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Knowledge Representation in  
a Proof Checker for Logic Programs 

Emmanouil Marakakis, Haridimos Kondylakis and Nikos Papadakis 
Department of Sciences, Technological Educational Institute of Crete,  

Greece 

1. Introduction 

Lately the need for systems that ensure the correctness of software is increasing rapidly. 
Software failures can cause significant economic loss, endanger human life or environmental 
damage. Therefore, the development of systems that verify the correctness of software 
under all circumstances is crucial. 

Formal methods are techniques based on mathematics which aim to make software 

production an engineering subject as well as to increase the quality of software. Formal 

verification, in the context of software systems, is the act of proving or disproving the 

correctness of a system with respect to a certain formal specification or property, using 

formal methods of mathematics. Formal program verification is the process of formally 

proving that a computer program does exactly what is stated in the program specification it 

was written to realize. Automated techniques for producing proofs of correctness of 

software systems fall into two general categories: 1) Automated theorem proving (Loveland, 

1986), in which a system attempts to produce a formal proof given a description of the 

system, a set of logical axioms, and a set of inference rules. 2) Model checking, in which a 

system verifies certain properties by means of an exhaustive search of all possible states that 

a system could enter during its execution. 

Neither of these techniques works without human assistance. Automated theorem provers 
usually require guidance as to which properties are "interesting" enough to pursue. Model 
checkers can quickly get bogged down in checking millions of uninteresting states if not 
given a sufficiently abstract model. 

Interactive verifiers or proof checkers are programs which are used to help a user in building a 
proof and/or find parts of proofs. These systems provide information to the user regarding 
the proof in hand, and then the user can make decisions on the next proof step that he will 
follow. Interactive theorem provers are generally considered to support the user, acting as 
clerical assistants in the task of proof construction. The interactive systems have been more 
suitable for the systematic formal development of mathematics and in mechanizing formal 
methods (Clarke & Wing, 1996). Proof editors are interactive language editing systems which 
ensure that some degree of “semantic correctness” is maintained as the user develops the 
proof. The proof checkers are placed between the two extremes, which are the automatic 
theorem provers and the proof editors (Lindsay, 1988).  
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In this chapter we will present a proof checker or an interactive verifier for logic programs which 
are constructed by a schema-based method (Marakakis, 1997), (Marakakis & Gallagher, 1994) 
and we will focus on the knowledge representation and on its use by the core components of 
the system. A meta-program is any program which uses another program, the object program, 
as data. Our proof checker is a meta-program which reasons about object programs. The logic 
programs and the other elements of the theory represented in the Knowledge Base (KB) of our 
system are the object programs. The KB is the data of the proof checker. The proof checker 
accesses and changes the KB. The representation of the underlying theory (object program) in 
the proof checker (meta-program) is a key issue in the development of the proof checker. Our 
System has been implemented in Sicstus Prolog and its interface has been implemented in 
Visual Basic (Marakakis, 2005), (Marakakis & Papadakis, 2009) 

2. An Overview of the main components of the proof checker 

This verifier of logic programs requires a lot of interaction with the user. That is why 

emphasis is placed on the design of its interface. The design of the interface aims to facilitate 

the proof task of the user. A screenshot of the main window of our system is shown in Fig. 1.  

 

Fig. 1. The main window of the proof-checker. 

Initially, all proof decisions are taken by the programmer. The design of the interface aims to 
facilitate the proof task of the user. This interactive verifier of logic programs consists of 
three distinct parts the interface, the prover or transformer and the knowledge base (KB). The 
interface offers an environment where the user can think and decide about the proof steps 
that have to be applied. The user specifies each proof step and the prover performs it. A 
high-level design of our system is depicted in Fig. 2. The main components of the proof 
checker with their functions are shown in this figure. The prover of the system consists of 
the following two components. 1) The component “Spec Transformer” transforms a 

www.intechopen.com



 
Knowledge Representation in a Proof Checker for Logic Programs 

 

163 

specification expressed in typed FOL into structured form which is required by our 
correctness method (Marakakis, 1997), (Marakakis, 2005). 2) The component “Theorem Proof 
Checker supports the proof task of the selected correctness theorem.  

The “KB Update” subsystem allows the user to update the KB of the system through a user-
friendly interface. The knowledge base (KB) and its contents are also shown in Fig. 2. The 
KB contains the representation of specifications, theorems, axioms, lemmas, and programs 
complements. It also has the representation of FOL laws in order to facilitate their selection 
for application. These entities are represented in ground representation (Hill & Gallagher, 
1998). The main benefit of this representation is the distinct semantics of the object program 
variables from the meta-variables. It should be noted that the user would like to see 
theorems, axioms, lemmas and programs in a comprehensible form which is independent of 
their representation. However, the ground representation cannot be easily understood by 
users. Moreover, the editing of elements in ground representation is error-prone. Part of the 
interface of the system is the “Ground-Nonground Representation Transformer” component 
which transforms an expression in ground representation into a corresponding one in the 
standard formalism of FOL and vice-versa. The standard form of expressions helps users in 
the proof task and for the update of the KB. 

 

Fig. 2. Main components of the proof-checker. 

3. Knowledge representation 

Knowledge and representation are two distinct concepts. They play a central role in the 
development of intelligent systems. Knowledge is a description of the world, i.e. the problem 
domain. Representation is how knowledge is encoded. Reasoning is how to extract more 
information from what is explicitly represented.  
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Different types of knowledge require different types of representation. Different types of 
knowledge representation require different types of reasoning. The most popular 
knowledge representation methods are based on logic, rules, frames and semantic nets. Our 
discussion will be focused on knowledge representation based on logic.  

Logic is a language for reasoning. It is concerned with the truth of statements about the 
world. Each statement is either “true” or “false”. Logic includes the following: a) syntax 
which specifies the symbols in the language and how they can be combined to form 
sentences, b) semantics which specify how to assign a truth to a sentence based on its 
meaning in the world and c) inference rules which specify methods for computing new 
sentences from existing sentences. There are different types of logic, i.e. propositional logic, 
first-order predicate logic, fuzzy logic, modal logic, description logic, temporal logic, etc. We 
are concerned on knowledge representation and reasoning based on typed first-order 
predicate logic because our correctness method is based on typed FOL.  

Another classification of knowledge representation is procedural and declarative knowledge 
representation. Declarative knowledge concerns representation of the problem domain 
(world) as a set of truth sentences. This representation expresses “what something is”. On 
the other hand, the procedural knowledge concerns tasks which must be performed to 
reach a particular goal. In procedural representation, the control information which is 
necessary to use the knowledge is embedded in the knowledge itself. It focuses on “how 
something is done”. In the same way, declarative programming is concerned with writing 
down “what” should be computed and much less with “how” it should be computed (Hill 
& Lloyd, 1994). Declarative programming separates the control component of an 
algorithm (the “how”) from the logic component (the “what”). The key idea of declarative 
programming is that a program is a theory (in some suitable logic) and computation is 
deduction from the theory (Lloyd, 1994). The advantages of declarative programming are: 
a) teaching, b) semantics, c) programmer productivity, c) meta-programming and e) 
parallelism. Declarative programming in Logic Programming means that programs are 
theories. The programmer has to supply the intended interpretation of the theory. Control 
is usually supplied automatically by the system, i.e. the logic programming language. We 
have followed the declarative knowledge representation for the representation of the 
knowledge base of our system. 

3.1 Meta-programming, ground and non-ground representation  

A language which is used to reason about another language (or possibly itself) is called 
meta-language and the language reasoned about is called the object language. A meta-program 
is a program whose data is another program, i.e. the object program. Our proof-checker is a 
meta-program which manipulates other logic programs. It has been implemented in Prolog 
and the underlying theory, i.e. the logic programs being verified and the other elements of 
the KB, is the object program. An important decision is how to represent programs of the 
object language (i.e. the KB elements in our case) in the programs of the meta-language, i.e. 
in the meta-programs. Ground representation and non-ground representation are the two main 
approaches to the representation of object programs in meta-programs. We have followed 
the ground representation approach for the representation of the elements of the KB of our 
system. Initially, ground and non-ground representation will be discussed. Then, we will 
see the advantages and the drawbacks of the two representations.  
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In logic programming there is not clear distinction between programs and data because data 

can be represented as program clauses. The semantics of a meta-program depend on the 

way the object program is represented in the meta-program. Normally, a distinct 

representation is given to each symbol of the object language in the meta-language. This is 

called naming relation (Hill & Gallagher, 1998). Rules of construction can be used to define 

the representation of the constructed terms and formulas. Each expression in the language 

of the object program should have at least one representation as an expression in the 

language of the meta-program. The naming relation for constants, functions, propositions, 

predicates and connectives is straightforward. That is, constants and propositions of the 

object language can be represented as constants in the meta-language. Functions and 

predicates of the object language can be represented as functions in the language of meta-

program. A connective of the object language can be represented either as a connective or as 

a predicate or as a function in the meta-language. The main problem is the representation of 

the variables of the object language in the language of the meta-program. There are two 

approaches. One approach is to represent the variables of the object program as ground 

terms in the meta-program. This representation is called ground representation. The other 

approach is to represent the variables of the object program as variables (or non-ground 

terms) in the meta-program. This representation is called non-ground representation.  

Using non-ground representation of the object program is much easier to make an efficient 

implementation of the meta-program than using ground representation. In non-ground 

representation, there is no need to provide definitions for renaming, unification and 

application of substitutions of object language formulas. These operations which are time 

consuming do not require special treatment for the object language terms. The inefficiency 

in ground representation is mainly due to the representation of the variables of the object 

program as constants in the meta-program. Because of this representation complicated 

definitions for renaming, unification and application of substitutions to terms are required. On 

the other hand, there are semantic problems with non-ground representation. The meta-

program will not have clear declarative semantics. There is not distinction of variables of the 

object program from the ones of the meta-program which range over different domains. 

This problem can be solved by using a typed logic language instead of the standard first-

order predicate logic. The ground representation is more clear and expressive than the non-

ground one and it can be used for many meta-programming tasks. Ground representation is 

suitable for meta-programs which have to reason about the computational behavior of the 

object program. The ground representation is required in order to perform any complex 

meta-programming task in a sound way. Its inherent complexity can be reduced by 

specialization. That is, such meta-programs can be specialized with respect to the 

representation of the object program (Gallagher 1993). 

Another issue is how the theory of the object program is represented in the meta-program. 
There are again two approaches. One approach is the object program to be represented in 
the meta-program as program statements (i.e. clauses). In this case, the components of the 
object program are fixed and the meta-program is specialized for just those programs that 
can be constructed from these components. The other approach is the object program to be 
represented as a term in a goal that is executed in the meta-program. In this case the object 
program can be either fixed or it can be constructed dynamically. In this case the meta-
program can reason about arbitrary object programs. This is called dynamic meta-
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programming. The object program in our proof checker is represented as clauses. The 
underlying theory is fixed for each proof task. 

3.2 Ground representation of object programs in the proof-checker 

The KB shown in Fig. 2 contains the representation of specifications, theorems, axioms, 
lemmas and programs complements. It also has the representation of FOL laws in order to 
facilitate their selection for application. These KB elements are represented in ground 
representation (Hill & Gallagher, 1998).. The representation of the main symbols of the 
object language which are used in this chapter is shown below. 

Object language symbol Representation 

constant constant 

object program variable term v(i), i is natural 

function term g(i), i is natural 

proposition, formulas of FOL term f(i), i is natural 

predicate term p(i), i is natural 

connectives (,,~,↔) \/, /\, ~, -> , <-> 

exist () ex 

for all ( ) all 

length of sequence x1(#x1) len(v(1):Type):nat 

operation plus (+) plus 

operation minus (-) minus 

type variable term tv(i), i is natural 

type sequence seq 

empty sequence (<>) nil_seq 

sequence constructor seq_cons(Head, Tail) where Head and Tail are 

(Head :: Tail) defined in ground representation 
accordingly. 

operator / (Object/Type) (Object : Type) 
x1i /Type (e.g. x1/α1) v(1, i:nat):Type (e.g. v(1, 1:nat):tv(1) ) 

equality (=) eq 

inequality (≠) ~eq 

less-equal (≤) le 

greater-equal (≥) ge 

type natural (N) nat 

type integer (Z) int 

nonzero naturals (N1) posInt 

Predicates are represented by their names assuming that each predicate has a unique name. 
In case of name conflicts, we use the ground term p(i) where i is natural. Sum of n elements, 

i.e. 
1

n

i

i

x

 is represented as the following ground term: sum(1:nat, v(2):nat, v(3, 

v(4):nat):Type):Type where “Type” is the type of xi. 
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3.3 Representation of variables 

3.3.1 Type variables 

The type variables are specified by the lower case Greek letter a followed by a positive 
integer which is the unique identifier of the variables e.g. a1, a2, a3, a4 etc. Each type variable 
is represented in ground form by a term of the form tv(N) or in simplified form tvN where N 
stands for the unique identifier of the variable. For example, the ground representation of 
type variables a1, a2, a3 could be tv(1) or tv1, tv(2) or tv2, tv(3) or tv3 respectively.  

3.3.2 Object program variables 

Object program variables and variables in specifications are expressed using the lower case 
English letter x followed by a positive integer which is the unique identifier of the variables 
e.g. x1, x2, x3, x4 etc. Each object variable is represented in ground form by a term of the 
form v(N) where N stands for the unique identifier of the variable. For example, the ground 
representation of the object variables x1, x2, x3 is v(1) ,v(2) and v(3) respectively. Note that, 
the quantifier of each variable comes before the variable in the formula. Subscripted 
variables of the form x1i represent elements from constructed objects. They are represented 
by a term of the form v(Id, i:nat):ElementType where the first argument “Id” represents its 
unique identifier and the second one represents its subscript. “Id” is a natural number. This 
type of variables occurs mainly in specifications. A term like v(Id, i:nat):ElementType can be 
assumed as representing either a regular compound term or an element of a structured 
object like a sequence. The distinction is performed by checking the types of the elements x 
and x(i). For example, for i=1 by checking x1:seq(α1) and x1(1:nat):α1, it can be inferred that 
x1(1:nat):α1 is an element of x1:seq(α1). 

3.4 Representation of axioms and lemmas 

A set of axioms is applied to each DT including the “domain closure” and the “uniqueness” 
axioms which will be also presented later on Section 3.7. Each axiom is specified by a FOL 
formula. Axioms are represented by the predicates “axiom_def_ID/1” and “axiom_def/4” as 
follows. The predicate  

“axiom_def_ID(Axiom_Ids)” 

represents the identifiers of all axioms in the KB. Its argument “Axiom_Ids” is a list with the 
identifiers of the axioms. For example, the representation “axiom_def_ID([1,2,3,4])” says 
that the KB has four axioms with identifiers 1,2,3 and 4.  

The specification of each axiom is represented by a predicate of the following form  

“axiom_def(Axiom_Id, DT_name, Axiom_name, Axiom_specification)”. 

The argument “Axiom_Id” is the unique identifier of the axiom, i.e. a positive integer. 
“DT_name” is the name of the DT which the axiom is applied to. “Axiom_name” is the name 
of axiom. “Axiom_specification” is a list which has the representation of the specification of 
the axiom.  

Example: Domain closure axiom for sequences. Informally, this axiom says that a sequence can 
be either empty or it will consist from head and tail. 
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Specification:  

[ x1/seq(a2),[x1= < >  ( x3/a2, x4/seq(a2),[x1=x3::x4])]] 

Representation:  

 

Similarly, lemmas are represented by the predicates “lemma_sp_ID/1” and “lemma_sp/4”.  

3.5 Representation of first-order logic laws 

The FOL laws are equivalence preserving transformation rules. Each FOL law is specified by 

a FOL formula. They are represented by predicates fol_law_ID/1 and fol_law/3 as follows. The 

predicate  

“fol_law_ID(FOL_laws_Ids)”  

represents the identifiers of all FOL laws in the KB. Its argument “FOL_laws_Ids” is a list 

with the identifiers of all FOL laws. The specification of each FOL law is represented by a 

predicate of the form 

 “fol_law(FOL_law_Id, FOL_law_description, FOL_law_specification).”. 

The argument “FOL_law_Id” is the unique identifier of the FOL law, i.e. a positive integer. 

“FOL_law_description” is the name of a FOL law. “FOL_law_specification” is a list which has 

the ground representation of the specification of FOL law.  

Example: ( distribution) 

Specification:  

P  (Q  R) ↔ (P Q)  (P  R) 

Representation:  

 

3.6 Representation of theorems 

3.6.1 Initial theorem 

The theorems that have to be proved must also be represented in the KB. Each theorem is 

specified by a FOL formula. They are represented by the predicates “theorem_ID/1” and 

“theorem/4” as follows. The predicate  

“theorem_ID(Theorems_Ids)” 

fol_law(2,’  distribution’, 
          [f1 /\ (f2 \/ f3) <-> (f1 /\ f2) \/ (f1 /\ f3)]). 

axiom_def (1, sequences, ’domain closure’,  
    [all v(1):seq(tv(1)), (eq(v(1):seq(tv(1)),nil_seq) \/ 
       [ex v(2):tv(1), ex v(3):seq(tv(1)), eq(v(1):seq(tv(1)),seq_cons(v(2):tv(1), 
      v(3):seq(tv(1))):seq(tv(1))) ])]). 
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represents the identifiers of all theorems that are available in the KB. Its argument 
“Theorems_Ids” is a list with the identifiers of all theorems. The specification of each theorem 
is represented by a predicate of the form 

“theorem(Theorem_Id, Program_Id, Spec_struct_Id, Theorem_specification).” 

The argument “Theorem_Id” is the unique identifier of the theorem, i.e. a positive integer. 
The arguments “Program_Id” and “Spec_struct_Id” are the unique identifiers of the program 
and the structured specifications respectively. “Theorem_specification” is a list which has the 
representation of the specification of theorem.  

Example: The predicate sum(x1, x2) where Type(sum) = seq(Z)  Z is true iff x2 is the sum of 
the sequence of integers x1. The correctness theorem for predicate sum/2 and the theory 
which is used to prove it is as follows. 

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1, x2)) 

Pr is the logic program for predicate sum/2, excluding the DT definitions. Comp(Pr) is the 
complement of the program Pr. Spec is the specification of predicate sum/2, i.e. sumS(x1,x2). 
A is the theory for sequences, i.e. the underlying DTs for predicate sum/2, including the 
specifications of the DT operations.  

Theorem Specification:  

x1/seq(Z),  x2/Z (sum(x1,x2) ↔ sums(x1,x2)) 

Representation:  

 

3.6.2 Theorems in structured form 

The specification of a theorem may need to be transformed into structured form in order to 
proceed to the proof. The structure form of theorems facilitates the proof task. Each theorem 
in structured form is specified by a FOL formula. They are represented by the predicates 
“theorem_struct_ID/1” and “theorem_struct/4” as follows. The predicate 

“theorem_struct_ID(Theorems_Ids)”  

represents the identifiers of all theorems available in the KB with the specification part in 
structured form. Its argument “Theorems_Ids” is a list with the identifiers of all theorems in 
structured form. The specification of each theorem is represented by a predicate of the form 

“theorem_struct(Theorem_struct_Id,Program_Id,Spec_struct_Id, Theorem_specification).”.  

The argument “Theorem_struct_Id” is the unique identifier, i.e. a positive integer, of the 
theorem whose specification part is in structured form. The arguments “Program_Id” and 
“Spec_struct_Id” are the unique identifiers of the program and the structured specifications 
respectively. “Theorem_specification” is a list which has the representation of the specification 
of theorem.  

theorem(1, progr1, spec_struct1, 
    [all v(1):seq(int),all v(2):int, (sum(v(1):seq(int), v(2):int):int <->  
        sum_s(v(1):seq(int), v(2):int))]).  

www.intechopen.com



 
Advances in Knowledge Representation 

 

170 

Example 

In order to construct the theorem in structured form the predicate specification must be 
transformed into structured form. The initial logic specification for predicate sum/2 is the 
following. 

 x1/seq(Z), x2/Z (sumS(x1,x2) ↔ x2 =


1#

1

1
x

i

i
x ) 

The logic specification of sumS(x1,x2) in structured form and its representation are following. 

Theorem Specification: 

 

Representation:  

 

3.7 An example theory and theorem 

Throughout this Chapter we use the correctness theorem and theory for predicate sum/2. 

That is,  

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1, x2)) 

The ground representation of theory is also illustrated. 

Theory 

The logic program completion Comp(Pr) of Pr is as follows. 

 

Representation: 

 progr_clause(progr1, 1,[all v(1):seq(int), all v(2):int, [sum(v(1):seq(int),v(2):int) <-> 
((p1(v(1):seq(int)) /\p2(v(1):seq(int), v(2):int)) \/ [ex v(3):int, ex v(4):seq(int), ex v(5):int, 

x1/seq(Z),x2/Z,[sum(x1,x2)↔ (p1(x1)p2(x1,x2) [x3/Z, x4/seq(Z),
 x5/Z,[~p1(x1)p3(x1,x3,x4)p4(x1,x3,x5,x2)sum(x4,x5)]])] 

x1/seq(Z),[p1(x1)↔empty_seq(x1)] 

 x1/seq(Z),x2/Z,[p2(x1,x2) ↔neutral_add_subtr_int(x2)] 

 x1/seq(Z),x2/Z,x3/seq(Z),[p3(x1,x2,x3)↔p5(x1,x2,x3)p6(x1,x2,x3)] 

 x1/seq(Z),x2/Z,x3/seq(Z),[p5(x1,x2,x3)↔head(x1,x2)] 

 x1/seq(Z),x2/Z,x3/seq(Z),[p6(x1,x2,x3)↔tail(x1,x3)] 

 x1/seq(Z),x2/Z,x3/Z,x4/Z,[p4(x1,x2,x3,x4)↔plus_int(x3,x2,x4)] 

 theorem_struct(1, progr1, spec_struct1, 
  [all v(1):seq(int), all v(2):int, (sum(v(1):seq(int), v(2):int) <->  
   ((eq(v(1):seq(int),nil_seq:seq(tv(1))) /\eq(v(2):int,0:int)) \/ [ex v(3):int, 
 ex v(4):int, ex v(5):seq(int), (eq(v(1):seq(int), seq_cons(v(4):int, 
    v(5):seq(int)):seq(int) ) /\ eq(v(2):int,plus(v(4):int, v(3):int)) /\ 
                sum_s(v(5):seq(int), v(3):int) )]) )]).  

x1/seq(Z),  x2/Z (sums(x1,x2) ↔ [x1=<>x2=0 [x4/Z, x5/Z,  

x6/seq(Z),[x1=x5::x6 x2=x5+x4 sums(x6,x4)]]]) 
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[~p1(v(1):seq(int)) /\ p3(v(1):seq(int), v(3):int,v(4):seq(int)) /\ p4(v(1):seq(int),v(3):int, 
v(5):int, v(2):int) /\ sum(v(4):seq(int),v(5):int)]])]]). 

 progr_clause(progr1, 2, [all v(6):seq(int),[p1(v(6):seq(int)) <-> empty_seq(v(6):seq(int))]]). 

 progr_clause(progr1, 3, [all v(7):seq(int), all v(8):int,[p2(v(7):seq(int), v(8):int) <-> 
neutral_add_subtr_int(v(8):int)]]). 

 progr_clause(progr1, 4, [all v(9):seq(int), all v(10):int, all v(11):seq(int), [p3(v(9):seq(int), 
v(10):int, v(11):seq(int))<-> p5(v(9):seq(int), v(10):int, v(11):seq(int)) /\ p6(v(9):seq(int), 
v(10):int, v(11):seq(int))]]). 

 progr_clause(progr1, 5, [all v(12):seq(int), all v(13):int, all v(14):seq(int),[p5(v(12):seq(int), 
v(13):int, v(14):seq(int)) <-> head(v(12):seq(int), v(13):int)]]). 

 progr_clause(progr1, 6, [all v(15):seq(int), all v(17):int, all v(16):seq(int),[p6(v(15):seq(int), 
v(17):int, v(16):seq(int))<-> tail(v(15):seq(int), v(16):seq(int))]]). 

 progr_clause(progr1, 7, [all v(18):seq(int), all v(19):int, all v(20):int, all 
v(21):int,[p4(v(18):seq(int), v(19):int, v(20):int, v(21):int) <-> plus_int(v(20):int, v(19):int, 
v(21):int)]]). 

The logic specification (Spec) is shown in Section 3.6 and its representation in ground form. 

The theory A of the DT operations including the specification of the DT operations is as 
follows. 

Axioms 

Domain closure axiom for sequences 

 x1/seq(a2),[x1= < >  ( x3/a2,x4/seq(a2),[x1=x3::x4])] 

Its ground representation is shown in section 3.4. 

Uniqueness axioms for sequences  

i x1/a2,x3/seq(a2),[~[x1::x3/a2= < > ]] 

ii x1/a2,x3/a2,x4/seq(a2),x5/seq(a2),[x1::x4=x3::x5 x1=x3 x4=x5] 

Representation: 

 axiom_def(2, sequences, "uniqueness i", [all v(1):tv(1), all v(2):seq(tv(1)), [~[eq(seq_cons 
(v(1):tv(1), v(2):seq(tv(1))):tv(1),nil_seq:seq(tv(1)))]]]). 

 axiom_def(3, sequences, "uniqueness ii", [all v(1):tv(1), all v(2):tv(1),  
all v(3):seq(tv(1)), all v(4):seq(tv(1)),[eq(seq_cons(v(1):tv(1), v(3):seq(tv(1))):seq(tv(1)), 
seq_cons(v(2):tv(1), v(4):seq(tv(1))):seq(tv(1))) -> (eq(v(1):tv(1), v(2):tv(1)) /\ 
eq(v(3):seq(tv(1)), v(4):seq(tv(1))))]]). 

Definition of summation operation over 0 entities 

x1/seq(Z),[x1= < > Σ((i=1 to #x1 ) x1i )=0] 

Representation: 

 axiom_def(4, sequences, "summation over 0 entities", [all v(1):seq(int), [eq(v(1):seq(int),nil_seq) 
-> eq(sum(1:int,len(v(1):seq(int)):int, v(1,v(3):nat):int), 0:int)]]). 

Lemmas 
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x1/seq(a2),[x1 ≠ < > ↔ [x3/a2,x4/seq(a2),[x1=x3::x4/a2]]] 

x1/a2,x3/seq(a2),x4/seq(a2),[x3=x1::x4(x5/N,[2≤x5≤#x3x3(x5)=x4(x5-1)])] 

x1/seq(a2),x3/seq(a2),x4/a2,[x1=x4::x3#x1=#x3+1] 

x1/a2,x3/seq(a2),x4/seq(a2),[x3=x1::x4/a2x1=x31/a2] 

Representation: 

 lemma_sp(1, sequences, "Non-empty sequences have at least one element",[all v(1):seq(tv(1)), 
[~eq(v(1):seq(tv(1)),nil_seq:seq(tv(1))) <-> [ex v(2):tv(1), ex v(3):seq(tv(1)), [eq(v(1):seq(tv(1)), 
seq_cons(v(2):tv(1), v(3):seq(tv(1))):tv(1))]]]]). 

 lemma_sp(2,sequences,"if sequence s has tail t then the element si is identical to the element ti-
1",[all v(1):tv(1), all v(2):seq(tv(1)), all v(3):seq(tv(1)),[eq(v(2):seq(tv(1)), seq_cons(v(1):tv(1), 
v(3):seq(tv(1))):seq(tv(1))) -> (all v(4):nat, [le(2:nat, v(4):nat) /\ le(v(4):nat, len(v(2):seq 
(tv(1))):nat) -> eq(v(2, v(4):nat):tv(1), v(3, minus(v(4): nat,1:nat) ))])]]).  

 lemma_sp(3, sequences, "If sequence s has tail t then the length of s is equal to the  
length of t plus 1", [all v(1):seq(tv(1)), all v(2):seq(tv(1)), all v(3):tv(1), [eq(v(1):seq(tv(1)), 
seq_cons(v(3):tv(1), v(2):seq(tv(1))):seq(tv(1))) -> eq(len(v(1):seq(tv(1))): nat,plus(len(v(2): 
seq(tv(1))):nat,1:nat))]]). 

 lemma_sp(4, sequences, "If sequence s is non-empty then its head h is identical to its first 
element", [all v(1):tv(1), all v(2):seq(tv(1)), all v(3):seq(tv(1)),[eq(v(2):seq(tv(1)), 
seq_cons(v(1):tv(1), v(3):seq(tv(1))):tv(1)) -> eq(v(1):tv(1), v(2, 1:int):tv(1))]]). 

Logic specifications of DT operations 

 x1/seq(a2),[empty_seq(x1)↔ x1= < > ] 

 x1/Z,[neutral_add_subtr_int(x1) ↔x1=0] 

 x1/seq(a2),x3/a2,[head(x1,x3) ↔ [x1≠ < >  [ x4/seq(a2),[x1=x3::x4/a2]]]] 

 x1/seq(a2),x3/seq(a2),[tail(x1,x3)↔ [x4/a2,[x1≠< > x1=x4::x3/a2]]] 

 x1/Z,x2/Z,x3/Z,[plus_int(x1,x2,x3)x3=x2+x1] 

Representation: 

 dtOp_sp(empty_seq, 1, "seq: empty", [all v(1):seq(tv(1)), [empty_seq(v(1):seq(tv(1))) <-> 
eq(v(1):seq(tv(1)),nil_seq:seq(tv(1)))]]). 

 dtOp_sp(head, 2, "seq: head", [all v(1):seq(tv(1)), all v(2):tv(1),[head(v(1):seq(tv(1)), v(2):tv(1)) 
<-> [~eq(v(1):seq(tv(1)),nil_seq:seq(tv(1))) /\ [ex v(3):seq(tv(1)), [eq(v(1):seq 
(tv(1)),seq_cons(v(2):tv(1), v(3):seq(tv(1))):tv(1))]]]]]). 

 dtOp_sp(tail, 3, "seq: tail", [all v(1):seq(tv(1)), all v(2):seq(tv(1)), [tail(v(1):seq(tv(1)), 
v(2):seq(tv(1))) <-> [ex v(3):tv(1),[~eq(v(1):seq(tv(1)), nil_seq:seq (tv(1))) /\ eq(v(1), 
seq_cons(v(3):tv(1),v(2):seq(tv(1))):tv(1))]]]]). 

 dtOp_sp(neutral_add_subtr_int, 8, "int: neutral_add_subtr_int", [all v(1):int, 
[neutral_add_subtr_int(v(1):int) <-> eq(v(1):int,0:int)]]). 

 dtOp_sp(plus_int, 9,"int: plus_int", [all v(1):int, all v(2):int, all v(3):int, 
[plus_int(v(1):int,v(2):int,v(3):int) <-> eq(v(3):int,plus(v(2):int,v(1):int))]]). 

4. Schematic view of the Interaction of the main components 

In this section, a schematic view of the proof checker and the interaction of its main 
components will be shown. In addition, the functions of its components will be discussed. 
An example of a proof step will illustrate the use of the KB representation in the proof task. 
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Fig. 3. Schematic View of the Theorem Proof Checker.  

4.1 Schematic view of the theorem proof checker 

The process of proving a theorem is shown in Fig. 3 and consists of three steps. 

 Step 1: In order to prove the correctness of a theorem the user initially has to specify the 
theorem that is going to be proved and to select the theory and the proof scheme that 
will be used for the proof. The theory is retrieved from the KB and it is presented to the 
user for selection. It consists of a program complement, a logic specification, axioms and 
lemmas. The corresponding window of the interface which allows the user to make these 
selections is shown in Fig. 6.  

 Step 2: After the selection the user proceeds to the actual proof of the specific theorem. 
In order to do that he has to select specific parts from the theorem, the theory and the 
transformation rules that will be applied. The transformation rules that can be applied 
are first order logic (FOL) laws, folding and unfolding.  

 Step 3: In this step the selected transformation is applied and the equivalent form of the 
theorem is presented to the user. The user can validate the result. He is allowed to 
approve or cancel the specific proof step. 

The last two steps are performed iteratively until the theorem is proved. 
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4.2 Schematic view of specification transformer 

Fig. 4 depicts the procedure for transforming a specification in the required structured form, 

which is similar to the previous case. In this case however, the underlying theory consists of 

Spec U Axioms U Lemmas. Initially, the user selects a specification, then the rest elements of 

the theory are automatically selected by the system. Next, in step 2, the user has to select 

specific theory elements and transformation rules. In step 3, the selected transformation rule 

is performed. Step 2 and step 3 are performed iteratively until the specification is 

transformed in the required structured form. 
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Fig. 4. Schematic View of Specification Transformer.  

4.3 Illustration of a proof step 

The “Transformation Step” procedure is actually a sub-procedure of the “Perform Proof Step” 
procedure and that is why we will not present it. The schematic view of the main algorithm 
for the procedure which performs a proof step, i.e. “performProofStep”, is shown in Fig. 5. It is 
assumed that the user has selected some theory elements, and a transformation rule that 
should be applied to the current proof step.  
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Fig. 5. Schematic view of the “performProofStep” procedure. 

The function block diagram of the algorithm “performProofStep” shown in Fig. 5 will be 

discussed through an example. Consider that our theorem has been transformed and its 

current form is the following:  


The user has selected the following FOL law to be applied to the above theorem: 

P false ↔false 

Initially, the current theorem is converted to the corresponding ground representation by 

the procedure “ConvertGr” and we get: 

 

Then, the procedure “applyProofStep” applies the transformation rule to the current theorem 

and derives the new theorem. In order to do that, this procedure constructs and asserts a set 

of clauses which implement the selected transformation rule. Then, it applies this set of 

clauses and derives the new theorem in ground representation. That is, 

[all v(1):seq(int),[all v(2):int,sum_s(v(1):seq(int),v(2):int)<-> 
(eq(v(1):seq(int),nil_seq:seq(int))/\eq(v(2):int,0:int) \/ 
[ex v(3):int,[ex v(4):int,[ex v(5):seq(int), 
                          false /\ sum_s(v(5):seq(int),v(3):int)]]])]] 

The new theorem is then converted to the corresponding non-ground form in order to be 

presented to the user. That is, 

 

[x1/seq(Z),[x2/Z,sums(x1,x2) ↔ (x1=<> x2=0  [x3/Z,[x4/seq(Z),

             falsesums(x4,x3)]])]] 

[all v(1):seq(int),[all v(2):int,sum_s(v(1):seq(int),v(2):int)<-> 
    (eq(v(1):seq(int),nil_seq:seq(int))/\eq(v(2):int,0:int) \/ 
              [ex v(3):int,[ex v(4):int,[ex v(5):seq(int), 
                 false/\eq(v(2):int,plus(v(4):int,v(3):int):int)/\sum_s(v(5):seq(int),v(3):int)]]])]] 

x1/seq(Z),x2/Z (sums(x1,x2) ↔ 

 (x1= <> x2=0  [x3/Z,[x4/seq(Z),false x2=x4+x3 sums(x4,x3)]])) 
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5. System interface 

To enable users to guide this proof checker it is necessary to provide a well-designed user 
interface. The design of the interface of an interactive verifier depends on the intended user. 
In our verifier we distinguish two kinds of users, the “basic users” and the “advanced or 
experienced users”. We call “basic user” a user who is interested in proving a theorem. We call 
an “advanced user” a user who in addition to proving a theorem he/she may want to 
enhance the KB of the system in order to be able to deal with additional theorems. Such a 
user is expected to be able to update the KB of axioms, lemmas, predicate specifications, 
specifications of DT operations and programs. We will use the word “user” to mean both the 
“basic user” and the “advanced user”. Both kinds of users are expected to know very well the 
correctness method which is supported by our system (Marakakis, 2005).  

Initially, the system displays the main, top-level window as shown in Fig. 1. This window 
has a button for each of its main functions. The name of each button defines its function as 
well, that is, “Transform Logic Specification into Structured Form”, “Prove Program Correctness” 
and “Update Knowledge Base”. The selection of each button opens a new window which has a 
detailed description of the required functions for the corresponding operation. Now we will 
illustrate the “Prove Program Correctness” function to better understand the whole interaction 
with the user. 

5.1 Interface illustration of the “Prove Program Correctness” task 

If the user selects the button “Prove Program Correctness” from the main window, the 
window shown in Fig. 6 will be displayed. The aim of this window is to allow the user to 
select the appropriate theory and proof scheme that he will use in his proof. In addition, the 
user can either select a theorem or define a new one. 

After the appropriate selections, the user can proceed to the actual proof of the theorem by 
selecting the button “Prove Correctness Theorem”. The window that appears next is shown in 
Fig. 7. The aim of this window is to assist the user in the proof task. The theorem to be 
proved and its logic specification are displayed in the corresponding position on the top-left 
side of the window. This window has many functions. The user is able to choose theory 
elements from the KB that will be used for the current proof step. After selection by the user 
of the appropriate components for the current proof step the proper inference rule is 
selected and it is applied automatically. The result of the proof step is shown to the user. 
Moreover, the user is able to cancel the last proof step, or to create a report with all the 
details of the proof steps that have been applied so far. 

5.1.1 Illustration of a proof step 

Let’s assume that the user has selected a theorem to be proved, its corresponding theory and 
a proof scheme. Therefore, he has proceeded to the verification task. For example, he likes to 
prove the following theorem: 

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1,x2)) 

The user has selected the “Incremental” proof scheme which requires proof by induction on 
an inductive DT. Let assume that the correctness theorem has been transformed to the 
following form:  
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x1/seq(Z),x2/Z, sum(x1,x2) ↔ [x3/Z,x4/Z,x5/seq(Z), 

 x1<>  x1=x4::x5  x1 <>  x1=x4::x5  x2=x4+x3 

 sum(x5,x3)] 

 

Fig. 6. The window for selecting Theory, Theorem and Proof Scheme 

 

Fig. 7. The window for proving a correctness theorem 
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In order to proceed to the next proof step the following steps should be performed: 

 First, the user selects “Logic Spec. of DT_Op” and then he selects the “Head” DT 
operation: 

x1/seq(a2),x3/a2,[head(x1,x3) ↔ [x1 < >  [x4/seq(a2),[x1=x3::x4/a2]]]] 

 Then he selects the button “Apply Proof Step” and the result is shown in the next line of 
the “Induction Step” area: 

x1/seq(Z),x2/Z, sum(x1,x2) ↔ [x3/Z,x4/Z,x5/seq(Z), 

 x1<> x1=x4::x5  head(x1, x4) x2=x4+x3 sum(x5,x3)] 

The user continues applying proof steps until to complete the proof of the theorem. 

6. Results 

The results of this research work involve the development of a proof checker that can be 
used efficiently by its users for the proof of correctness theorems for logic programs 
constructed by our schema-based method (Marakakis, 1997). The system has been tested 
and allows the verification of non-trivial logic programs. Our proof checker is highly 
modular, and allows the user to focus on proof decisions rather than on the details of how to 
apply each proof step, since this is done automatically by the system. The update of the KB 
is supported by the proof-checker as well. The overall interface of our system is user–
friendly and facilitates the proof task.  

The main features of our system which make it to be an effective and useful tool for the 
interactive verification of logic programs constructed by the method (Marakakis, 1997) are 
the following. 

 The proof of the correctness theorem is guided by the logic-program construction 
method (Marakakis, 1997). That is, the user has to select a proof scheme based on the 
applied program schema for the construction of the top-level predicate of the logic 
program whose correctness will be shown. 

 Proof steps can be cancelled at any stage of the proof. Therefore, a proof can move to 
any previous state.  

 The system supports the proof of a new theorem as part of the proof of the initial 
theorem. 

 The update of the theories stored in the KB of the system is supported as well.  

 The overall verification task including the update of the KB is performed through a 
user-friendly interface. 

 At any stage during the verification task the user can get a detailed report of all proof 
steps performed up to that point. So, he can get an overall view of the proof performed 
so far.  

7. Conclusions 

This chapter has presented our proof checker. It has been focused on the knowledge 

representation layer and on its use by the main reasoning algorithms. Special importance on 
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the implementation of the proof checker has been given on flexibility so the system being 

developed could be enhanced with additional proof tasks. Finally, the main implementation 

criteria for the knowledge representation are the support for an efficient and modular 

implementation of the verifier.  

In our proof checker, a proof is guided by the selected proof scheme. The selection of a proof 

scheme is related with the construction of the top-level predicate of the program that will be 

verified. The user-friendly interface of our system facilitates the proof task in all stages and 

the update of the KB. Its modular implementation makes our proof checker extensible and 

amenable to improvements.  

The natural progression of our proof checker is the addition of automation. That is, we 

intend to move proof decisions from the user to the system. The verifier should have the 

capacity to suggest proof steps to the user. Once they are accepted by the user they will be 

performed automatically. Future improvements aim to minimize the interaction with the 

user and to maximize the automation of the verification task. 
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