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1. Introduction

The problem of object recognition is one of the most common problems that is addressed by

researchers and engineers that want to develop artificial vision or image analysis systems.

In order to recognize an object within an image or video sequence we must basically solve

two different but related tasks. Firstly, it is essential to detect the target object within the

scene image, and secondly its exact location within the image must be estimated. While

the general concept of object recognition is straightforward, even a brief review of modern

literature reveals a wide range of proposals and systems (Goudail & Refregier, 2004; Szeliski,

2010). However, one of the most common and successful approaches are local feature-based

systems that normally employ two basic steps (Lowe, 2004; Tuytelaars & Mikolajczyk, 2008).

First, object features are extracted from the scene image, and afterwards a classification

step is used to determine if the observed features belong to the target object; a process

known as feature matching. Feature-based systems have achieved very good results and

are widely used in many application domains. Nevertheless, feature based systems suffer

from two noteworthy drawbacks. First, they can be computationally expensive1, and

second their overall performance depends upon some ad-hoc decisions that might require

optimization (Brown et al., 2011; Olague & Trujillo, 2011; Pérez & Olague, 2008; Theodoridis

& Koutroumbas, 2008; Trujillo & Olague, 2008).

An attractive alternative to feature-based systems is given by correlation filtering algorithms,

an approach that has been intensively investigated over the last decades (Vijaya-Kumar et al.,

2005). A correlation filter is basically a linear system whose output is the maximum-likelihood

estimator of the targets coordinates in the observed scene (Goudail & Refregier, 2004;

Refregier, 1999). In other words, detection is carried out by searching for correlation peaks

in the system output, and the coordinates of these peaks provide the position estimates that

localize the objects within the scene. An advantage of correlation filtering is that it possesses a

strong mathematical foundation. Moreover, the design process of correlation filters usually

considers the optimization of various performance criteria (Vijaya-Kumar & Hassebrook,

1 While some implementations can achieve very high frame rates, they nevertheless are far behind the
almost instantaneous results that optical-electronic systems can achieve with correlation filters such as
those described in this chapter.
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1990). As result, correlation filters have been used to develop reliable object recognition

systems that exhibit robust performance even when used in highly noisy conditions (Javidi

& Hormer, 1994; Javidi & Wang, 1997; Javidi et al., 1996). Correlation filters are commonly

implemented using hybrid opto-digital correlators, thus exploiting the inherent parallelism

of optics and achieving a very high rate of operation. Optical correlators follow two basic

types of architectures: the 4F correlator (4FC) (Vanderlugt, 1964; 1992) and the joint transform

correlator (JTC) (Javidi & Horner, 1989; Weaver & Goodman, 1966). Both architectures allow

fast object recognition, however they are very sensitive to ambient disturbances and to

misalignments in the optical setup (Nicolás et al., 2001). On the other hand, it is also possible

to effectively implement correlation filters using a digital computer and efficient algorithms

for the fast Fourier transform. In fact, currently there are several very large scale integration

(VLSI) devices that can be used to digitally implement correlation filtering algorithms that

operate in real-time, such as field programmable gate arrays (FPGA) (Rakvic et al., 2010) and

graphics processing units (GPU) (Sanders & Kandrot, 2010).

In general, correlation filters can be broadly classified into two main classes, analytical filters

and composite filters. Analytical filters are typically given by a closed form mathematical

expression that is directly derived from the respective signal and noise models while

optimizing specific quality metrics (Javidi & Wang, 1997; Kerekes & Vijaya-Kumar, 2006;

Vijaya-Kumar et al., 2000; Yaroslavsky, 1993). On the other hand, composite filters are

constructed by combining a set of training images, which are explicit representations of the

target object and their expected distortions (Bahri & Kumar, 1988; Kerekes & Vijaya-Kumar,

2008; Vijaya-Kumar, 1992). It is assumed that when the training images are properly chosen,

we can synthesize composite filters that achieve very good and robust performance in

recognizing the target object. The rest of this chapter deals with composite correlation

filters, while the interested reader is referred to (Javidi & Hormer, 1994; Vijaya-Kumar et al.,

2005) for more information regarding analytical filters. Composite filters can be further

classified as constrained or unconstrained filters. Constrained filters are designed in such

a manner that the filter’s output at the origin of the training images must be equal to a

prespecified value (Kerekes & Vijaya-Kumar, 2008; Vijaya-Kumar, 1992). These restrictions

are known as the equal output correlation-peak (EOC) constraints. Synthetic discriminant

functions (SDF) (Hester & Casasent, 1980) and minimum average correlation energy (MACE)

(Mahalanobis et al., 1987), are two popular constrained filters. Unconstrained filters avoid

the EOC constraints in order to expand the solutions space for filter synthesis, thus achieving

a higher robustness to scene distortions when compared to constrained filters. Maximum

average correlation height (MACH) filters (Mahalanobis et al., 1994) and optimal trade-off

SDF (OTSDF) filters (Goudail & Refregier, 2004; Vijaya-Kumar et al., 1994) are examples

of widely used unconstrained filters. The MACH filters maximize the average response

at the origin of the training images and also minimize an average dissimilarity measure

over the training set. Thus, MACH filters are robust to distorted versions of the target

which are not included in the training set (called intraclass distortions). Several versions of

MACH filters exist, among these the generalized MACH (GMACH) filter achieves the lowest

variations in correlation peaks among the set of training images (Alkanhal et al., 2000; Nevel

& Mahalanobis, 2003). This means that the GMACH filter yields an optimized response to

intraclass distortions. The OTSDF filters, on the other hand, provide a compromise between

multiple performance criteria by optimizing their weighted sum (Vijaya-Kumar et al., 1994).
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As result, OTSDF filters can yield a balanced performance in recognizing a target corrupted

by several types of concurrent noise processes. Recently, a composite filter which performs

a compromise between a constrained and unconstrained filter using two mutually exclusive

training sets was proposed (Diaz-Ramirez, 2010). This constrained filter improves tolerance

to intraclass distortions without lowering the signal to noise ratio.

A main drawback of both constrained and unconstrained composite filters is that their

performance strongly depends upon the proper selection of the training set of images. In

fact, the training images are commonly chosen based on the experience of the designer in an

ad-hoc manner. Therefore, it is not possible to guarantee optimal performance in the general

case, given that it is not possible to a priori determine the optimal set of training patterns.

To overcome these shortcomings, recent works propose an adaptive approach towards filter

synthesis (Aguilar-Gonzalez et al., 2008; Diaz-Ramirez & Kober, 2007; Diaz-Ramirez et al.,

2006; Gonzalez-Fraga et al., 2006; Martinez-Diaz et al., 2008; Ramos-Michel & Kober, 2008).

In such an approach, the goal is to construct a composite filter with optimal performance

characteristics for a fixed set of patterns, rather than a filter that achieves average performance

over an ensemble of images. One possible way to implement an adaptive approach for

filter synthesis is to use an incremental search algorithm. Such an algorithm can use all

available information about the objects to be recognized, as well as examples of false objects

or background samples that should be rejected. The adaptive process for filter synthesis can

also account for additive sensor noise by training with images corrupted by a particular noise

model. Therefore, adaptive filters can exhibit a high amount of robustness to noise during the

imaging process.

This chapter presents recent advances in the design of adaptive composite correlation filters

for robust object recognition. We describe two different design approaches, based on the

basic models of constrained and unconstrained filters. We show that the resultant adaptive

constrained filters can achieve a high recognition rate with a low computational complexity,

by simply using EOC constraints with complex values. Furthermore, unconstrained adaptive

filters can be constructed to produce robust recognition in highly noisy conditions. The

remainder of the chapter is organized follows. Section 2 presents a brief review of the most

successful composite filters for object recognition. Then, Section 3 describes two proposed

algorithms to synthesize adaptive composite filters. Computer simulation results obtained

with the proposed adaptive filters are presented in Section 4. These results are discussed and

compared in terms of performance metrics with those obtained with existing composite filters

in noisy scenes. Finally, Section 5 summarizes our conclusions.

2. Composite correlation filters

In this Section, the main strategies for composite correlation filter designs are recalled. We

consider constrained SDF and MACE filters, as well as unconstrained MACH and OTSDF

filters. Basically, composite filters can be used for intraclass distortion-tolerant pattern

recognition; i.e., detection of distorted patterns belonging to the same class of objects. Let

{S} = {Ti(µ, ν)|i = 1, ..., N} be a set consisting of N different training images expressed in the

frequency domain, where each one represents a distorted versions of the target object t(x, y),
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where T(µ, ν) is the Fourier transform of t(x, y). Composite filters must be able to recognize

the target and all the distorted versions in {S} using a single correlation operation.

2.1 Constrained composite filters

Synthetic Discriminant Functions (SDF) filter

An SDF filter can be expressed as a linear combination of the Fourier transformed training

images Ti(µ, ν), as follows,

H(µ, ν) =
N

∑
i=1

aiTi(µ, ν) (1)

where {ai|i = 1, . . . , N} are unknown coefficients that must be chosen to satisfy the

inner-product conditions (Vijaya-Kumar, 1992)

ci = 〈Ti(µ, ν), H(µ, ν)〉 (2)

The quantities {ci} represent the EOC constraints, that is, prespecified values in the correlation

output at the origin of each training image. Let T be a matrix with N columns and d rows

(the number of pixels in each training image) where its ith column is given by ti, a d × 1

vector constructed by placing the elements of Ti(µ, ν) in lexicographical order. Let a and

c respectively represent column vectors of {ai} and {ci}. In matrix-vector notation, filter

H(µ, ν) and constraints {ci} can be rewritten as

hSDF = Ta (3)

and

c
∗ = T

+
hSDF (4)

where superscripts “∗” and “+” represent the complex conjugate and the conjugate transpose,

respectively. Combining Eqs. (3) and (4) the solution of the system of equations is a =
(

T+T
)−1

c, and if matrix
(

T+T
)

is nonsingular the filter solution is

hSDF = T
(

T
+

T
)−1

c
∗ (5)

Minimum Average Correlation Energy (MACE) filter

The MACE filter is able to produce sharp correlation peaks by suppressing lateral sidelobes

(Mahalanobis et al., 1987). This can be done by minimizing the average correlation energy

(ACE) in the filter output, subject to the prespecified EOC constraints. The effect of

minimizing the ACE measure is that the resultant correlation function would yield values

close to zero everywhere except at the central location for training images, where the EOC

constraints occur (Mahalanobis et al., 1987). Let D be a d × d diagonal matrix where the

entries along the main diagonal are obtained by computing E
{

|ti|
2 ; i = 1, . . . , N

}

, which are

the average power spectra of the training images. In matrix-vector notation, filter hMACE

which minimizes

ACE = h
+
MACEDhMACE (6)
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and is subject to meet the EOC constraints

c
∗ = T

+
hMACE (7)

is given by (Mahalanobis et al., 1987)

hMACE = D
−1

T

(

T
+

D
−1

T

)−1
c
∗ (8)

Multiclass pattern recognition

Two-class problem

Assume that there are several distorted versions of a target object {ti(x, y)} and various objects

to be discriminated { fi(x, y)}; in other words, a two-class pattern recognition problem. Then,

the goal is to design a constrained composite filter to recognize images from the training set

of true-class objects (target class), given by

{T} = {T1(µ, ν), T2(µ, ν), . . . , TNT
(µ, ν)} (9)

and to reject training images from the false-class (unwanted class), given by

{F} = {F1(µ, ν), F2(µ, ν), . . . , FNF
(µ, ν)} (10)

A two-class composite filter can be constructed by combining all of the given training images

in a set {S} = {T} ∪ {F}. Afterwards, to solve the two-class pattern recognition problem we

can set the filter output as

{ci = 1; i = 1, 2, . . . , NT} (11)

for the true-class objects, and

{ci = 0; i = NT + 1, NT + 2, . . . NT + NF} (12)

for the false-class objects. In this manner, the vector c of EOC constraints is given by

c = [1, 1, . . . 1, 0, 0, . . . , 0]T (13)

It can be seen that both SDF and MACE filters with equal output correlation peaks can be

used for intraclass distortion-tolerant pattern recognition or for interclass pattern recognition.

For a two-class constrained composite filter, we can expect that the central correlation peak

will be close to unity for the true-class objects and close to zero for objects of the false-class.

Moreover, this approach can easily be extended to multi-class problems.

Multiclass problem

Suppose that the true-class subset {T} is given by the union of K different subsets of training

images, as follows

{T} =
K
⋃

k=1

{Tk} (14)

95Advances in Adaptive Composite Filters for Object Recognition
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where {Tk} is a subset of training images that represents the kth true-class of objects to be

recognized, which is given by

{Tk} =
{

Tk
i (µ, ν) |i = 1, . . . , NT

}

(15)

Here, Tk
i (µ, ν) is the ith Fourier transformed training image, which belongs to the kth

true-class of objects. For simplicity, we assume that each subset {Tk} contains NT training

images. The set {S} of all training images can be constructed as follows

{S} =

{

K
⋃

k=1

{Tk}

}

∪ {F} (16)

According to the SDF approach a constrained filter can be constructed as a linear combination

of all training images in {S}, subject to satisfy the prespecified EOC constraints {ci}
(Vijaya-Kumar, 1992). In the basic two-class object recognition problem, we need to set the

filter output to yield an intensity value equal to unity for any object that belongs to {T}, and

to yield an intensity value of zero for any object that belongs to {F}; i.e.,

|cki|
2 = 1; for

{

Tk
i (µ, ν)

}

∈ {T} , k = 1, . . . , K (17)

and
∣

∣

∣
c(K+1)i

∣

∣

∣

2
= 0; for {Ti(µ, ν)} ∈ {F} (18)

Furthermore, to distinguish among objects from different true-classes {Tk}, the constraint

vales {ci} must not only satisfy Eqs. (17) and (18), they must also provide information

regarding the specific class of each training image. For this, we propose to use complex values

{ci} with a magnitude value equal to unity for all, but each with a different prespecified phase

value that indicates the class that correspond to each training image. The encoded phase

values must be chosen to allow us to associate (in the complex correlation plane of the output)

any unknown input patterns to one of the K different true-classes. This can be achieved by

using the following EOC constraints,

{ci = exp (iφ1) , for i = 1, . . . , NT } ; ∀
{

T1
i (µ, ν)

}

∈ {T1}

{ci = exp (iφ2) , for i = NT + 1, . . . , 2NT } ; ∀
{

T2
i (µ, ν)

}

∈ {T2}

...
...

{ci = exp (iφK) , for i = (K − 1) NT + 1, . . . , KNT } ; ∀
{

TK
i (µ, ν)

}

∈ {TK} (19)

Here, {φk|k = 1, . . . , K} are prespecified phase values associated to the kth true-class of objects

{Tk}. Observe that by using a constrained composite filter with complex EOC constraints,

we satisfy the equal output intensity restrictions imposed by Eqs. (17) and (18), and at the

same time we can classify any unknown input pattern from the input scene by comparing the

obtained phase values φ̂k at coordinates of maximum intensities (correlation peaks), with the

prespecified φk values previously defined in the filter constraints (Diaz-Ramirez et al., 2012).
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2.2 Unconstrained composite filters

Maximum Average Correlation Height (MACH) filter

The MACH filter hMACH is designed to maximize the ratio between the intensity of the output

average correlation height (ACH) and the average similarity measure (ASM) among training

images (Mahalanobis et al., 1994). Hence, the MACH filter is designed to maximize the

function J = |ACH|2/ASM. Let Xi and M, be both d × d diagonal matrices containing the

elements of the training vectors ti, and the average training vector

m =
1

N

N

∑
i=1

ti (20)

Furthermore, the ACH measure can be described as the average of the output central

correlation values produced by the training images, as

ACH =
1

N

N

∑
i=1

t
+
i hMACH (21)

Additionally, the ASM can be seen as the average error between the full correlation responses

produced by the training images vi = X∗
i hMACH, and the correlation function produced by

the average training image v̄ = M∗hMACH, that is,

ASM =
1

dN

N

∑
i=1

|vi − v̄|2 (22)

In a compact notation we can rewrite the ACH and ASM measures as follows,

ACH = m
+

hMACH (23)

and

ASM = h
+
MACHShMACH (24)

where

S =
1

dN

N

∑
i=1

(Xi − M) (Xi − M)∗ (25)

Thus, filter hMACH is obtained by maximizing the following objective function (Mahalanobis

et al., 1987):

J(hMACH) =
h
+
MACHmm+hMACH

h
+
MACHDhMACH

(26)

where the resultant MACH filter is given by

hMACH = S
−1

m (27)

Generalized MACH (GMACH) filter

The GMACH filter hGMACH (Alkanhal et al., 2000), can be seen as a trade-off between a filter

with EOC constraints and the MACH filter. Note, that the correlation output at the origin for

97Advances in Adaptive Composite Filters for Object Recognition
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Fig. 1. Iterative training procedure to synthesize an adaptive constrained composite filter

the ith training image, is given by

ci = h
+
GMACHti (28)

Furthermore, the average correlation output at the origin is

c̄ = h
+
GMACHmi (29)

The output correlation variance can be written as (Alkanhal et al., 2000)

σ2
c =

1

N

N

∑
i=1

|ci − c̄|2 = h
+
GMACHΩhGMACH (30)

where

Ω =
1

N

N

∑
i=1

h
+
GMACH (ti − m) (ti − m)+ hGMACH (31)

is a covariance matrix estimate. The GMACH filter hGMACH is designed to maximize the

function (Alkanhal et al., 2000)

J(hGMACH) =
|c̄|2

σ2
c

=
h
+
GMACHmm+hGMACH

h
+
GMACHΩhGMACH

(32)

where the resultant filter is

hGMACH = Ω
−1

m (33)
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Optimal trade-off SDF (OTSDF) filter

In earlier sections, we have seen that most successful composite filters are designed to

optimize certain performance criteria, namely ACE, ASM, and ACH. However, some of these

metrics are in fact conflicting objectives, for instance ACE and ASM. For example, consider the

MACE filter, which produces sharp correlation peaks by optimizing (minimizing) the output

ACE. This means that the MACE filter has a great capacity to distinguish between target

objects that should be recognized and false patterns that should be rejected. However, it is well

known that MACE filter has a poor tolerance to intraclass distortions, which is characterized

by the ASM metric. Therefore, OTSDF filters are designed to perform a compromise between

several conflicting measures (Goudail & Refregier, 2004). For instance, an OTSDF filter can be

obtained by minimizing the following function (Vijaya-Kumar et al., 1994):

J (hOTSDF) = ω1ACE + ω2ASM − |ACH|

= ω1h
+
OTSDFDhOTSDF + ω2h

+
OTSDFShOTSDF −

∣

∣h
+
OTSDFm

∣

∣ (34)

where ACE and ASM are functions to be minimized, ACH is a function to be maximized,

and ω2
1 + ω2

2 = 1 are trade-off constants. The resultant OTSDF filter, is given by (Goudail &

Refregier, 2004)

hOTSDF = (ω2D + ω2S)−1
m (35)

We can see that unconstrained filters cannot restrict their correlation responses at the origin

of the training images in the same manner that a constrained filters does. Instead, these

filters maximize the intensity value produced by the average training image and minimize

the intensity response produced by unwanted patterns.

3. Adaptive composite filter designs

In Section 2 we described how a basic SDF filter is designed to satisfy the EOC constraints.

This means that the filter is only able to control the output correlation points at the central

location of the training images within the observed scene. This limited control yields the

appearance of high correlation sidelobes over the entire image background. This undesirable

property causes a drastic reduction in recognition performance for the SDF filter when it is

used in highly cluttered scenes. However, this problem is solved by the MACE filter, which

yields sharp correlation peaks at the central location of the training images and suppresses

correlation sidelobes by minimizing the ACE metric. However, as we see in Section 2 the

MACE filter has a poor tolerance to intraclass distortions. In contrast, the OTSDF filter

removes the EOC constraints to gain more control over the output correlation plane. In this

manner, the filter can suppress the correlation sidelobes more efficiently and can improve its

tolerance to intraclass distortions. This is accomplished because the OTSDF filter optimizes

the ACH, ASM, and ACE performance measures. However, note that these metrics are based

on the calculation of spatial averages over the complete training set of images. This leads

to the synthesis of composite filters which can only yield average performance over several

similar applications and assumming stationary conditions.

In this chapter, we are interested in designing composite filters that are optimized in terms

of performance metrics for a given set of patterns that are directly related to a particular

99Advances in Adaptive Composite Filters for Object Recognition
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application problem. First, we analyze the two-class pattern recognition problem, where the

training set is given by {S} = {T} ∪ {F}. We assume that the true-class training images

{ti(x, y)} ∈ {T} are previously chosen by the filter designer and that the false-class images

{ fi(x, y)} ∈ {F} can be given by any known false objet to be rejected, or by unknown patterns

that have similar structures to those of the target. If information of the background where

detection will be carried out is available, the false-class images fi(x, y) can be given by small

fragments taken from a synthetic image with similar statistical properties to those of the

expected background in the image scene.

Let us define a set {UF} that contains all feasible image patterns that can be chosen as

false-class images fi(x, y), an extremely vast set given the size and resolution of common

digital images. The set {UF} can be seen as the universe of feasible training images from which

we can obtain subset {F}. In this sense, we can see that an optimal subset {FO} ⊂ {UF} of

image patterns must exist, which is the set of false-class images that can be used to synthesize

a composite filter that achieves optimal performance; i.e., when {F} = {FO}. Note that the

subset {FO} is a priori unknown, and its contents cannot be derived analytically from the

problem definition. Therefore, a search and optimization strategy is required to find {FO}
2.

In this chapter, the proposal is to use an adaptive iterative algorithm to search for {FO}.

The first step of the adaptation algorithm is to perform the correlation process between the

background scene and a basic composite filter, initially trained with all available versions of

the target and known false-class objects. The background function can be either described

deterministically as an image or by a stochastic process. Next, we search for the coordinates

of a point in the output correlation plane that allows us to improve the performance of the

2 The theoretical goal is to find set {FO}. However, in practice the goal is relaxed, instead searching for
the best possible approximation to {FO}.
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filter. The goal is to incorporate a segment, or region, that is cropped from the synthetic

background around a central point as a new false class image in {F}, call this new image taken

from the background fn(x, y) that has a support region which is similar to that of the target

image class. The new image fn(x, y) should provide the maximum performance increase,

based on a chosen performance criteria, when compared to all other possible background

segments that could have been chosen. After including fn(x, y) in {F} a new composite filter

is synthesized. This procedure is iteratively repeated until a prespecified performance level

for the filter is reached. Note that the suggested training procedure can be used to synthesize

adaptive composite filters based on constrained or unconstrained models. The general steps

of the training procedure are summarized as follows:

• STEP 1: Include all available training images to a corresponding subset {T} or {F}, and

construct the training set {S} = {T} ∪ {F}.

• STEP 2: Synthesize a composite filter trained for {S} using a constrained or unconstrained

filter model.

• STEP 3: Carry out the correlation between the actual composite filter and a synthetic image

of the background.

• STEP 4: Calculate the performance metrics of the composite filter and set them the current

performance level of the filter. If the performance level of the filter is greater than a

prespecified value, the procedure is finished. Otherwise, go to next step.

• STEP 5: Find the maximum intensity value in the output correlation plane, and around

this point extract a new training image to be rejected from the background. The region of

support of this new training image is similar to that of the reference image of the target.

• STEP 6: Include the new false-image to set {F} and update set {S}. Next, go to STEP 2.

Adaptive constrained filter design

An adaptive constrained filter can be constructed by training a simple SDF filter with the

iterative procedure described above. First, all available views of the target are included in the

true-class training set {T}. Next, we construct the matrix T and the vector of constraints c,

and a basic SDF filter hsd f is synthesized using Eq. (5). At this point, the hsd f filter is able

to recognize all objects in subset {T} with a single correlation operation. However, the filter

may produce high correlation sidelobes when the target is embedded into a highly cluttered

background. Nonetheless, we can train the filter hsd f to optimize its ability to distinguish

among the different views of the target and the background by optimizing the discrimination

capability (DC) of the filter. The DC can be formally defined, as follows (Yaroslavsky, 1993):

DC = 1 −

∣

∣cB
max

∣

∣

2

∣

∣cT
max

∣

∣

2
(36)

where
∣

∣cB
max

∣

∣

2
is the maximum intensity value in the output correlation plane over the

background area, and
∣

∣cT
max

∣

∣

2
is the maximum intensity value in the output correlation

plane over the area occupied by the target. The background area and the target area are

complementary. A filter with a DC value close to unity possesses a good capacity to
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(a) (b) (c) (d) (e)

Fig. 3. Sample views of the target object

distinguish between targets and unwanted objects. Negative values of DC indicate that the

filter is unable to recognize any target. Note that other discrimination metrics can be used in

the training procedure; for instance, the peak to correlation energy (PCE) (Vijaya-Kumar &

Hassebrook, 1990) and the peak to sidelobe (PSR) ratio (Kerekes & Vijaya-Kumar, 2008). To

measure the DC of the filter we carry out the correlation process between hsd f and a synthetic

image of the background with similar statistical properties to those of the real background,

then we calculate the DC using Eq. (36). If the DC of the hsd f filter is greater than a

prespecified value the training procedure is finished. Otherwise, we search for the coordinates

of the highest sidelobe in the output correlation plane between hsd f and the background

image. These coordinates are set as the origin, and around the origin we construct a training

image form the background. This new training image is included in the false-class subset {F}
and a new hsd f filter is synthesized to recognize the object patterns in {T} and reject the object

patterns in {F}. This cycle can be continued until a desired DC value is reached. The training

algorithm to synthesize an adaptive constrained composite filter is presented in Fig. 1.

Adaptive unconstrained filters

An unconstrained adaptive composite filter can be constructed by training a basic OTSDF

filter and optimizing several performance criteria. It must be noted that since the OTSDF filter

is not restricted to satisfy hard EOC constraints, the filter has more freedom to concurrently

optimize multiple criteria. The flow diagram of the proposed iterative algorithm is presented

in Fig. 2. The algorithm begins by constructing subset {T} with all available views of the

target objects. Next, we create the mean vector of training images m (see Eq. (20)) and

matrix S using Eq. (25), then a basic OTSDF filter is synthesized following Eq. (35). The

diagonal matrix D required in Eq. (35) can be constructed using all available known patterns

that ought to be rejected; otherwise D is zero. The next step of the algorithm is to carry

out the correlation process between the current hotsd f filter and a synthetic image that is

representative of the background. Afterwards, we evaluate the performance of the filter using

the following objective function:

J(h) =
|ACH|2

ACEbg + ASM

=
h
+
otsd f mm+hotsd f

h
+
otsd f Dbghotsd f + h

+
otsd f Shotsd f

(37)
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(a) (b) (d)(c)

(e) (f) (h)(g)

Fig. 4. Example of input test scene with noise variance of: (a) σ2
n = 2/256, (b) σ2

n = 4/256, (c)
σ2

n = 8/256, (d) σ2
n = 16/256. Output correlation intensity plane obtained with ACF: (e) for

scene shown in (a), (f) for scene shown in (b), (g) for scene shown in (c), (h) for scene shown
in (d).

where Dbg is a diagonal matrix where the main diagonal is given by
∣

∣bg

∣

∣

2
which is the

power spectrum vector of the representative image of the background. Note that the objective

function increases when both of the ACE and ASM metrics are minimized and when the ACH

metric is maximized. If the value of Eq. (37) is greater than a desired value then the training

procedure is finished. Otherwise, we search for coordinates in the output correlation plane

(between hotsd f and the background image) that achieves the maximum improvement of the

objective function. These coordinates are the center of the background region that is extracted

and included as a new training image. This new training image is included in the false set

{F} and the matrix D is updated; finally a new filter hotsd f is constructed. This cycle can be

continued until a designed trade-off performance is obtained.

4. Experimental results

In this section, we analyze and discuss the simulation performance of the proposed

adaptive filters for object recognition. These results are compared with those obtained

with conventional MACE (Mahalanobis et al., 1987) and MACH (Mahalanobis et al., 1994)

composite filters. The performance of the composite filters is evaluated in terms of recognition

performance and location accuracy. Recognition performance is given by discrimination

capability (see Eq. (36)), whereas location accuracy is characterized by the location errors
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Fig. 5. DC performance of ACF vs iteration index during training procedure.

(LE) defined by (Kober & Campos, 1996):

LE =
[

(τx − τ̂x)
2 +

(

τy − τ̂y
)2
]1/2

(38)

where τx,τy and τ̂x,τ̂y are the exact and estimated target coordinates, respectively. τx,τy are

assumed to be known, whereas τ̂x,τ̂y are estimated from correlation-peak location. The target

is a flying bird whose sample views are shown in Fig. 3, which were extracted from a real

video sequence. The input scene is defined with a non-overlapping signal model (Javidi &

Wang, 1994; Kober et al., 2000) as follows,

f (x, y) = tk

(

x − τxk
, y − τyk

)

+
[

1 − wk

(

x − τxk
, y − τyk

)]

b (x, y) + n (x, y) (39)

where tk (x, y) represents the kth view of the target, τxk
,τyk

are random variables representing

unknown coordinates of the target within the scene, b (x, y) is the background, n (x, y) is a

zero-mean additive noise with variance σ2
n , and wk (x, y) is the region of support of tk (x, y).

The input scene can be interpreted as a view of the target embedded into a background

σ2
n = 2/256 σ2

n = 4/256 σ2
n = 8/256 σ2

n = 16/256

ACF
DC=0.93±0.06 DC=0.91±0.07 DC=0.90±0.06 DC=0.87±0.06

LE=0 LE=0 LE=0 LE=0

MACH
DC=0.92±0.01 DC=0.85±0.01 DC=0.68±0.04 DC=0.41±0.04

LE=0.02±0.02 LE=0.02±0.02 LE=9.1±8.06 LE=25.2±9.2

MACE
DC=0.9±0.01 DC=0.81±0.03 DC=0.68±0.04 DC=0.51±0.04

LE=0.02±0.02 LE=1.95±0.37 LE=14.57±11.06 LE=32.27±14.9

Table 1. DC and LE performance with 95% confidence of ACF, MACE and MACH filters
while noise variance σ2

n is changed.
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Fig. 6. Normalized performance of AUF in terms of objective function J(hAUF) vs iteration
index during training procedure.

at unknown coordinates, and corrupted with additive noise. In our experiments, we use

monochrome images of size 400×400 pixels. The signal range is [0, 1] with 256 quantization

levels. The size of the target is of about 120×95 pixels, with the mean value and standard

deviation of µt = 0.354, σt = 0.237, respectively. The background image has a mean value

µb = 0.73 and standard deviation σb = 0.21. Fig. 4 (a)-(d) shows examples of the input test

scene for different positions of the target and different amounts of noise. First, we design

an adaptive constrained filter (ACF) trained to recognize the five views of the target shown

in Fig. 3, using the iterative algorithm shown in Fig. 1. In the design process we use a

different background image, which has similar statistical properties than the one used during

the recognition experiments. Before the first iteration the DC value for the ACF is negative.

However, after 31 iterations of the adaptation process the ACF reaches DC=0.95. This implies

that a high level of control over the correlation plane for the input scene can be achieved.

Fig. 5 shows the performance of the ACF in the design process in terms of the DC value

versus the iteration index. To illustrate the performance of the proposed method, Fig. 4

(a)-(d) show four test scenes and Fig. 4 (e)-(h) presents the output intensity planes obtained

σ2
n = 2/256 σ2

n = 4/256 σ2
n = 8/256 σ2

n = 6/256

AUF
DC=0.87±0.02 DC=0.82±0.06 DC=0.77±0.07 DC=0.68±0.11

LE=0.8±0.21 LE=1.3±0.3 LE = 2.8±1.3 LE = 3.2±1.8

MACH
DC=0.71±0.04 DC=0.66±0.02 DC=0.49±0.04 DC=0.38±0.09

LE=2.1±0.25 LE=2.95±0.67 LE=9.73±7.06 LE=13.37±9.9

MACE
DC=0.57±0.11 DC=0.41±0.18 DC=0.23±0.16 DC=0.18±0.25

LE=6.03±0.88 LE=14.23±0.02 LE=23.1±11.66 LE=37.2±18.1

Table 2. DC and LE performance with 95% confidence of AUF, MACE and MACH filters
while noise variance σ2

n is changed.
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(a) (b) (d)(c)

(e) (f) (h)(g)

Fig. 7. Examples of input test scenes with a geometrically ditorted versions of the target and
with additive noise variance σ2

n = 2/256. (a) Target rotated by -10 degrees, (b) Target rotated
by 10 degrees, (c) Target with size enlarged by 20%, (d) Target with size reduced by 20%.
Output correlation intensity plane obtained with AUF: (e) for scene shown in (a), (f) for scene
shown in (b), (g) for scene shown in (c), (h) for scene shown in (d).

by the ACF on each scene. We can see one sharp correlation peak in each output intensity

plane, indicating the presence of the target at the correct position. Moreover, observe that the

output-correlation intensity values in the background area are very low in all the tests. Next,

we compare the recognition performance of all considered composite filters when different

views of the target are embedded into the background at unknown coordinates, and the

variance of additive noise σ2
n is changed. To guarantee correct statistical results, 120 statistical

trials of each experiment for different views of the target and realizations of random noise

processes were carried out. With 95% confidence the performance results in terms of DC and

LE are presented in Table 1. One can observe that the proposed ACF yields the best results in

terms of DC and no location errors occurred. This means that the proposed ACF is robust to

additive noise and to background disjoint noise.

Now, we design an adaptive unconstrained filter (AUF) trained to recognize the five views of

the target including rotated versions from -10 to 10 degrees with increments of two degrees,

and scaled versions with 0.8 and 1.2 scale factors. In this case, the true-class training set {T}
contains 70 training images. The AUF was synthesized using the iterative training algorithm

shown in Fig. 2, reaching its maximum value in terms of the objective function “J(hAUF)”
(see Ec. (37)) after 16 iterations. The normalized performance of the AUF in the design

process in terms of J(hAUF) versus the iteration index is shown in Fig. 6. To illustrate the

performance of the AUF in recognizing geometrically distorted views of the target, Fig. 7

106 Advances in Object Recognition Systems

www.intechopen.com



Advances in Adaptive Composite Filters for Object Recognition 17

(a)-(d) exhibits several input test-scenes containing a distorted version of the target over the

background at unknown coordinates. The output intensity planes obtained with the AUF

for each of the input scenes are presented in Fig. 7 (e)-(h). It can be seen that the distorted

target can be accurately located in each scene with the adaptive filter. Next, we test the

recognition performance of AUF in recognizing geometrically distorted views of the target

embedded within noisy scenes. To guarantee correct statistical results, 120 statistical trials of

each experiment for different positions, rotations, and scale changes of the target (within the

training intervals) and realizations of random noise processes were carried out. In each trial,

we randomly choose a geometrically distorted view of the target which can be given by a

rotated version of the target within the range of [-10,10] degrees or by a scaled version within

the range of [0.8,1.2] scale factors. The distorted target is embedded into the background at

unknown coordinates and the scene is corrupted with additive noise. Then, the constructed

scene is correlated with the composite filters and the DC and LE metrics are calculated. The

results are summarized in Table 2, it can be seen that the proposed AUF yields the best results

in terms of DC and LE whereas the MACE filter yields the worst results.

Finally, the simulation results suggest that both ACF and AUF possess very good

discrimination capability, outperforming conventional MACE and MACH filters in all our

tests. Moreover, one can observe that the ACF is more robust than the AUF with respect to

additive noise, and also yields a better location accuracy. In contrast, the AUF is more tolerant

in recognizing geometrically distorted views which are embedded into a background.

5. Conclusions

In summary, the chapter presents an iterative approach to synthesize adaptive composite

correlation filters for object recognition. The approach can be used to monotonically improve

the quality of a simple composite filter in terms of quality metrics using all available

information about the target object to be recognized, and false patterns to be rejected such

as the background. Given a subset of true-class training images the proposed approach

designs the impulse response of an optimized adaptive filter in terms of a particular

performance criterion using an incremental search-based strategy. We designed an adaptive

constrained filter with the suggested iterative algorithm optimizing the discrimination

capability. According to the simulation results, the proposed adaptive constrained filter

proved to be very robust in recognizing different views of a target within an input scene that

is corrupted with additive noise. Moreover, the filter exhibits high levels of discrimination

capability and location accuracy when compared with conventional MACE and MACH

formulations. Furthermore, we synthesized an adaptive unconstrained composite filter

optimized with respect to a proposed objective function based on the ACH, ACE, and

ASM metrics. Here again, the experimental results suggest that the adaptive unconstrained

filter provides a robust detection of geometrically distorted versions of the target when it is

embedded within a highly cluttered background.

Finally, we can envision several lines of future research that can be derived from the

algorithms and methods presented here. First, future experimental tests should consider

real-world scenarios and applications to validate the usefulness of these filters in applied

domains. Second, while the adaptive design process presented here has shown promising

107Advances in Adaptive Composite Filters for Object Recognition

www.intechopen.com



18 Will-be-set-by-IN-TECH

performance, it is evident that we cannot assume that an optimal strategy has been chosen. For

instance, the proposed algorithm follows an iterative mechanism to build the final solution;

i.e., it incrementally constructs the training set of images. However, from a search and

optimization stand-point there is no reason to assume that this is in any way an optimal

strategy for the filter design process. Therefore, it would be instructive to propose, design,

and test other iterative search algorithms, such as population-based meta-heuristics, since

the structure of the search space is not known a priori and is probably discontinuous and

highly multi-modal. Finally, a comparative study of the developed composite filters with

other object recognition approaches, particularly feature based methods, might provide a

more comprehensive understanding regarding the domain of competence of each.

The research reported in this chapter was supported by Consejo Nacional de Ciencia y

Tecnologia (CONACYT) and Secretaria de Investigacion y Posgrado del Instituto Politecnico
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