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1. Introduction 

In literature, we could categorise two broad main approaches for pattern recognition 

systems. The first category consists of linear combinatorial-type filters (LCFs) (Stamos, 2001) 

where commonly image analysis is done in the frequency domain with the help of Fourier 

Transformation (FT) (Lynn & Fuerst, 1998; Proakis & Manolakis, 1998). The second category 

consists of pure neural modelling methods. (Wood, 1996) has given a brief but clear review 

of invariant pattern recognition methods. His survey has divided the methods into two 

further sub-categories of solving the invariant pattern recognition problem. The first sub-

category has two distinct stages of separately calculating the features of the training set 

pattern to be invariant to certain distortions and then classifying the extracted features. The 

second sub-category, instead of having two separate stages, has a single stage which 

parameterises the desired invariances and then adapts them. (Wood, 1996) has also 

described the integral transforms, which fall under the first sub-category of feature 

extractors. They are based on Fourier analysis, such as the multidimensional Fourier 

transform, Fourier-Mellin transform, triple correlation (Delopoulos et al., 1994) and others. 

Part of the first sub-category is also the group of algebraic invariants, such as Zernike 

moments (Khotanzad & Hong, 1990; Perantonis & Lisboa, 1992), generalised moments 

(Shvedov et al., 1979) and others. Wood has given examples of the second sub-category, the 

main representative being based on artificial neural network (NNET) architectures. He has 

presented the weight-sharing neural networks (LeCun, 1989; LeCun et al. 1990), the high-

order neural networks (Giles & Maxwell, 1987; Kanaoka et al. 1992; Perantonis & Lisboa, 

1992; Spirkovska & Reid, 1992), the time-delay neural networks (TDNN) (Bottou et al., 1990; 

Simard & LeCun, 1992; Waibel et al., 1989) and others. Finally, he has included an additional 

third sub-category with all the methods which cannot be placed under either the feature-

extraction feature-classification approach or the parameterised approach. Such methods are 

image normalisation pre-processing (Yuceer & Oflazer, 1993) methods for achieving 

invariance to certain distortions. (Dobnikar et al., 1992) have compared the invariant pattern 

classification (IPC) neural network architecture versus the Fourier Transform method. They 

used for their comparison black-and-white images. They have proven the generalisation 
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properties and fault-tolerant abilities to input patterns of the artificial neural network 

architectures.  

An alternative approach for a pattern recognition system has been well demonstrated 

previously with the Generalised Hybrid Optical Neural Network (G-HONN) filter  (object 

recognition system) (Kypraios, 2010; Kypraios et al., 2004a). G-HONN system combines the 

digital design of a filter by artificial neural network techniques with an optical correlator-

type implementation of the resulting non-linear combinatorial correlator type filter (Jamal-

Aldin et al., 1998). The motivation for the design and implementation of the G-HONN object 

recognition system was to achieve the performance advantages of both artificial neural 

networks (Looney, 1997; Haykin, 1999; Beale & Jackson, 1990) and the optically 

implemented correlators (Kumar, 1992). Thus, NNETs exhibit non-linear superposition 

abilities (Kypraios et al., 2002) of the training set pattern images, learning and generalisation 

abilities (Kypraios et al., 2004a; Kypraios et al., 2003) over the whole set of the input images. 

Also, optical correlators allow high speed implementation of the algorithms described.  

There are two main design blocks in the G-HONN system, the NNET and a non-linear 

combinatorial-type correlator (filter) block (Jamal-Aldin, 1998; Casasent, 1984; Caulfield, 

1980; Caulfield & Maloney, 1969). Briefly, the original input images pass first through the 

NNET block and, then, the extracted images from the NNET block’s output are used to form 

a non-linear combinatorial-type correlator filter. Thus the output of the correlator block is a 

composite image of the G-HONN system’s output. To test the system, we correlate it with 

an input image. Before proceeding to analytical descriptions of the general architecture of 

the G-HONN system and in an effort to keep consistency between the different 

mathematical symbolism of artificial neural networks and optical correlators we need to 

unify their representation. We denote the variables names and functions by non-italic letters 

(except the vector elements written within the vector, which are written in italic, too), the 

names of the vectors by italic lower case letters and the matrices by italic upper case. The 

frequency domain vectors, matrices, variable names and functions are represented by bold 

letters and the space domain vectors, matrices, variables and functions by plain letters.  

Let  h k, l  denote the composite image of the correlator block and  ix k, l  denote the 

training set images, where i 1,2, ,N   and N  is the number of the training images used in 

the synthesis of a combinatorial-type filter. The basic filter’s transfer function, from the 

weighed linear combination of ix , is given by:   

   h k,l
N

i=1

= ia  ix k, l      (1) 

where the coefficients  ia i = 1,2,...,N  are to set the constraints on the peak given by c. 

The ia  values are determined from:   

 -1a = R c                 (2) 

where a is the vector of the coefficients  ia i = 1,2,...,N , R is the correlation matrix of it  

and c is the peak constraint vector. The elements of this are usually set to zeros for false-

class objects and to ones for true class objects.  
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Now, let an image s be the input vector to an artificial neural network’s hidden neuron 

(node), p ǋt  represent the target output for pattern p on node   and po   represent the 

calculated output at that node. The weight from node Ǌ to node   is represented by Ǌ ǋw . 

The activation of each node ǋ, for pattern p, can be written as:   

 pnet     p
i

w o b              (3) 

i.e. it is the weighted sum of the calculated output from the node Ǌ to node  . b   represents 

the bias vector of unit Ǌ.  

We train a novel-designed NNET with N training set images. The network has N neurons in 
the hidden layer, i.e. equal to the number of training images. There is a single neuron at the 
output layer to separate two different object classes. (In a multi-class object recognition 
problem, the increase of the different classes of objects would require more than one neuron 
at the output layer to correctly separate all the training images.)  From Eq. (3) the net input 
of each of the neurons in the hidden layer is now given by:   

  i i

i

m× n
x x

x Ǌ Ǌ
Ǌ =1

net = w s                 (4) 

where net is the net input of each of the hidden neurons. ixw   are the input weights from the 

input layer to the hidden neurons for the training image ix  of size  m n  in matrix form 

or of size  1 m n     in vector form. Similarly, for the training image Nx  of size  m n  

in matrix form (  1 m n     in vector form) the net input,
Nxnet  is given by:   

  N N

N

m×n
x x

x Ǌ Ǌ
Ǌ = 1

net = w s                 (5) 

From Eqs.(1) and (3) and (5) there is a direct analogy between the combinatorial-type filter 
synthesis procedure and the combination of all the layers’ weighted input vectors.  

There are two possible and equivalent custom designs (The Mathworks, 2008) of NNET 

architectures which could be used to form the basis of the combinatorial-type filter 

synthesis. In both of the designs each neuron of the hidden layer is trained with only one of 

the training set images. In effect, 1neuron  with the training image 1x , 2neuron  with the 

training image 2x  and so on, ending with Nneuron  with the training image Nx . In the first 

design the number of the input sources is kept constant whereas in the second design the 

number of the input sources is equal to the number of the training images. In both designs 

each hidden neuron learns one of the training images. In effect the number of the input 

weights increases proportionally to the size of the training set:   

  i wN N m n                   (6) 

where i wN  is the number of the input weights, N , is the size of the training set equal to the 

number of the training images and  m n  is the size of the image of the training set. The 

latter design would allow parallel implementation, since all the training images could be 
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input through the NNET in parallel due to the parallel input sources. However, to allow 

easier implementation, we chose the former design of the NNET.  

Let assume there are three training images of a car, size  100 100  (  1 100 100     in 

vector form), of different angle of view, to pass through the NNET. The chosen first design (see 

Fig. 1) consists of one input source used for all the training images. The input source consists of 

10,000 i.e.  1 100 100     input neurons equal to the size of each training image (in vector 

form). Each layer needs, by definition, to have the same input connections to each of its hidden 

neurons. However, Fig. 1 is referred to as of the fourth layer since there are three hidden layers 

(shown here aligned under each other) and one output layer. The input layer does not contain 

neurons with activation functions and so is omitted in the numbering of the layers. Each of the 

hidden layers has only one hidden neuron. Though the network initially is fully connected to 

the input layer during the training stage, only one hidden layer is connected for each training 

image presented through the NNET. Fig. 1 is thus not a contiguous three (hidden) layer 

network during training, which is why the distinction is made.  

 

Fig. 1. Architecture of the selected artificial NNET block of the HONN filter. 

Next, in section 2 we will give a brief description of the G-HONN system’s design and 
implementation already described with details in the literature. Section 3 describes the M-
HONN system. Section 4 focuses on multiple objects recognition and the M-HONN system’s 
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design. It describes the augmented design of the NNET block for accommodating multiple 
objects recognition of different classes. Section 5 discusses about the performance of M-
HONN system with respect to peak sharpness and detectability, distortion range and 
discrimination ability. We discuss about the M-HONN system and biologically-inspired 
knowledge learning and representation. Finally, we record the series of tests we conducted 
with M-HONN system for multiple objects recognition of the same class and of different 
classes within clutter. Section 6 concludes and suggests future work. 

2. General HONN filter’s design and implementation 

The novel design of NNET’s architecture of the G-HONN system is implemented as a 

feedforward multi-layer architecture trained with a backpropagation algorithm. It has a 

single input source (as explained in the previous section) of input neurons equal to the size 

of the training image in vector form. In effect, for the training image i 1 Nx    of size  m n , 

there are  m n  input neurons in the single input source. The input weights are fully-

connected from the input layer to the hidden layers. There are i wN  input weights 

proportional to the size of the training set. The number of the hidden layers, lN , is equal to 

the number of the images of the training set, N :   

 N 1,2,3, , i                  (7) 

 lN N                 (8) 

Each hidden layer consists of a single neuron. The layer weights are fully connected to the 

output layer. If we set the output layer to have a single output neuron, then the number of 

the layer’s weights, lwN  equals the number of the training images N :   

 l w opnN N N          (9) 

where opnN 1  is the number of the output neurons. There are bias connections to each one 

of the hidden layers:   

 b lN N               (10) 

where bN  is the number of the bias connections. But from Eq. (8), Eq. (10) becomes: 

 bN N               (11) 

Assuming there is only a single output neuron in the output layer, then there is only one 
target connection for that output neuron. 

We apply Nguyen-Widrow (Nguyen & Widrow, 1989; Nguyen & Widrow, 1990) 
initialisation algorithm for setting the initial values of the input weights, the layer weights 

and the biases. The transfer function of the hidden layers is set as the Log-Sigmoidal 
function. When a new training image is presented to the NNET we leave connected the 
input weights of only one of the hidden neurons. In order not to upset any previous 
learning of the rest of the hidden layer neurons we do not alter their weights when the new 

image is input to the NNET. It is emphasised that there is no separate feature extraction 
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stage (The Mathworks, 2008; Talukder & Casasent, 1999; Casasent et al., 1998) applied to the 
training set images. To achieve faster learning we used a modified steepest descent (Looney, 
1997; The Mathworks, 2008) back propagation algorithm based on heuristic techniques. This 

adaptive training algorithm updates the weights and bias values according to the gradient 
descent momentum and an adaptive learning rate:   

      


      
 

fP
w i,i 1 w i 1,i

w i 1,i
              (12) 

      


      
 

fP
b i,i 1 b i 1,i

b i 1,i
              (13) 

  
 

       
 

        
        

f

f f f

f f

if P 0

no change if 0 P & & P max P

if P max P

              (14) 

where now variable i is the iteration index of the network and is updated every time all the 

training set images pass through the NNET. w  is the update function of the input and layer 

weights, b  is the update function of the biases of the layers and   is the momentum 

constant. The momentum (Looney, 1997; Haykin, 1999; Beale & Jackson, 1990; The Mathworks, 

2008) allows the network to respond not only to the local gradient, but also to recent trends in 

the error surface. Thus, it acts like a low-pass filter by removing the small features in the error 

surface of the NNET. The employment of momentum in the training algorithm allows the 

network not to get stuck in a shallow local minimum, but to slide through such a minimum. 

fP  is the performance function, usually set as being the mean square error (mse) (Looney, 

1997; Haykin, 1999) and fP  is the derivative of the performance function. The learning rate is 

indicated with the letter  . It adapts iteratively based on the derivative of the performance 

function fP . In effect, if there is a decrease in the fP , then the learning rate is increased by 

the constant  . If fP  increases but the derivative does not take a value higher than the 

maximum allowed value of the performance function,  fmax P , then the learning rate does 

not change. If fP  increases more than  fmax P , then the learning rate decreases by the 

constant  . The layer weights remain connected with all the hidden layers for all the training 

set and throughout all the training session.  

Hence, now that we have described the design and implementation of the G-HONN filter 
(object recognition system) we can proceed with a detailed description of the modified-
HONN filter. 

3. Modified-HONN system implementation 

We can make the following qualitatively observations for the G-HONN system. Though the 

combinatorial-type filters (Samos, 2001) contain no information on non-reference objects in 

the training set used during their synthesis, the NNET includes information for reference 

and non-reference images of the true-class object. That can be explained due to the NNET 

interpolating non-linearly (Kypraios et al.,2002) between the reference images included in 
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the training set and forcing all the non-reference images to follow the activation graph. 

Moreover the NNET generalizes between all the reference and non-reference images. 

Quantitatively, we could demonstrate the above observations as follows. The average 

training set image x  in the space domain of the combinatorial-type filters is given by: 

 x
1

N 


1

N

i
i

x               (15) 

In the frequency domain Eq. (15) is written as: 

 x
1

N 


1

N

i

i

x               (16) 

The non-linear activation function of each hidden neuron of an artificial neural network 

with a non-linear activation function such as the sigmoidal function  sf  can take the form: 

    
 

 
 

 s

1 exp x
f x

1 exp x
            (17) 

where  and  shift the graph of the function with respect the x-axis and y-axis and are 

called the saturation level and slope. It can be shown (Kypraios et al., 2009) that the output 

Ny  of an artificial neural network with a non-linear activation function corresponding to  

an input is  for i 1 , , N   (where N is the number of the training set images) is written as: 

          
         

N

i i
i 1

1 1 2 2 3 3 N 1 N 1 N N

1 1 2 2 3 3 N 1 N 1 N N

f s g

1 k exp s g exp s g exp s g exp s g exp s g

1 k exp s g exp s g exp s g exp s g exp s g



    


    



 

 

 
  

 











 (18) 

where  k exp    takes a constant value (and g i  the neural network node’ weights). 
Therefore from Eq. (16) and Eq. (18) it is shown that any artificial neural network with a 
non-linear activation function can non-linearly interpolate through the different training set 
views of the true-class object. Thus, the average training set image x  in the space domain of 
the NNET is given by:   

 x
1

N
 if x               (19) 

where  f  is the activation function of node  in the space domain. Eq. (19) is written in 

the frequency domain as: 

 x=
1

N
 if x               (20) 

The activation function  f  of node against the training set images ix  is plotted in Fig. 
2. On the activation function graph the true-class object values (which is similar for the false-
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class object) are marked with + . Now, if we mark on the plot the activation function values 
for the training image at 30º and 40º degrees object poses, then the activation function for the 
training image at 35º degrees will be located on the graph between the values of the 
activation function for the 30º and 40º degree inputs. The actual activation function values 
for the training set images of 30x , 40x  and 35x  are located in the area included under the 
graph for activation function values greater or equal to the pre-specified true-class object 
classification level, in this case shown we assume it is set at +40. 

 

Fig. 2. It shows the activation function graph of node  against the training set images ix . 

Motivated by these observations, we apply an optical mask to the filter’s input (see Fig. 3). 

The mask is constructed by the weight connections of the reference images of the true-class 

object and is applied to all the tested images. Modified-HONN (M-HONN) system is 

described as follows: 

 

   
   
   
   
       
   
   
   
      

c

c c c c c c

c c c c c c

c c

c c c c c c

x x x x x x
11 12 1n-1 1n 11 1q

x x x x x x
21 2 2 2n-1 2n 21 2q

x x

x x x x x x
m1 m 2 m n-1 m n n1 n q

w w L w w l L l

w w L w w l L l

W × L = ×

w w L w w l L l

               (21) 
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where cxW  and cxL  are the input and layer weights from the input neuron of the input 

vector element at row m and column n to the associated hidden layer for the training image 

 ,cx m n . cx
m nl  are the input and layer weights from the hidden neuron of the layer vector 

element at row m and column n to the associated output neuron q. This time, instead of 

multiplying each training image with the corresponding weight connections as for the G-

HONN system’s implementation, we keep constant the weight connection values, setting  

 

Fig. 3. M-HONN system block diagram. 

them to be equal with a randomly chosen image included in the training set  ,cx m n . The 

matrix c  is used for creating the optical mask for the M-HONN system’s implementation. 

The transformed image   1 ,i NS m n  calculated from the dot product of the matrix 

elements of c  with the corresponding training image matrix elements of   1 ,i NX m n  is 

given by: 
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     1 1i N c i NS X m,n             (22) 

Thus, the M-HONN system’s transfer function is formulated as follows: 

 


  
1

N

i N

M HONN ia   iS m,n             (23) 

In Eq. (23) we have chosen to constrain the correlation peak height values as we did with the 
constrained-HONN (C-HONN) system’s implementation, but we can also easily re-write the 
system’s transfer equation for the case of the unconstrained peak height values as with the 
unconstrained-HONN (U-HONN) system’s implementation (Mahalanobis, 1994;  Kypraios 
et al., 2004b). 

4. Multiple objects recognition 

Multiple objects of the same class can be accommodated by the G-HONN type filters to be 
recognised within an input cluttered image due to the shift invariance properties inherited 
by its correlator unit. Thus, in the M-HONN system all the training set images pass through 
the NNET unit. This time, instead of multiplying each training image with the 
corresponding weight connections (mask) as for the C-HONN filter, we keep constant the 
weight connection values, setting them to be equal with a randomly chosen image included 
in the training set. All the test set images are multiplied with the same randomly chosen 
image’s weight connection values. Then, the training set images, after being transformed 
(masked) through the NNET unit by being multiplied with the mask, pass through the 
correlator unit where they are correlated with the masked test set images. In effect, the 
cross-correlation of each masked test set image with the transformed training set images 
(reference kernel) returns an output correlation plane peak value for each cross-correlation 
step. Hence, the maximum peak height values of the output correlation plane correspond to 
the recognised true-class objects. 

4.1 Modified NNET block architecture for multiple objects of different classes 
recognition 

As for all the HONN-type systems (Kypraios et al., 2004; Kypraios et al., 2003; Kypraios et 

al., 2009), in the M-HONN system’s NNET block (unit) there is a single input source used 

for all the input data. Assuming we have N = 3 input still images or video frames of size 

256×256 in pixels, then the input source consists of 65.536 i.e. [1(256×256)] input neurons 

equal to the size of each training image or frame (in vector form). Each layer needs, by 

definition (Hagan et al., 1996), to have the same input connections to each of its hidden 

neurons. Therefore, the shown NNET architecture is referred to as N+1 = 3+1 = 4, four-

layered since there are, N = 3, three hidden neurons (though shown here aligned under each 

other, they do not belong in the same hidden layer but rather create three separate hidden 

layers each of a single hidden neuron) and one output layer. Each of the hidden layers 

consist of only one hidden neuron. The input layer does not contain neurons with activation 

functions and so is omitted in the numbering of the layers. Though the network initially is 

fully connected to the input layer during the training stage, only one hidden layer is 

connected for each training image presented through the NNET. NNET is thus not a 
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contiguous three layer network during training, which is why the distinction is made. In 

effect, 1neuron  is trained with the training still image or video frame 1x , 2neuron  is 

trained with the training still image or video frame 2x  and so on, ending with Nneuron  

being trained with the training still image or video frame Nx . Thus, the number of the input 

weights increases proportionally to the size of the training set: 

  i wN N m n                 (24) 

where i wN  is the number of the input weights, N, is the size of the training set equal to the 

number of the training images and [m×n] is the size of the image of the training set.  

Fig. 4 shows the modified NNET block architecture for accommodating multiple objects for 
more than one class recognition. As for all the family of G-HONN filters, NNET is 
implemented as a feedforward multi-layer architecture trained with a backpropagation 
algorithm. It has a single input source of input neurons equal to the size of the training 
image or video frame in vector form. In effect, for the training still image or video frame 

i 1 Nx    of size [m×n], there are [m×n] input neurons in the single input source. The input 

weight are fully connected from the input layer to the hidden layers. There are i wN  input 

weights proportional to the size of the training set. The number of the hidden layers, lN  is 

equal to the number of the images or video frames of the training set N: 

 N 1,2,3, ,i    and   lN N            (25) 

We have set to each hidden layer to contain a single neuron. The layer weights are fully 

connected to the output layer. Now, the number of the layer weights lwN  is equal to: 

 l w opnN N N    and  opn classesN N       (26) 

where opnN  is the number of the output neurons and classesN  is the number of the different 

classes. In effect, we have augmented the output layer by adding more output neurons, one 

for each different class. On Fig. 4 we assume classesN 2 . Thus: 

 opn classesN N 2    so, there are  l wN N 2                (27) 

and 

 class1 lwN N ,  class2 lwN N               (28) 

where class1 lwN  and class2 lwN  are the layer weights corresponding to object class 1 and object 

class 2, respectively. There are bias connections to each one of the hidden layers: 

 bN N                               (29) 

where bN  is the number of the bias connections. There are t arg et wN  target connections from 

the opnN  output neurons of the output layer: 

 t arg et w opnN N                               (30) 

www.intechopen.com



 
Advances in Object Recognition Systems 

 

50

 

 

Fig. 4. Modified NNET block of the M-HONN system for multiple objects recognition of 
different classes 

Thus, now for classesN 2  there will be N transformed images being created for class 1 and N 

transformed images being created for class 2. Then, both sets of transformed images are 

used for the synthesis of the system’s composite image. M-HONN system for multiple 

objects recognition of different class objects is written as follows:     


classes

classes

N × N

i = 1L N × N

M - HONN = ia   class
iS m, n  

 = 1a    class
c 1Γ × X m,n + 2a    class

c 2Γ × X m,n + L +               (31) 

 Na    class
c NΓ × X m,n   

or in the frequency domain the above equation is re-written as: 

 
class

class

N ×N

i = 1L N × N

M - HONN = ia   class

iS m,n     (32) 
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The above Eq. (31) in spatial domain, and Eq. (32) in frequency domain describe the M-
HONN system’s transfer function for multiple objects recognition (where the upper script 
class is used for the class index, i.e. for Fig. 4 we have class = class1, class2). Thus, the M-
HONN filter (robust object recognition system) is composed of a non-linear space domain 
superposition of the training set images or from the video frames of the training set video 
sequences. As for all the HONN-type systems, the multiplying coefficient now becomes a 
non-linear function of the input weights and the layer weights, rather than a simple linear 
multiplying constant as used in a constrained linear combinatorial-type filter synthesis 
procedure. The non-linear M-HONN system is inherently shift invariant and it may be 
employed in an optical correlator as would a linear superposition constrained-type filter, 
such as the synthetic discriminant function (SDF) -type (Bahri & Kumar, 1988) filters. It may 
be used as a space domain function in a joint transform correlator architecture or be Fourier 
transformed and used as Fourier domain filter in a 4-f Vander Lugt (Vander Lugt, 1964) type 
optical correlator.  

5. Performance analysis 

We have constructed a data set of input images of an S-type Jaguar car model at 10 
increments of out-of-plane rotation at an elevation angle of approximately 45 to be used for 

the M-HONN system. A second set of images was constructed for the Police car model 

Mazda Efini RX-7 at the same elevation angle to serve as the out-of-class data for 

discrimination tests (see Fig. 5). A third data set was created of the background images of 

typical car parks (see Fig. 6) and the images of the S-type car model and the Mazda RX-7 car 

model added in the background scene. The size of all the images was  256 256  and all the 

images are in grey-scale bitmap format. All the input training images (and all the input test 

set images) for M-HONN system are concatenated row-by-row into a vector of size 

 1 256 256     prior to input to the NNET block. Normally this size of image is 

impossibly large for 

processing by any artificial neural network architecture, since to be implemented by enough 
input and layer weights:   

 

 i wN 10 256 256

10 65,536

655,360

  

 


              (33) 

Thus, for a training set of N 10  individual vectors of size  256 256 , there would, in 

total, be more than half-a-million input weight connections needed. Thus the selective 

weight connection architecture is employed to overcome this problem. To overcome this 

problem we developed a novel selective weight connection architecture (see Section 2). Also, 

applying the heuristic training algorithm with momentum and an adaptive learning rate 

into the NNET training session (Nguyen & Widrow, 1989; Nguyen & Widrow, 1990), has 

speeded up the learning phase and reduced the memory size needed to complete fully the 

training session. Here, it worth mentioning that the NNET block and, in overall, M-HONN 

system is able to process input still images and video frames for all the test series in few a 

msec with a Dual Core CPU at 2.4 GHz with 4.0GB RAM. Additionally, due to the 
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generalization properties exhibited by a NNET architecture, the number of the training 

images decreases, in comparison to the typical number of images required for the training 

set of linear combinatorial filters (such as the SDF filter).  

 

Fig. 5. RX-7 Mazda Efini Police patrol car used in the training and test sets 

 

Fig. 6. Car park scene used in the training and test sets 

It was proven experimentally that by choosing different values of the classification levels for 

the true-class TCl  and false-class FCl  objects, one can control the M-HONN system’s 

behaviour to suit different application requirements, similarly with all the HONN-type 

systems. Thus we define:   

 T FCl Cl Cl                 (34) 

where Cl  is the absolute distance of the classification levels between the true-class objects 

and the false-class objects. When we increase Cl , then the resulting M-HONN system 

behaves more like a high-pass biased filter, which generally gives sharp correlation peaks 

and good clutter suppression but is more sensitive to intra-class distortions. Now, when we 

decrease Cl , then the resulting M-HONN system behaves more like a minimum variance 

synthetic discriminant function (MVSDF) (Kumar, 1986) filter with relatively good intra-

class distortion invariance but producing broad correlation peaks. In effect, when Cl  

increases, the M-HONN system possesses better discriminatory properties but when Cl  

decreases the M-HONN system has better generalising properties. By plotting the isometric 
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correlation planes of M-HONN system for different Cl  values, one could observe that by 

increasing Cl  value it leads to an increased emphasis of the high spatial frequency content 

of the composite images comprising M-HONN system, which in turn leads to a more 

localised response, sharper peaks, and reduction in the plane’s sidelobes. By decreasing 

Cl  value it leads to an increased emphasis on peripheral lower spatial frequency content 

of the composite images comprising M-HONN system, which in turn leads to a broader 

peaks in the correlation plane.  

Next, we summarise the tests series for assessing M-HONN system’s peak sharpness and 
detectability, distortion range, and discrimination ability, which we have all described them 
in full details in our previous work (Kypraios et al., 2008). We focus afterwards in analysing 
the performance of the M-HONN object recognition system within cluttered scenes. 

5.1 Peak sharpness and detectability 

Here we assessed (Jamal-Aldin et al., 1997;  Jamal-Aldin et al., 1998;  Kumar & Hassebrook, 

1990) M-HONN system’s ability to detect non-training in-class images that are oriented at 

the intermediate angle of view between the training images (Refregier, 1990;  Refregier, 

1991). The training set consisted of still images out-of-plane rotated between  20 70  

degrees at increments of 20 . We tested the M-HONN system with the true-class object’s 

intermediate car poses over the same range at 10  increments. Two randomly chosen 

intermediate car poses, at 130  and at 140 , were added in the training set of the M-HONN 

system to create a false-class. We set the target of the false-class object to be falseT 40  and 

of the true-class object to be trueT 40 . The M-HONN system had no information on the 

non-training, intermediate car images in the construction of its composite image. We 

explicitly constrained the correlation peak in the constraint matrix. Thus, we constrained the 

correlation peaks in the constraint matrix to be 1  for the images of the true-class object 

and 0  for the images of the false-class object. The randomly chosen mask c  applied on 

both the training set and the test set was built from the training set image at 60 , i.e. c= 60 :   

 

   
   
   
   
   

    
   
   
   
   
   

60

o o o o o o60 60 60 60 60 60

o o o o o o60 60 60 60 60 60

o o60 60

o o o o o o60 60 60 60 60 60

x x x x x x

11 12 1n-1 1n 11 1q
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21 2 2 2n-1 2n 21 2q

x x
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m1 m 2 m n-1 m n n 1 n q
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w w L w w l L l

W × L = ×

w w L w w l L l

          (35) 

where 
o60

x

W  and 
o60

x

L  are the matrices of the input and layer weights. 
o60

x

m nw  are the input 

weights from the input neuron of the input vector element at row m and column n to the 

associated hidden layer for the training image  o60
x m,n  at 60  angle of view. 

o60
x

m nl  are the 

layer weights from the hidden neuron of the layer vector element at row m and column n to 

the associated output neuron. We set q = 1 since the output layer had only one neuron for a 

single class of objects. In M-HONN system, instead of multiplying each training image with 

the corresponding weight connections as done for the constrained- HONN (C-HONN) 
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system, we keep constant the weight connection values which are set to be equal to a 

(randomly) chosen image included in the training set, here to be  o60
x m,n .  

 

 

Fig. 7. (Adapted by Kypraios et al., 2008) shows (a) correlation peak-height versus the out-
of-plane rotation angles of the object over the range of 20° to 70°.  We tested the M-HONN 
system with the true-class object’s intermediate car poses over the same range out-of-plane 
rotated at 10° increments; (b) the non-normalised PCE values of the test images at 10° 
increments versus the angles of view over the range of 20° to 70°.   

Fig. 7 (a) shows the plot of the correlation-peak height for each input image for the M-

HONN system. From the plot it is shown that the M-HONN system is invariant to the out-

of-plane rotation, since it has produced consistent correlation peaks for both the in-class 

training and non-training images around the fixed-correlation peak-height value of unity. 

The consistency of the correlation peak values that the M-HONN system has exhibited 

demonstrate the system’s ability to interpolate well between the intermediate car poses at 

10  increments. Earlier (Kypraios et al., 2008;  Kypraios, 2009;  Kypraios, 2010), we have 

shown the NNET includes information for reference and non-reference images of the true-

class object. Hence, the NNET interpolates non-linearly between the reference and non-

reference images to follow the activation function graph. Moreover, the NNET is able to 

generalize between all the reference and non-reference images.  
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Fig. 7 (b) shows the non-normalised peak-to-correlation energy (PCE) (Kumar & 

Hassebrook, 1990) values for the M-HONN system. From the graph, it can be observed that 

the M-HONN system produced PCE values for the intermediate non-training images close 

to those produced by the training car images. In effect, the system maintains correlation 

peak sharpness for the in-class training and non-training images.  

5.2 Distortion range 

The second tests series (Jamal-Aldin et al., 1997;  Jamal-Aldin et al., 1998;  Kumar & 

Hassebrook, 1990) was carried out to assess the distortion range (Refregier, 1990;  Refregier, 

1991, Kypraios et al., 2008) of the M-HONN system. The training set consisted of images for 

a distortion range over 0  to 90 . We used several smaller test sets, which consisted of two 

in-class training images at a widely separated angle within the range 

10 20 30 40 50 60 70 80  
         and a third non-training in-class image lying on the bisector 

angle of the two in-class training images (see Fig. 8 (a)). The intermediate non-training car 

pose image was 3
ˆ 5 ,40   

   i.e. 3 5 10 15 20 25 30 35 40    
        . Three randomly 

chosen training images, out-of-plane rotated at 110 ,130   and 140 , were added in the 

training set of the M-HONN system which fell inside the false-class. The targets of the true-

class objects and of the false-class objects were found to be best set for the tests series as 

trueT 40  and falseT 40 . The M-HONN system has no information built into it on the 

test images of the intermediate car poses. We constrained the correlation peaks in the 

constraint matrix to be 1  for the images of the true-class object and 0  for the images of the 

false-class object.  

Fig. 8 (b) shows the correlation-peak height for each input image for the M-HONN system. 
It is found the system has good performance in recognising all the intermediate car poses of 
the test set. The correlation-peak height of the in-class input images, intermediate between 
two training images, lie within a band of greater than 76% of the pre-specified peak-height 
constant in the constraint matrix C for the M-HONN system. From the graph it can be 

observed that the system tolerated orientation over a range of 3
ˆ 5 ,40   

  . 

5.3 Discrimination ability 

The third tests series (Jamal-Aldin et al., 1997;  Jamal-Aldin et al., 1998;  Kumar & 

Hassebrook, 1990) was carried out to assess the discrimination ability (Refregier, 1990;  

Refregier, 1991, Kypraios et al., 2008) of the M-HONN system. In the tests, M-HONN system 

tried to discriminate between objects of different classes while retaining invariance to in-

class distortions. The training set consisted of images of the Jaguar S-type for adistortion 

range over 20  to 70  at 10   increments. The test set consisted of one training image out-

of-plane rotated at 40  of the Jaguar S-type and a second image of the out-of-class RX-7 

Police patrol car at the same angle of out-of-plane rotation. Two different training set 

configuration of still images were experimented with. Firstly, we added two images of the 

Jaguar S-type at 130 and 140  for the false-class of the system’s training set. We 

constrained the false-class images of the objects to zero correlation peak-height in the 

synthesis of the M-HONN system’s composite image. Secondly, we conducted experiments 
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with no inclusion in the system’s composite image of any false-class images. For both cases, 

we aimed in observing if there was any change in the class separation ability of the M-

HONN system. We constrained the true-class objects to unity correlation peak-height and 

we used the same as before Targets for the false- and true- class images of the NNET block. 

The target of the false-class object is falseT 40 , and the Target of the true-class object is 

trueT 40  in the training set of the NNET block for the M-HONN system. It had no built-in 

information on the test images.  

 

Fig. 8. (Adapted by Kypraios et al., 2008) shows (a) the reference angle, Θ0, and the two in-
class training images at the angles Θ1 and Θ2.  The test image is on the bisector at angle Θ3;  
(b) the correlation peak-heights for each input image over a range of Θ3 = [5°   40°] for the 
M-HONN system. 

From the conducted experiments we drew Table 1. The forth column of Table 1 records the 

values taken for the in-class training image and the fifth column contains all the values 

taken for the out-of-class training image. It is shown from the third column of Table 1 that 

M-HONN system gave sufficient discrimination ability between the two objects, the Jaguar 

S-type car and the RX-7 Police patrol car. It produced 12% class separation (with the false-

class images included in the synthesis of the composite image with zero correlation peak-

height constraint). By not including any false-class images in the system’s composite image, 

but by setting to unity correlation peak-height constraint the true-class images and keeping 

constant the target of the false-class object to falseT 40  and the target of the true-class 

object to trueT 40 , the M-HONN system increased the class separation to 27%. Thus, the 
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two different training set still images configurations that we had experimented with (in first, 

false-class images zero peak constrained and, in second, false-class images not included in 

the system’s composite image) helped us make a useful observation about the M-HONN 

system’s ability to distinguish between two different classes. More specifically, the false-

class images included in the composite image, and zero peak constrained, were taken from 

the true-class object in different poses not included in the training set. In effect, when we 

tested the RX-7 police patrol car images, the system separated the input images from the 

trained images (unity peak constrained) of the true-class object and the false-class images (of 

the same true-class but zero peak constrained) as a third class. Apparently, that caused the 

drop of the M-HONN system discrimination ability by almost half. We have found to be a 

solution to the problem by including false-class images not belonging in the same the true-

class object but from a different one which it could increase further the discrimination ability 

of M-HONN system.  

 

Table 1. (adapted by Kypraios et al., 2008) Discrimination Ability of M-HONN system 

5.4 Clutter tolerance 

5.4.1 Training sets 

We have conducted several tests (Kypraios et al., 2009) for evaluating the performance of 

the M-HONN system in recognising multiple objects of the same class or of different 

classes. Several training sets were created for testing the system’s performance with still 

images and with video sequences. The first training set consisted of still images of the 

Jaguar S-type car for a distortion range over 0  to 360  out-of-plane rotated at 10   

increments. The second training set consisted of still images of the RX-7 Police patrol car 

for a distortion range approximately over 0  to 360  out-of-plane rotated at 10   

increments. The third training set consisted of video frames of a Ferrari Testarossa car 

within a background clutter scene. The fourth training set consisted of still images of 

different car park scenes. A fifth training set consisted of video frames we have taken 

showing a sequence of a Jaguar S-type car and a Ferrari Testarossa car within a 

background clutter scene.  All the training and test sets of the still images and of the video 

sequence frames were used in grey-scale bitmap format, and they were sized to 256x256. 

All the test and train input still images and video frames were concatenated row-by-row 

into a vector form prior being processed by the NNET block of the M-HONN system. 

www.intechopen.com



 
Advances in Object Recognition Systems 

 

58

5.4.2 Biologically-inspired knowledge representation and learning 

As S. Haykin in his work on artificial neural network architectures (S. Haykin, 1999) 
observes, pattern recognition systems need to be re-designed in novel architectures, if 
they are to be solving more complex problems. He argues that such novel architectures 
should be designed with separate blocks of a recognition unit and a knowledge learning 
unit, and that the implementation of such designs can be only possible with the 
combination of artificial neural networks architectures with other tools as a hybrid. Some 
of the elements (S. Haykin, 1999) that such biologically-inspired hybrid systems need to 
exploit are, the non-linearity of the input information, learning and adaptation to the 
input information, and provide an attentional mechanism for the hybrid system to be able 
to select certain information to be included in its learning against other input. Therefore, 
knowledge representation and learning becomes a central issue in the design and 
implementation of such hybrid biologically-inspired pattern recognition systems (Lee & 
Portier, 2007). 

Aler et al. in their work discuss the knowledge representation and its role in knowledge 

learning (Aler et al., 2000). Aler et al. argue the effects that altering the knowledge 

representation can have on the problem knowledge learned and problem solving. They 

consider any problem solving system to consist of a domain theory which specifies the task 

to be solved, the initial problem states and the aimed problem goals, and a control 

knowledge which guides the decision-making process. They were able to demonstrate the 

effects of knowledge representation to the efficiency of the problem solving process. 

Recent work we have conducted (Kypraios, 2010) has demonstrated the problem solving 

ability of the HONN-type systems, such as the M-HONN system for multiple objects 

recognition. We have shown the system is able to solve, in particular, different visual tasks. 

Fig. 9 shows the first problem we have tested M-HONN system for recognising different 

angles of view of the input object. The training set consisted of still images of the Jaguar S-type 

car out-of-plane rotated over a range 0° to 170° to belong in the true-class, and still images of 

the Jaguar S-type car out-of-plane rotated over a range 180° to 360° to belong in the false-class. 

The true-class images were constrained to unit correlation peak-height in the synthesis of the 

M-HONN system’s composite image, and the false-class images were constrained to zero 

correlation peak-height in the synthesis of the M-HONN system’s composite image (see Fig. 

10). We have set the true-class target classification levels (here we assume there is only one 

class=1, so there is no need to set any target connections for a second output neuron) to be 
class 1
trueT 40  , and for false-class the target classification levels were set to be class 1

falseT 40  . The 

test set consisted of multiple Jaguar S-type car objects inserted in plain background at 

different non-training out-of-plane rotation angles over a range 0° to 360°. As shown on Fig. 9, 

M-HONN system was able to correctly recognise the Jaguar S-type car poses over the range 0° 

to 170° to belong in the true-class, and the Jaguar S-type car poses over the range 180° to 360° 

to belong in the false-class. We have indicated with the solid line the recognised true-class 

objects and with the dashed line the recognised false-class objects. 

Fig. 11 shows the second test we conducted to demonstrate the system’s ability of problem 

solving where we want the system to recognise only the true-class objects of the Jaguar S-

type car over a range 0° to 360°, and reject the false-class objects of the RX-7 Mazda Efini  
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Fig. 9. It shows the first visual problem for testing the M-HONN object recognition system’s 

ability of problem solving.  M-HONN system tries to recognise certain angles of view of the 

input object while rejecting others.  The training set consisted of still images of the Jaguar S-

type car out-of-plane rotated over a range 0° to 170° to belong in the true-class, and still 

images of the Jaguar S-type car out-of-plane rotated over a range 180° to 360° to belong in 

the false-class.  We have indicated with the solid line the recognised true-class objects and 

with the dashed line the recognised false-class objects. 

Police patrol car over approximately the same range. The training set consisted of still images 

of the Jaguar S-type car out-of-plane rotated over a range 0° to 360° to belong in the true-class, 

and still images of the RX-7 Mazda Efini Police patrol car out-of-plane rotated over 

approximately a range 0° to 360° to belong in the false-class. The true-class images were 

constrained to unit correlation peak-height in the synthesis of the M-HONN system’s 

composite image, and the false-class images were constrained to zero correlation peak-height 

in the synthesis of the M-HONN system’s composite image. We have set the true-class target 

classification levels (here we assume there is only one class=1, so there is no need to set any 

target connections for a second output neuron) to be class 1
trueT 240  , and for false-class the 

target classification levels were set to be class 1
falseT 240  . Here, we have set higher target 

classification level values for increasing the inter-class discrimination abilities of the M-HONN 

system. It worth mentioning that we could have set class=2 and, then, set a target classification 

level for class 2
trueT with no need to include false-class objects, but adjust the constraint matrix of 

the system’s composite image to class 1 and class 2 different fixed correlation peak-height 

values. The test set consisted of non-training input still images of Jaguar S-type car objects 

inserted in plain background at different out-of-plane rotation angles over a range 0° to 360°, 

and input still images of RX-7 Mazda Efini Police patrol cars inserted in plain background at 

different out-of-plane rotation angles over a range 0° to 360°. As shown on Fig. 11, M-HONN 

system was able to successfully recognise the Jaguar S-type car poses over the range 0° to 360° 

to belong in the true-class, and the RX-7 Mazda Efini car poses over approximately the same 

range 0° to 360° to belong in the false-class. Again, we have indicated with the solid line the 

recognised true-class objects and with the dashed line the recognised false-class objects. 
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Fig. 10. It shows the composite image the M-HONN system synthesised for a training set 
consisting of still images of the Jaguar S-type car out-of-plane rotated over a range 0° to 360°. 

 

 

Fig. 11. It shows the second visual problem for testing the M-HONN object recognition 
system’s ability of problem solving.  M-HONN system tries to recognise only the true-class 
objects of the Jaguar S-type car and reject all the false-class objects.  The training set 
consisted of still images of the Jaguar S-type car out-of-plane rotated over a range 0° to 360° 
to belong in the true-class, and still images of the RX-7 Mazda Efini Police patrol car out-of-
plane rotated over approximately a range 0° to 360° to belong in the false-class.  We have 
indicated with the solid line the recognised true-class objects and with the dashed line the 
recognised false-class objects. 
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Additional tests we conducted have demonstrated the effect that has the input mask c  in 

the synthesis of the composite image of the M-HONN system. Thus, in one of the tests we 

created a training set consisting of Jaguar S-type car objects out-of-plane rotated over a 

range 20° to 70° at 10° increments to belong in true-class 1, RX-7 Mazda Efini Police patrol 

car objects out-of-plane rotated over approximately a range 20° to 70°at 10° increments to 

belong in true-class 2, and a random car park scene to belong in false-class. The true-class 1 

images were constrained to unit correlation peak-height, the true-class 2 images were 

constrained to half-a-unit correlation peak-height, and the false-class images were 

constrained to zero correlation peak-height in the synthesis of the M-HONN system’s 

composite image. We have set the true-class 1 and true-class 2 target classification levels to 

be class 1
trueT 180   and class 2

trueT 90  , and for false-class 1 and false-class 2 the target 

classification levels were set to be class 1
falseT 10   and class 2

falseT 10  . The test set (see Fig. 12) 

consisted of input still images of a Jaguar S-type car object and a RX-7 Mazda Efini Police 

patrol car object both inserted in a car park background scene (not the one we included in 

the training set), positioned off-the-centre and out-of-plane rotated over a range 20° to 70°. 

During the process of inserting the objects in to the car park scene some Gaussian noise is 

added, too. The M-HONN system was able to correctly discriminate between class 1 and 

class 2. However, in this test the emphasis was to study the effect that knowledge 

representation in the form of the composite image synthesis has on the problem solving. In 

effect, as shown in Fig. 13, when we have chosen to build the input mask c , which we 

applied it on both the training set and the test set, from the training set image of true-class 1 

object of the Jaguar S-type car, then the system synthesised its composite image by non-

linearly revealing more features for the true-class 1 object of the Jaguar S-type car, allowing 

less features for the true-class 2 object of the RX-7 Mazda Efini Police patrol car and 

completely suppressing any features of the background car park scene. When we have 

chosen to build the input mask c  from the training set image of true-class 2 object of the 

RX-7 Mazda Efini Police patrol car, then the system synthesise its composite image (see Fig. 

14) by non-linearly revealing more features for the true-class 2 object of the RX-7 Mazda 

Efini Police patrol car, allowing less features for the true-class 1 object of the Jaguar S-type 

car and completely suppressing any features of the background car park scene.  

 

Fig. 12. It shows one of the test set input images used for assessing the M-HONN system’s 
performance within clutter 
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From the above observations and conducted experiments, the M-HONN system, as all the 
HONN-type systems, combine in their design a knowledge representation unit being the 
optical correlator block with a knowledge learning unit being the NNET block. Moreover, 
HONN-type systems, such as M-HONN, have been proven in previous work we have done 
(Kypraios et al., 2002) to non-linearly combine the weighted, extracted by the NNET block, 
input training set. In effect, in HONN-type systems the attentional mechanism is provided 
by the extracted weights of the NNET block to be able to select certain features to be 
included in its composite image against other ones. Additionally, the M-HONN system, as 
shown above, can learn and adapt to the input information depending on the created 
training set itself. Here, the created training set comprises the domain theory of the task to 
be solved, the initial problem states and the problem goals are given by the true-class and 
false-class classification levels, and the synthesised composite image provides the control 
knowledge which guides the decision-making process. 

 

Fig. 13. It shows the synthesised composite image of the M-HONN system. The training set 
set consisted of Jaguar S-type car objects out-of-plane rotated over a range 20° to 70° at 10° 
increments to belong in true-class 1, RX-7 Mazda Efini Police patrol car objects out-of-plane 
rotated over approximately a range 20° to 70°at 10° increments to belong in true-class 2, and 
a random car park scene to belong in false-class.  When we have built the input mask from 
the training set image of true-class 1 object of the Jaguar S-type car, then the system 
synthesised its composite image by non-linearly revealing more features for the true-class 1 
object of the Jaguar S-type car, allowing less features for the true-class 2 object of the RX-7 
Mazda Efini Police patrol car and completely suppressing any features of the background 
car park scene. 

5.4.3 Multiple objects recognition 

Here, we summarise several tests we previously conducted for explicitly testing the M-

HONN system’s ability to recognise multiple objects of different classes (Kypraios et al., 

2008). In the first series of conducted tests, the training set consisted of three Jaguar S-type 

car images out-of-plane rotated at 40° 60° and 80° to belong in class 1, and three Ferrari 

Testarossa extracted video frames from a recorded video sequence to belong in class 2. For 

our application purposes it was found to be adequate to set class1
trueT 40   and class2

trueT 40   

for the true-class target classification levels and class1
falseT 40   and class2

falseT 40   for the false-
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class classification levels. We constrained true-class 1 of the Jaguar S-type object images to 

unit correlation peak-height constraint, and true-class 2 of the Ferrari Testarossa car to half-

a-unit correlation peak-height constraint in the synthesis of the M-HONN system’s 

composite image. Fig. 15 (a) and Fig. 15 (b) show the output correlation planes response of 

the M-HONN system for class 1, which are normalised to the overall maximum correlation 

plane peak-height value for all the input images. Fig. 15 (c) and Fig. 15 (d) show the output 

correlation plane response of the M-HONN system for class 2, which are normalised to the 

overall maximum correlation plane peak-height value for all the input images. From the 

recorded results we have shown that the M-HONN system has accommodated the 

recognition of class 1 and class 2 objects by output neuron 1 and output neuron 2, 

respectively.  

 

Fig. 14. It shows the synthesised composite image of the M-HONN system.  The training set 
set consisted of Jaguar S-type car objects out-of-plane rotated over a range 20° to 70° at 10° 
increments to belong in true-class 1, RX-7 Mazda Efini Police patrol car objects out-of-plane 
rotated over approximately a range 20° to 70°at 10° increments to belong in true-class 2, and 
a random car park scene to belong in false-class.  Now we have built the input mask from 
the training set image of true-class 2 object of the RX-7 Mazda Efini Police patrol car, then 
the system synthesised its composite image by non-linearly revealing more features for the 
true-class 2 object of the RX-7 Mazda Efini Police patrol car, allowing less features for the 
true-class 1 object of the Jaguar S-type car and completely suppressing any features of the 
background car park scene. 

In the second series of conducted tests, we aimed to assess the ability of the M-HONN 

system to recognise multiple objects of different classes within a cluttered video sequence. 

Fig. 16 shows indicatively four of the video frames from the recorded video sequence. The 

frame rate of the video sequence was 25 frames per second (fps). The training consisted of 

images of the Jaguar S-type car out-of-plane rotated over 20° to 80° degrees at 20° 

increments. We added two images of the Jaguar S-type car out-of-plane rotated at 130° and 

140° to fall inside the false-class object for increasing the peak sharpness and class 

discrimination abilities of the M-HONN system. For our conducted tests we found the best 

values for the true-class 1 and true-class 2 classification values to be class 1
trueT 240   and 

class 2
trueT 240  , respectively, and the best values for the false-class 1 and false-class 2 
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classification values to be class 1
falseT 240   and class 2

falseT 240  . We constrained true-class 1 of 

the Jaguar S-type object images to unit correlation peak-height constraint, true-class 2 of the 

Ferrari Testarossa car to half-a-unit correlation peak-height constraint, and false-class 1 and 

false-class 2 to zero correlation peak-height constraints in the synthesis of the M-HONN 

system’s composite image. Fig. 16 shows the locked window unit of chosen size 70x70 on 

top of the maximum correlation peak-height values. With the dashed line we have shown 

the secondary correlation peaks of the output plane and with the solid line we have shown 

the maximum correlation peak-height value of the output plane. M-HONN system 

successfully suppressed the unknown background clutter throughout the length of the 

video sequence and recognised correctly class 1 and class 2 objects. It is emphasised that we 

have not included any background information in the training set of the system.  

 

 

 

Fig. 15. (Adapted by Kypraios et al., 2009) It shows (a) for the first output layer neuron, and 
(b) for the second output layer neuron the isometric output correlation plane response of the 
M-HONN system for Class 1 (normalised to the maximum correlation plane peak-height 
value), and (c) and (d)  the isometric output correlation plane response of the M-HONN 
system for Class 2 (normalised to the maximum correlation plane peak-height value). 

(a) (b) 

Class 1: Jaguar S-

(d) 
(c) 

Class 2: Ferrari 
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Fig. 16. It shows indicatively four of the video frames from the recorded video sequence.  
The locked window unit is on top of the maximum correlation peak-height values.  With the 
dashed line we have shown the secondary correlation peaks of the output plane and with 
the solid line we have shown the maximum correlation peak-height value of the output 
plane.   

6. Conclusion and future work 

We have described the design and implementation of the M-HONN system. In particular, 

we focused in the design and implementation of the M-HONN system for multiple objects 

recognition of the same and of different classes. The inherited shift invariance properties 

by the optical correlator block of the system can accommodate for the recognition of 

multiple objects of the same class. The cross-correlation of each masked test set image 

with the transformed reference kernel returns an output correlation plane peak value for 

each cross-correlation step. Thus, the maximum peak height values of the output 

correlation plane correspond to the recognised true-class objects. By augmenting the 

output layer of the NNET block of the M-HONN system we can accommodate for the 

recognition of multiple objects of different classes. In effect, we increase the number of the 

output layer neurons proportionally with the number of the different object classes. We 

assign one output neuron to each different class. It was proven experimentally that by 

choosing different values of the classification levels for the true-class TCl  and false-class 

FCl  objects we can control the M-HONN system’s behaviour and it can be varied from 

more like a high-pass biased filter, which generally gives sharp correlation peaks and 

good clutter suppression but is more sensitive to intra-class distortions, to more like a 

MVSDF filter behaviour, which generally gives broader correlation peaks but is more 

robust to intra-class distortions of the input objects. 

We have assessed the performance of the M-HONN system by conducting several series of 

tests. We assessed the system’s ability to detect non-training in-class images that are 

oriented at the intermediate angle of view between the training images. From the recorded 
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results, we were able to show the system’s ability to interpolate well between the 

intermediate car poses. The system maintained correlation peak sharpness for the in-class 

training and non-training images. More specifically, the M-HONN system is able to 

interpolate non-linearly between the reference and non-reference images to follow the 

activation function graph. The NNET block is able to generalize between all the reference 

and non-reference images. Next, we have tested the M-HONN system’s distortion range. 

From the recorded results, we have shown that the system has exhibited a high distortion 

range recognising all the intermediate car poses of the test set over the range    
 

3
ˆ 5 ,40  

(bisector angle). The third series of tests we conducted were for assessing the discrimination 

ability of the M-HONN system. From the recorded results, we have shown that the system 

successfully discriminate between objects of different classes while retaining invariance to 

in-class distortions.  

We have analysed the M-HONN system’s biologically-inspired hybrid design and we have 

found to combine a knowledge representation unit being the optical correlator block with a 

knowledge learning unit being the NNET block, as for the G-HONN type systems. We 

conducted several experiments for testing the system’s problem solving abilities. The M-

HONN system was able to solve the visual task of recognising certain Jaguar S-type car 

poses to belong in the true-class from other Jaguar S-type car poses. Also, the M-HONN 

system was able to solve the visual task of recognising only the true-class objects of the 

Jaguar S-type car.  

The last series of tests aimed to assess the M-HONN system’s performance of recognising 

multiple objects of different classes within clutter. We have tested the system with a 

recorded video sequence. The system successfully suppressed the unknown background 

clutter during the whole length of the video sequence and recognised correctly class 1 and 

class 2 objects. In overall, the M-HONN system was able to correctly recognise true-class 

objects out-of-plane rotated, translated off-the-centre and inserted into background scenes. It 

is emphasised that the system was able to recognise the true-class objects within an 

unknown background clutter scene since we have not included any background information 

in its training set. Additionally, all the invariance properties were simultaneously exhibited 

by the M-HONN system with a single pass over the input data sets. In effect, as we could 

see from its transfer function, M-HONN system is not either a multiple stages-type of filter 

or any pre-processing of the input data is required for maintaining its invariance properties. 

There is no need for a separate background segmentation pre-processing stage prior the 

system’s object tracking as in the case of other motion based segmentation and object 

tracking techniques. Instead, the M-HONN system is able to successfully suppress the 

background clutter and track throughout the video sequence the recognised true-class 

object.  

In future, we would like to assess the performance of each output neuron of the M-HONN 

system’s NNET block individually and record separately their performance metrics values 

for the detectability, distortion range, and discrimination ability. Also, we believe that the 

M-HONN system’s design can be extended to accommodate three-dimensional (3D) object 

recognition. Similarly to stereo vision systems (Lowe, 1987; Xu & Zhang, 1996;  Sumi et al., 

2002), the M-HONN system’s design can be extended with a second input mask for 

www.intechopen.com



Performance Analysis of  
the Modified-Hybrid Optical Neural Network Object Recognition System Within Cluttered Scenes 

 

67 

processing different angles of the captured data, and incorporating the corresponding 

transformed images into its composite image synthesis. 
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