crystalline component of BT is formed by oriented birefringent protein fibrils (collagen 
proteins, myosin, elastin etc.). The properties of the each isolated fibril are modeled by 
optically uniaxial crystal, whose axis direction coincides with the direction of packing at the 
plane of BT, and the birefringence coefficient is determined by the fibril matter. 
Architectonic net formed by disordered birefringent fibrils constitutes higher level of BT 
organization.   

This model provides explanation of polarization inhomogeneity of object fields produced by 
BTs of various types, such as osseous and muscular tissues, tissues of female reproductive 
organs (myometrium) [111, 112]. The interconnections between the azimuth of polarization 
and ellipticity of a field, on the one hand, and the directions of packing of fibrils, as well as 
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the parameters characterizing birefringence, on the other hand, have been also determined 
for the single-scattering regime [113]. It allowed improving the technique of polarization 
visualizing the BT’s architectonics by applying statistical analysis of 2D distributions of 
scattered fields [111, 112].    

The papers [111, 114, 115] represent the results on determining the interconnections among 
the set of the 1st to the 4th order statistical moments characterizing microgeometry of a 
surface and orientation/phase structure of human BT’s birefringent architectonics, on the 
one hand, and the set of the corresponding statistical moments of 2D distributions of the 
azimuth of polarization and ellipticity of the images of these objects, i.e. polarization maps, 
on the other hand. It has been stated that increasing asymmetry and excess characterizing 
the distributions of the azimuth of polarization and ellipticity at polarization maps result 
from increasing dispersion in orientation of birefringent fibril optical axes. Decreasing 
asymmetry and excess correspond to increasing dispersion of phase delays caused by 
biological crystals of architectonic nets.         

Further development of laser polarimetry led to new techniques for measuring 2D arrays of 
polarization parameters that characterize nets of biological crystals inherent in various types 
of human’s BTs. So, statistical analysis of the coordinate distributions of the Stokes 
parameters provide new information on microstructure (such as magnitudes and coordinate 
distributions of the parameters of optical anizotropy of architectonic nets formed by 
collagen or myosin) of physiologically normal and pathologically changed BTs [116]. 
Generally, intensive development of the techniques for diagnostic applications of laser 
radiation has been reflected into optical coherent tomography that became the most 
elaborated and convenient instrument for non-invasive study of BT structure. 

The use of polarization of laser beam as a tool for contrasting of BT images resulted in a new 
branch of optical coherent tomography (OCT) [94, 104, 105], viz. polarization-sensitive 
optical coherent tomography (PSOCT) [95, 96, 101, 106, 107]. Note, special feature of laser 

polarimetry of distributions of the azimuth of polarization and ellipticity consists in point-by-point 
analysis of the object field’s polarization parameters followed by searching for 
interconnections of these parameters with orientation and anisotropic parameters of BT’s 
architectonics. For that, it leaves undetermined the data on peculiarities (statistical, fractal) 
of 2D distributions of polarization parameters of a field and orientation/phase 
characteristics of an object. So, further development of the techniques for non-invasive 
macro-diagnostics of geometrical optical structure of BT through improving conventional 
polarization-interference mapping and looking for new techniques for reconstruction of BT 
architectonics is among vital topics of modern optics.  

6.2 Optical correlation approach 

It is known [5, 32, 98, 108] that polarization properties of light at specified point of space can 
be described by the coherency matrix. This formalism is comprehensive for of a light field as 
a whole, when the field in statistically homogeneous, i.e. when the field’s characteristics are 
independent on spatial coordinates. However, for spatially inhomogeneous fields it is of 
importance to know not only coordinate distributions of polarization parameters, but also 
interconnections of the states of polarization and the degree of coherence at different points 
of a field. 

www.intechopen.com



 
Modern Metrology Concerns 

 

300 

The first attempt to describe spatially inhomogeneous in polarization optical fields consisted 
in direct generalization of the coherency matrix to the two-point coherency (polarization) 
matrix performed by Gori [98, 117]. (Note, this principle of representation of optical fields of 
general type, i.e. partially spatially coherent and inhomogeneously polarized fields, even 
without restrictions connected with the paraxial approximation, has been explicitly 
formulated yet at the morning of the era of lasers (‘litic age’), in the early sixties, being 
summed up in seminal review by Wolf and Mandel [1].) In ‘post-litic age’, Gori shows that 
some magnitude of interference pattern’s visibility corresponds to the each coherency 
matrix element; these patterns result from superposition of radiations from two point 
sources whose polarization characteristics are formed by the set of polarizers and phase 
plates. Matrix analysis of correlation properties of scattered coherent radiation has been 
generalized for vector (inhomogeneously polarized) fields [109, 110].    

As much prospective is the development of the tools for direct measuring CDMP in 
problems of biomedical optics connected with processing of coherent, inhomogeneous in 
polarization images of BTs obtained by allying the OCT techniques. It has been shown [100] 
that the CDMP of BT’s coherent image is the parameter sensitive to orientation/phase 
changes of BT’s architectonics. Experimental study [118] of 2D distributions of the CDMP of 
BT’s laser images for examples of muscular, skin and osseous tissues have corroborated 
existence of the interconnections between the coordinate structure of the CDMP at laser 
images and geometrical/optical structure of birefingent architectonic nets of physiologically 
normal and dystrophycally changed BTs. Taking into account diagnostic feasibilities of the 
CDMP, further searching for peculiarities of the coordinate distributions of this parameter 
for various BTs seems to be quite relevant and urgent problem. The following consideration 
is devoted to this problem.   

6.3 BT as birefringent extracellular matrix transforming laser light parameters 

As it has been mentioned above, BT consists of two components, viz. optically isotropic 
(amorphous) and anisotropic net (extracellular matrix) of birefringent optically uniaxial 
fibril [4, 94, 103, 111, 112], see Figure 20. 

 
Fig. 20. n  - d-diam birefringent fibril; i  - the directions of the fibril packing at the plane 
of a BT sample.  
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The action of amorphous and architectonic (crystalline) components of BT,  A  and  C , 
respectively, on coherent radiation is characterized by the following Jones matrix operators: 

    
 

11 12

21 22

exp 0
;

0 exp
a a l

A
a a l





 


 (24) 

  
   
   

2 2
11 12

2 2
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cos sin exp ; cos sin 1 exp ;
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i ic c
C

c c i i

     

     

       
      

 (25) 

Here,   is the absorption coefficient for BT of thickness l ;   is the packing direction of 
anisotropic fibril (with birefringence coefficient n ) at the plane of a BT’s sample 
introducing a phase shift 2 nl    between the orthogonal polarization components, 

,x yE E , of the probing laser beam of wavelength  . 

6.4 Mechanisms of forming inhomogeneous in polarization BTs laser images 

As it follows from analysis performed in Refs [93, 95, 97, 113] the mechanism of forming 
inhomogeneous in polarization boundary field of a BT at each point can be represented in 
the following form:  

“decomposition” of an amplitude  of laser wave U  into orthogonal linearly polarized 
mutually coherent components: 

  
0

xU r 
 
 

 and 
 

0

yU r

 
  
 

;  

forming a phase shift (phase difference) between these components accounting 
birefringence,  r ; 

superposing the orthogonally polarized components that results, in general case, in 
elliptically polarized wave that is described by the following equation: 

 
           
2 2

2
2 2

2
cos sin

x yx y

X Y XY
r r

U r U rU r U r
    . (26) 

6.5 Statistical and fractal analysis of polarization images of BTs 

Two types of optically thin (extinction coefficient 0.1  ) of BT’s histological tomes have 
been studied in Refs [4, 97]:  

 structured osseous tissue (Fig. 21 a, b);  
 parenchymatous tissue of kidney (Fig. 21 c, d). 

Coordinate distributions     ;r r   and histograms    ,W W   of the magnitudes of 
the azimuth of polarization and ellipticity at images of histological tomes of physiologically 
normal osseous tissue (left part) and kidney tissue (right part) are shown in Figure 22 
(fragments (a), (b) and (c), (d), respectively). 
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(a) (b)

(c) (d)  
Fig. 21. Polarization images of osseous tissue (а, b) and tissue of kidney (c, d) for matched (а, 
c) and crossed (b, d) polarizer and analyzer, respectively. 

 

(a) (b)

(c) (d) (c) (d)

(a) (b)

 
Fig. 22. Polarization maps of osseous tissue (left part) and kidney tissue (right part). 
Fragments (a), (b) correspond to 2D distributions of the azimuth of polarization and 
ellipticity, respectively; fragments (c), (d) show histograms of the corresponding 
distributions. 
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Distributions of the azimuth of polarization and ellipticity of the maps of BTs of two types 
characterize the set of statistical moments of the 1st to the 4th orders shown in Table 1. 

The obtained data for statistical moments of the 1st to the 4th orders for distributions 
   ,W W   of images of BTs of different morphological construction show that as 

birefringent architectonic nets are higher structured, as the magnitudes of the 3rd and the 4th 
statistical moments associated with the set of polarization parameters increase. 

 
Osseous tissue (31 samples) Kidney tissue (27 samples) 

 r   r  r  r  

1M  0,38  0,027 1M 0,24  0,014 1M 0,11  0,01 1M 0,08  0,004 

2M  0,25  0,015 2M 0,21  0,017 2M 0,19  0,013 2M 0,05  0,003 

3M  9,8  0,882 3M 7,7  0,539 3M 1,4  0,056 3M 0,61  0,04 

4M  24,6  2,71 4M 12,5  1,125 4M 3,1  0,093 4M 2,25  0,113 

Table 1. Statistical momentums iM  of the coordinate distributions of the states of 
polarization at images of BTs of osseous and kidney BTs 

6.6 Diagnostic feasibilities of polarization mapping of optically thin layers of BTs 

To look for the feasibilities for differentiation of geometrical/optical structure of 
architectonics of BTs, comparative study of statistical and fractal structures of BT maps has 
been carried out [103, 119 - 121]. There are BTs of interest: (i) physiologically normal and 
dystrophically changed muscular tissue (MT), i.e. structured BT with ordered architectonics; 
(ii) physiologically normal and septically inflamed pulmonary tissue (PT), i.e. BT with island 
architectonics. The set of figures (Figs. 23 and 24) illustrates polarization maps of the 
mentioned objects.  

 

(c) (d)

(a) (b)

(c) (d)

(a) (b)

 
Fig. 23. Polarization maps of physiologically normal (left part) and dystrophycally changed 
(right part) MT: (a), (b) – 2D distributions (in degrees) of the azimuth of polarization and 
ellipticity; (c), (d) – histograms of polarization parameters. 
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Potentialities for statistical differentiation of polarization maps are illustrated by comparison 
of magnitudes of the statistical moments of the 1st to the 4th orders for the azimuth of 
polarization and ellipticity at images of physiologically normal and pathologically changed 
BTs, represented in Tables 2 and 3. 

 
 

Norm (21 samples) Pathology (22 samples) 

1M      1M      

1M  0,26  0,013 0,12  0,01 1M  0,21  0,001 0,18  0,011 

2M  0,12  0,01 0,08  0,004 1M  0,19  0,013 0,12  0,006 

3M  6,7  0,469 4,9  0,294 1M  9,4  0,846 6,2  0,434 

4M  17,9  1,61 14,5  1,595 1M  25,4  2,54 21,6  2,592 

Table 2. Statistical moments of the 1st to the 4th orders for the coordinate distributions of the 
azimuth of polarization and ellipticity at images of histological tomes of normal and 
dystrophically changed MT 

 

 

(c) (d)

(a) (b)

(c) (d)

(a) (b)

 
 

Fig. 24. Polarization maps of physiologically normal (left part) and septically inflamed (right 
part) PT: (a), (b) – 2D distributions (in degrees) of the azimuth of polarization and ellipticity; 
(c), (d) – histograms of polarizarion parameters. 

One can see from the represented data that magnitudes of asymmetry and excess of the 
coordinate distributions of the azimuth of polarization and ellipticity at BT images with 
ordered architectonics (Table 2) exceed by 3 to 5 times the magnitudes of the corresponding 
parameters characterizing statistics of the 3rd and the 4th orders of inhomogeneous in 
polarization BT images with island architectonics (Table 3). 
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Norm 
(22 samples) 

Pathology 
(22 samples) 

1M      1M      

1M  0,08  0,004 0,06  0,004 1M  0,09  0,004 0,08  0,005 

2M  0,19  0,013 0,16  0,02 2M  0,21  0,01 0,2  0,016 

3M  3,12  0,25 2,64  0,29 3M  2,04  0,184 1,18  0,142 

4M  6,92  0,76 2,17  0,282 4M  4,17  0,5 7,28  1,092 

Table 3. Statistical moments of the 1st to the 4th orders for the coordinate distributions of the 
azimuth of polarization and ellipticity at images of histological tomes of normal and 
septically inflamed PT  

On the other hand, structured BTs possess hierarchical, self-similar structure of 
architectonics [97, 113, 120]. That is why one must determine optical manifestations of such 
geometry of anisotropic component of structured BTs. The study of self-similarity of 
polarization maps of BTs has been carried out for skin derma.   

Figure 25 shows the set of log-log dependences, log ( ) log(1 / )P d  , log ( ) log(1 / )P d  , 
for power spectra of the distributions of polarization parameters at images of 
physiologically normal and pathologically changed skin derma. 

 

 
Fig. 25. log-log dependences of power spectra of the azimuth of polarization and ellipticity 
at images of physiologically normal (a), (b) and pathologically changed (c), (d) skin derma. 
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The dependence log ( ) log(1 / )P d   manifests two slopes within three decades of scales of 
architectonics of skin derma’s elements; the dependence log ( ) log(1 / )P d   consists of the 
part with constant slope and statistical part, as it is seen from Fig. 1.6 (a) and (b). 
Pathological state of such BT manifests itself in randomization of distributions of 
polarization parameters at images of the corresponding histological tomes, i.e. for 
approximating curves (Fig. 25 (c) and (d)) steady slope is absent. 

6.7 Degree of mutual polarization of laser images of BTs 

For laser light fields scattered by BTs, coordinate changes of polarization characteristics can 
be characterized by the complex degree of mutual polarization, CDMP, at two points  1 2;r r  

[6]: 

  
              
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1 2 2 2 2 2
1 1 2 2
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x y x y

U r U r U r U r i r r
W r r

U r U r U r U r
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

 
. (27) 

The following interconnections between the real part of the CDMP,  1 2Re ,W W r r ,  
and the magnitudes at the azimuth of polarization,  r , ellipticity,  r , at points  
r  of BT’s image, and orthogonal components ,x x y yU I U I   of the complex  
amplitude with phase difference between them  r  have been established in study  
[100]:  
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where 
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6.8 Statistical approach to analysis of coordinate distributions of the CDMP at BT 

images 

Normal and dystrophycally changed tissues of skeleton muscle has been investigated in 
paper [100]. Coordinate distributions of the CDMP ( , )W x y  at images of histological tomes 
of such samples are shown in Figure 26. 

Statistical analysis of the coordinate distributions of magnitudes ( , )W x y  shows for the map 
of tissue of skeleton muscle differences between the statistical moments of the 1st to the 3rd 
orders (within 30%-50%), while magnitudes of excess (the 4th order statistical moment) differ 
by 2 to 2.5 times. 
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Fig. 26. Coordinate distributions of the CDMP at images of histological tomes of normal (a) 
and dystrophycally changed (b) tissue of skeleton muscle. 

 

Statistical moment 
Muscular tissue 

(norm) 
28 samples 

Muscular tissue 
(pathology) 
25 samples 

1M  0,62 ± 0,03 0,49 ± 0,02 

2M  0,1 ± 0,06 0,14 ± 0,01 

3M  32 ± 3,2 21 ± 2,31 

4M  81 ± 8,72 43 ± 3,87 

Table 4. Statistical moments of the 1st to the 4th orders for distributions of magnitudes 
( , )W x y  at images of histological tomes of normal and dystrophically changed tissues of 

skeleton muscle.  

Figure 27 shows autocorrelation functions of the coordinate distributions of magnitudes of 
the CDMP at images of histological tomes of samples of normal (a) and pathologically 
changed (b) muscular tissues. 

 

Parameter 

Muscular tissue 

Norm Pathology 

L 0,25 ± 0,02 0,13 ± 0,01 

  0,07 ± 0,005 0,005 ± 0,0001 

Table 5. Correlation parameters of the distributions of the CDMP, ( , )W x y , for normal and 
pathologically changed osseous muscular tissues. 
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Fig. 27. Autocorrelation functions ( , )G x y  of 2D distributions of the CDMP, ( , )W x y , at 
images of histological tomes of muscular tissues. 

Correlation analysis of 2D distributions of magnitudes ( , )W x y  leads to the following 
conclusions: (i) differences between magnitudes of a half-width L of autocorrelation 
functions for distributions ( , )W x y  at polarization/correlation maps of muscular tissue’s 
maps are within the interval 0.65 to 2 times; (ii) differences between dispersions of the 
distributions for extrema of power spectra for ( , )W x y  reach one order of magnitude. 

Thus, the analysis of approaches and metrological techniques of modern polarimetric 
diagnostics of birefringent nets of BTs leads to the following conclusions. 

 higher-order statistical moments (asymmetry and excess) characterizing the 
distributions of polarization/correlation parameters of laser images of BTs are of the 
highest sensitivity in respect to changing optical properties of nets of biological crystals 
of normal and pathologically changed BTs; 

 interconnection between the real part of the CDMP and parameters of anisotropy (such 
as direction of an optical axis and phase difference between orthogonal components of 
scattered laser radiation) at different points of birefringent matrix provides reliable tool 
for correlation optical diagnostics of pathological changes of biological tissues and, as a 
consequence, for early and non-invasive diagnostics of wide-spread diseases, which 
challenge Humanity in the Third Millenium.    

7. Conclusions 

Thus, new approaches to metrology of partially coherent and partially polarized light fields 
are derived proceeding from singular optics concept. The first of them concerns to exploring 
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the spatial modulated time-averaged Poynting vector in completely and partially coherent 
non-paraxial light fields for control the motion of nano- and microparticles in optical 
currents. The second approach reveals interconnection between polarization singularities 
inherent in completely polarized and partially polarized optical beams for the general case 
of partially mutual coherence of orthogonally polarized components. Further, we have 
shown the feasibility for experimental analysis of the Poynting vector components by 
combining interferometric and polarimetric metrological techniques. At last, we have 
demonstrated potentialities of laser 2D Stokes-polarimetric metrological technique 
developed and implemented in previous consideration in non-invasive pre-clinic 
diagnostics of physiological state of biological tissues. The represented approaches show 
fruitfulness of attracting the concepts and metrological tools of singular optics in formation 
and investigation of unconventional polarization distributions that can be of usefulness in 
problems of optical correlation diagnostics and optical telecommunications. 

There are the important next steps in developing the direction of Metrology represented in 
this chapter. The study of optical currents using light-scattering particles of nano-scale will 
provide vital data both on microstructure of light and on intimate processes of interaction of 
optical beams with extremely small (in scale of a wave length) particles and ensembles of 
them. It is in prospect to investigate experimentally in more details influence of varying 
degree of coherence of optical fields on some phenomena considered in this review and 
associated with peculiarities (singularities) of the Poynting vector in complex 
inhomogeneous optical fields beyond the paraxial approximation. Also, it is important to 
obtain experimental verification, viz. visualization, of the mechanical action of the spin 
moment in optical beams. The study of influence of polarization characteristics of light field 
on motion of nanoparticles will be continued, as well as development of biomedical 
application of notion and techniques of completely/partially coherent, inhomogeneously 
polarized fields. 

Another branch of the following R&D must be focused, in our opinion, on overcoming some 
disadvantages intrinsic to digital optical data surveying due to automatic gain control 
applied in the most of register tools, including CCD cameras. Really, dealing with 
differentiation metrology (such as 2D Stokes polarimetry) one wants to have comparable 
data in the set of measurements that is not always achievable with self-controlled in 
sensitivity digital registering devices. As compromise, one can consider combination of 
analog data recording and digital processing of these data. Nevertheless, this important 
point is worthy separate investigation for providing higher accuracy and reliability of 
modern optical metrology.   
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