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1. Introduction  

Bridges are important infrastructures all over the world. We have invested and spent a lot of 
money in constructing them. Also we assign big budgets for their maintenance, repair and 
strengthening annually. Since the number of bridges is increasing the amount of money 
needed to preserve the existing bridges at minimum standard level is considerable. In order 
to make decision for optimal budgeting we should know how bridges respond to various 
kinds of deteriorating factors and what their current and future conditions will be. 

Why bridges need maintenance, repair and strengthening depend on many factors. 
Deterioration of bridges is due to aging, material deterioration under environmental 
conditions, increasing traffic volume and higher weights of vehicles. There are many factors 
which are responsible to make decision what the current condition and/or rating of a bridge 
is. Practically to make logical and defendable decisions the main action is to inspect bridges. 
Inspection provides a lot of collected data that should be stored and retrieved at any 
required time to obtain useful and practical information regarding the bridge condition and 
its immediate need. At this stage and by appropriate information in hand it can be possible 
to predict the remaining service lives of bridges. 

Bridges are susceptible to many defects during their service lives. The main common defects 
that occur on cast-in-place concrete slab (deck) bridges include: cracking, scaling, 
delamination, spalling, efflorescence, honeycombs, pop-outs, wear, collision damage, 
abrasion, overload damage, reinforcing steel corrosion (Chen & Duan, 2000; Hartle et al., 
2002). These defects are symptoms showing some kinds of deteriorations. Inspectors should 
report these symptoms and consequently type of deterioration(s) should be diagnosed. 

Inspecting a concrete bridge deck includes visual and advanced inspection methods. The 
inspection of concrete bridge deck for symptoms like cracks, spallings, and other defects is 
primarily a visual activity. However, hammers and chain drags can be used to detect areas 
of delamination. In addition, several advanced techniques are available for concrete bridge 
deck inspection. Nondestructive methods include: acoustic wave sonic/ultrasonic velocity 
measurements, electrical methods, electromagnetic methods, rebound and penetration 
methods, carbonation and so many others if needed (Hartle et al., 2002). 

Visual inspection is the primary method used to evaluate the condition of the majority of the 
existing bridges. Visual inspection is a subjective assessment and it may have a significant 
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impact on the diagnosis and decisions to be made. For example a defect reported from one 
inspector may be different from the others. In order to overcome this unwilling fact 
nondestructive testing methods have been suggested for objective inspection in recent 
decades. Although these methods are more accurate than visual inspection, there are some 
kinds of problems. Interpretation of their results needs experience together with the 
knowledge about deteriorations of bridge material and damage types of its elements. 
Therefore results of visual inspection and some nondestructive testing methods are 
inherently uncertain and vague. It is to notify that the linguistically describing results are 
more uncertain and vague. Degree of uncertainty and level of vagueness depend on many 
parameters such as inspector’s experience, definition of symptom or deterioration type, level 
of defect categorizations and many others. 

Among many methods it seems that models based on artificial intelligence which apply soft 
computing methods are more attractive for dealing with uncertain and vague data in 
managing bridges. Fuzzy Inference System (FIS) is capable of being used in areas for 
decision making when data is uncertain. One of the most attractive advantages of FIS is its 
tolerability to noisy (uncertain and vague) data. 

Based on the type of problems with uncertain and vague data, different FIS modeling types 
can be regarded as appropriate and easy methods for managing bridges (Tarighat & 
Miyamoto, 2009). 

After introduction section this chapter continues with section 2 and its subsections showing 
the need for managing bridges and introduces Bridge Management System and Bridge Health 
Monitoring system. Ambiguity in diagnosis and decision making based on the collected data 
in above mentioned systems are discussed in section 3. Section 4 explains why fuzzy inference 
systems are suitable in managing systems. Its subsections are about fuzzy inference systems 
including Mamdani’s method and Adaptive Neuro Fuzzy Inference System (ANFIS) method. 
Then some case studies and some typical applications of fuzzy inference system for managing 
bridges are included in section 5. Section 6 concludes this chapter.  

2. Managing bridges 

All the inspection data should be stored in inventory and inspection databases and they 
should be used to get information for what to do in the next step of managing bridges. 
Therefore a kind of managing system is required to use the data and making appropriate 
and logical decisions for further actions. 

2.1 Bridge Management System 

Bridge Management System (BMS) has great roles in managing bridges. The main feed into 
any BMS is inspection data. It is designed to provide information not easily available from 
available data. BMS can provide the following: 

 Improvements in the type and quality of data that is collected, stored, managed, and 
used in a bridge system analysis 

 A logical method for setting priorities for current needs 

 Realistic and reliable forecasts of future needs 

 Ways to implement changes in management philosophies and goals 
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It is obvious that how and to what extents the above mentioned items can be fulfilled by the 
available data. 

In general, the condition of a BMS element is identified by condition states and 
corresponding condition state language. Each element has a range of minimum to maximum 
condition states. Information from each BMS element along with expert input to predict 
how the condition of that element will change over time is used in BMS computer programs. 
BMS programs can estimate future network funding levels based on the predicted future 
bridge conditions and the corresponding costs to repair or replace them (Washington State 
Bridge Inspection Manual, 2010). 

The following outline provides a short BMS summary for a typical inspection: 

 Identify the BMS elements that apply to the structure. 

 Determine the total quantity for each element. 

 Inspect bridge and record the deficient quantity for each element in the corresponding 
condition state.  

2.2 Bridge Health Monitoring System 

Generally in advanced BMS there is a module named Bridge Health Monitoring System 

(BHMS). BHMS can be considered as one of the most important parts of a practical BMS. 

In bridge structures there are many different unforeseen conditions that we do not have 
enough information about them. Although in design codes we are forced to consider some 
parameters or factors affecting structural behavior there are even more items that we 
cannot consider them practically. Therefore it is probable to have some risk for not 
fulfilling the complete standards of safety. Presently health and performance are 
described based on subjective indices which are not precise. In addition there are some 
possibilities for unobserved and undiscovered symptoms, deteriorations, and damages in 
bridge structures due to limited or no accessibility to some elements. The immediate 
consequence is that the real health index is not that thought and considered. This 
unwilling fact impacts the effectiveness and reliability of any managerial decision 
irrespective of sophistication in the management process. Moreover, even experienced 
engineers may find visual signs of defects, deterioration and damage and cannot be able 
to diagnose the causative mechanisms, or their impact on the reliability of the bridge and 
its global health. The global health of a bridge as a whole system, inclusive of the 
performance criteria corresponding to each limit states is actually what is needed for 
effective managerial decisions. There are needs of periodic inspections to detect 
deterioration resulting from normal operation and environmental attack or inspections 
following extreme events, such as earthquakes or hurricanes. To quantify these system 
performance measures requires some means to monitor and evaluate the integrity of 
bridge structures while in service (Wang & Zong, 2002). BHMS can help managers to 
know about the healthiness of a bridge at any given time. 

BHMS may also have other applications. For example any damage in some elements of a 

bridge has direct effect on its load bearing capacity especially vibration characteristics. In 

other words this effect can change the overall behavior of the bridge under loads which 

cause the bridge to vibrate. Based on this fact any method for damage detection which is 
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capable of showing the location and severity of damage can be considered useful for bridge 

maintenance and repair departments (Haritos, 2000). 

Bridge real time monitoring during service provides information on structural behavior 
under predicted loads, and also registers the effects of unpredicted overloading. Data 
obtained by monitoring is useful for damage detection, safety evaluation, and determination 
of the residual load bearing capacity of bridges. Early damage detection is particularly 
important because it leads to appropriate and timely interventions. If the damage is not 
detected, it continues to propagate and the bridge no longer guarantees required 
performance levels. Late detection of damage results in either very elevated refurbishment 
costs or, in some cases, the bridge has to be closed and dismantled. In seismic areas the 
importance of monitoring is more critical. Subsequent auscultation of a bridge structure that 
has not been monitored during its construction can serve as a basis for prediction of its 
present and future structural behavior. Based on these facts there are many applications for 
developing BHMS. As mentioned one of the most important applications of BHMS is 
damage detection. Among the attractive methods for damage detection problems are 
models based on artificial intelligence especially soft computing methods (Ou et al., 2006; 
Wu & Abe, 2003). 

As it is used several times in above paragraphs, health can be defined as the reliability of a 
bridge structure to perform adequately for the required functionalities (Aktan et al., 2002). 
Some of these functionalities are:  

 Utility 

 Serviceability and durability 

 Safety and stability of failure at ultimate limit states 

 Safety at conditional limit states 

It is not possible to quantify health and reliability of a bridge system for many of the limit 
states without extensive data that we often do not have. Based on a general definition 
monitoring is the frequent or continuous observation or measurement of structural 
conditions or actions (Wenzel & Tanaka, 2006). There is another definition which gives more 
detail: structural health monitoring is the use of in-situ, non-destructive sensing and 
analysis of structural characteristics, including the structural response, for detecting changes 
that may indicate damage or degradation [Housner & Bergman, 1997). Fig. 1 shows basic 
components of a typical BMS and BHMS. 

In summary BMS and BHMS are used to: 

 Structural management 

 Increase of safety 

 Knowledge improvement 

 Rating the current condition of bridge or its components 

 Predicting the remaining service life 

 Structural/system identification 

 Damage detection/diagnosis and damage localization 

 Forced vibration-based damage detection 

 Wind induced vibration-based damage detection 

 Ambient vibration-based damage detection 
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 Remote sensing and wireless sensor networks  

 Life cycle performance design 

Structural System 

and Material

Data 

Acquisition

Signal 

Processing

Excitation
Sensor/Actuator, NDE

Technique
Monitoring

Modeling Identification
Damage Location 

and Severity

Modal 

Updating
Diagnosis

Estimation of 

Remaining Strength

Prediction of Service 

Life
Repair/Maintenance 

Strategies

Condition 

Assessment

Simulation or 

Computation

Reliability Analysis and 

Evaluation

Analysis of Life-Cycle 

Cost

 

Fig. 1. Basic components of a typical BMS and BHMS 

3. Ambiguity in diagnosis and decision making 

Recently it is become obvious that although BMS and BHMS can be precisely used for 
managerial issues but there is an important fact about the collected data. Data is not perfect. 
It is found that the results and data-driven interpretations are prone to some degree of 
vagueness. Therefore, the obtained data that should be altered to information has inherently 
some degrees of uncertainty and vagueness (Tarighat & Miyamoto, 2009). 

In managing a bridge we are concerned about condition state or standard level of a 
requirement. For example we want to know what the current condition state of a bridge is 
and to how it has been deviated from the previous and known condition state (Washington 
State Bridge Inspection Manual, 2010). 
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In most cases diagnosis is necessary to make decision for next action to return to a standard 
bridge condition state. Whenever we are going to diagnose, it is common to have 
circumstances in which we must make decision via ambiguous data and information. 
Practical diagnosis in managing bridges is the making of judgments about a bridge’s 
condition state or damage detection using expert knowledge, but the observation of 
symptoms includes results of visual inspection and non destructive testing methods, 
bridge’s history, and the circumstances of the diagnosis. For example, if we think about 
diagnosis during a regular inspection versus before a repairing operation, indications of 
possible deterioration or damage and need for retesting are important in the former, but in 
the latter, importance is placed on certainty rather than possibility. Normally a repairing 
operation is not performed without confirmation of the existence of deterioration or damage 
in the affected element of a bridge. 

The words we use concerning symptoms often contain expressions of frequency and 
probability, such as sever cracks or high corrosion.  In contrast to this kind of linguistic 
ambiguity, ambiguous circumstances exist in the distinguishing of the symptom, such as 
different inspectors’ reporting differing symptoms. 

When thinking about the ambiguity that originates in the characteristics discussed above, 
we must also consider the ambiguity that arises from the participation of experts in the 
bridge evaluation. In general, there is a large dependence on visual inspection results, which 
are subjective judgments. Since visual inspection is cheaper, faster and sometimes simpler 
than other inspecting methods it is more probable to have more ambiguity levels in data and 
interpretations (Terano et al., 1992). 

Here are some more detailed explanations of the ambiguity in managing bridges. Condition 
rating is a judgment of a bridge component condition in comparison to its original as-built 
condition at a given time (Wang & Hu, 2006). Condition rating and damage detection are 
crucial methods and tools to conduct efficient maintenance and managing bridges. 
Condition rating indices are also useful for predicting future states which are completely 
time dependent. Based on the periodic inspections data at different time intervals 
deterioration rate of the material, elements and sometimes whole structure can be modeled. 
These models can be good tools for decision makers in future (Zadeh, 1976). 

Related to condition rating definition there is another problem: what is the exact meaning of 

condition or health for material or bridge element in the structure? From practical point of 

view deterioration or damage symptoms should be easily distinguished. But in practice 

symptoms as signs of deteriorations cannot be easily distinguished and be reported or 

categorized in well-defined manner. Here, it becomes clear what the subjective data means. In 

other words the encoding of symptoms into condition rating is imprecise and involves 

subjective judgments. 

Of greatest importance is the amount of variability found in the assignment of condition 
ratings at a given time. As an example results of the deck delamination survey conducted 
during some investigations indicate that this type of inspection does not consistently 
provide accurate results. In a case study the condition rating results analysis and the data 
revealed that the condition ratings were normally distributed. Table 1 shows the summary 
of statistical information from routine inspection for deck condition rating (Phares et al., 
2000, 2001; Graybeal et al., 2001; Moore et al., 2001). 
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Bridge Element Average 
Standard 
Deviation 

Minimum Maximum Mode N 
Reference 

Rating 

A Deck 5.8 0.81 3 7 6 49 5 
B Deck 4.9 0.94 2 7 5 48 4 
C Deck 5.2 0.92 3 7 6 49 4 
D Deck 4.8 0.94 2 6 5 48 5 
E Deck 4.5 0.74 3 6 5 48 4 
F Deck 7.1 0.53 6 8 7 49 7 
G Deck 5.8 0.92 4 7 5 24 7 

Table 1. Statistical information from routine inspection for deck condition rating (Phares et 
al., 2001). 

The range of the results between min and max show the stochastic nature of the inspector’s 
judgment. These stochastic representations show the fuzzy nature of the inspectors’ 
judgments. 

While current rating systems of concrete structures may give a fundamental understanding 
of structural deterioration  conditions, their  application is more or less  limited in  reflecting 
actual conditions. In some cases it is often difficult to cover complex structural behavior and 
environment in the real world. Uncertainties and fuzziness, along with complexity, add 
more difficulty to the estimation of condition rating by conventional methods. Therefore a 
better method may be a combination of logics and statistics. To take advantage of this 
approach in dealing with qualitative issues such as human factors, the influence of 
inspectors’ judgment on structural condition rating and the effects of weather conditions on 
inspectors’ judgment should be considered (Harris, 2006; Ma, 2006; Stephens, 2000; Wang et 
al., 2007; Yen & Langari, 1999). 

Since the bridge inspection results are subjected to some degrees of imprecision and 
vagueness it is a good idea to use fuzzy set theory to overcome the shortcomings and 
problems of ordinary methods for prediction of condition of bridges. Fuzzy information or 
fuzzy data can be encountered in managing bridges. The main reasons for fuzzy data are 
imprecision in measured data and subjective judgments. 

Knowledge engineering methods for dealing with uncertainty in many aspects of condition 
prediction are used to produce expert systems. Expert systems are expected to be effective 
for ill-defined problems (problems in which it is either difficult or impossible to define a 
method of approach). 

In most cases, either the clear knowledge of ill-defined problems cannot be obtained, or 
completion of the knowledge set must be approached gradually. In other words, there are 
many cases in which knowledge is ambiguous. Meaning of the word ambiguous is also 
ambiguous and vague. Just as knowledge must be formulated and written down for a user 
to understand it, ambiguity must take some form before it can be dealt with technically. 
Therefore, ambiguity that is dealt with in knowledge engineering is classified and written 
down as follows: 

 Nondeterminism 

 Multiple meanings 

 Uncertainty 
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 Incompleteness 

 Fuzziness or imprecision 

Uncertainty and fuzziness have a particularly close relationship with each other and 
systems that handle knowledge with fuzziness have been created even in the field of 
knowledge engineering (Terano et al., 1992). 

One of the best ways of dealing with this kind of problems is the application of fuzzy 

inference system. Fuzzy inference system is capable of dealing with imprecise, imperfect, 

uncertain and vague data and information. Thus, it can be good candidate toward 

development of practical BMS and BHMS. 

A measure of imprecision is advantageous for symptoms representation. Uncertainty 

characterizes a relation between symptoms and deteriorations/damages, while imprecision 

is associated with the symptoms representation. 

4. Fuzzy inference systems and managing bridges 

Fuzzy logic is an interesting and easy-to-use method for practical inference problems in 

engineering. It relates significance and precision to each other very well. Fuzzy logic-based 

inference systems enable the use of engineering judgment, experience and scarce field data 

to translate the level of deterioration or damage to condition rating (Rajani et al., 2006). 

One of the best methods to deal with decision making problems such as condition rating of 

bridges is application of Fuzzy Inference System (FIS). In order to diagnose deterioration 

type or damage detection in concrete bridges and to increase accuracy and errors reduction 

caused by subjective human judgment fuzzy inferring is the appropriate choice (Wang & Hu 

2006). Fuzzy sets can be used for modeling uncertainty of detection and imprecision of 

symptoms.  

Detection support systems operate on rules with fuzzy premises, which represent imprecise 

symptoms. During inference fuzzy relations or implications are used, so conclusions are also 

represented in the form of fuzzy sets (Straszecka, 2006). 

4.1 Fuzzy inference system 

System modeling based on conventional mathematical tools (e.g., differential equations) is 

not well suited for dealing with ill-defined and uncertain systems. By contrast, a fuzzy 

inference system employing fuzzy if-then rules can model the qualitative aspects of human 

knowledge and reasoning processes without employing precise quantitative analyses. A 

Fuzzy Inference System (FIS) is a way of mapping an input space to an output space using 

fuzzy logic. A FIS tries to formalize the reasoning process of human language by means of 

fuzzy logic (that is, by building fuzzy IF-THEN rules). This fuzzy modeling or fuzzy 

identification, first explored systematically by Takagi and Sugeno, has found numerous 

practical applications in control different engineering application and fields. 

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A THEN B, 
where A and B are labels of fuzzy sets characterized by appropriate membership functions. 
Due to their concise form, fuzzy if-then rules are often employed to capture the imprecise 
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modes of reasoning that play an essential role in the human ability to make decisions in an 
environment of uncertainty and imprecision. 

Another form of fuzzy if-then rule has fuzzy sets involved only in the premise part. By 
using Takagi and Sugeno’s fuzzy if-then rule, we can use a relationship among variables or 
simply a formula. However, the consequent part is described by a nonfuzzy equation of the 
input variable. 

Both types of fuzzy if-then rules have been used extensively in both modeling and control. 
Through the use of linguistic labels and membership functions, a fuzzy if-then rule can 
easily capture the spirit of a “rule of thumb” used by humans. From another angle, due to 
the qualifiers on the premise parts, each fuzzy if-then rule can be viewed as a local 
description of the system under consideration. Fuzzy if-then rules form a core part of the 
fuzzy inference system. Fig. 2 shows the general form of a Fuzzy Inference System (FIS) 
(Jang, 1993). 

Decision-Making Unit

Fuzzification

Interface

Knowledge Base

Database Rule Base

Defuzzification

Interface

Input Output

(Crisp)

(Fuzzy) (Fuzzy)

(Crisp)

 

Fig. 2. Fuzzy Inference System (FIS) 

4.1.1 Mamdani’s method 

Mamdani's method is the most commonly used in applications, due to its simple structure 
fuzzy calculations. This method as a simple FIS method is used to solve almost general 
decision making problems for practical issues. 

Let X be the universe of discourse and its elements be denoted as x. In the fuzzy theory, 
fuzzy set A of universe X is defined by function μA(x) called the membership function of set. 

( ) : [0,1]Am x X , where  ( ) 1A x   if x is totally in A; 

               ( ) 0A x  if x is not in A; 

                                    0 ( ) 1A x  if x is partly in A. 
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This set allows a continuum of possible choices. For any element x of universe X, 
membership function μA(x) equals the degree to which x is an element of set A. This degree, 
a value between 0 and 1, represents the degree of membership, also called membership 
value, of element x in set A. Any universe of discourse consists of some sets describing some 
attributes to the output. The main idea of fuzzy set theory is dealing with linguistic variables 
(Tarighat & Miyamoto, 2009).  

A linguistic variable is a fuzzy variable. For example, the statement “a is b” implies that the 
linguistic variable a takes the linguistic value b. In fuzzy systems, linguistic variables are 
used in fuzzy rules. The range of possible values of a linguistic variable represents the 
universe of discourse of that variable. A fuzzy rule can be defined as a conditional statement 
in the form: 

IF (x is a) THEN (y is b) 

where x and y are linguistic variables; and a and b are linguistic values determined by fuzzy 
sets on the universe of discourses X and Y, respectively. The main and most important 
characteristic of fuzzy systems is that fuzzy rules relate fuzzy sets to each other. Fuzzy sets 
provide the basis for output estimation model. The model is based on relationships among 
some fuzzy input parameters (Baldwin, 1981). 

All these definitions and arrangements are used to infer output based on the inputs. The 
most commonly used fuzzy inference technique is the so-called Mamdani method. 
Mamdani method is widely accepted for capturing expert knowledge. It allows describing 
the expertise in more intuitive, more human-like manner. However, Mamdani-type fuzzy 
inference entails a substantial computational burden. 

The Mamdani-style fuzzy inference process is performed in four steps: 

Step 1. Fuzzification of the input variables 

The first step is to take the crisp inputs, x1 and y1, and determine the degree to which these 
inputs belong to each of the appropriate fuzzy sets. 

Step 2. Rule evaluation 

The second step is to take the fuzzified inputs and apply them to the antecedents of the 

fuzzy rules. If a given fuzzy rule has multiple antecedents, the fuzzy operator (AND or OR) 

is used to obtain a single number that represents the result of the antecedent evaluation. 

This number (the truth value) is then applied to the consequent membership function. Now 

the result of the antecedent evaluation can be applied to the membership function of the 

consequent. The most common method of correlating the rule consequent with the truth 

value of the rule antecedent is to cut the consequent membership function at the level of the 

antecedent truth. 

Step 3. Aggregation of the rule outputs 

Aggregation is the process of unification of the outputs of all rules. We take the membership 

functions of all rule consequents previously found and combine them into a single fuzzy set. 

The input of the aggregation process is the list of found consequent membership functions, 

and the output is one fuzzy set for each output variable. 
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Step 4. Defuzzification 

The last step in the fuzzy inference process is defuzzification. Fuzziness helps us to evaluate 
the rules, but the final output of a fuzzy system has to be a crisp number. 

The input for the defuzzification process is the aggregate output fuzzy set and the output is 
a single number (Esragh & Mamdani, 1981). 

Fig. 3 depicts the flowchart for fuzzy logic analysis based on Mamdani’s fuzzy inference 
method (Symans & Kelly, 1999). 

Define Universe of Discourse (UOD)

-X +X0

Define Membership Functions for 

Input and Output

Gaussian

Define Fuzzy Rule Base Relating 

Input and Output

If … Then …

If … Then …

If … Then …

1

Perform Fuzzification Process 
(i.e. map non-fuzzy number onto UOD)

1

Perform Fuzzy Implication
(i.e., map input to output)

1

Input Membership 

Function

Output Membership 

Function

Perform Fuzzy Aggregation 
(i.e., combine output membership functions

Onto a single UOD)

1

Perform Defuzzification
(i.e., transform fuzzy output

to non-fuzzy discrete number)

1

 

Fig. 3. Flowchart for fuzzy logic analysis based on Mamdani’s fuzzy inference method 
(Symans & Kelly, 1999) 

4.1.2 Adaptive Neuro Fuzzy Inference System (ANFIS) method 

Adaptive Neuro Fuzzy Inference System (ANFIS) is a multilayer feed-forward network 
which uses neural network learning algorithms and fuzzy reasoning to map inputs into an 
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output. It is a fuzzy inference system implemented in the framework of adaptive neural 
networks. 

In order to explain ANFIS a fuzzy inference system with two inputs x and y and one output 
z is considered (Jang et al., 1997). In a first-order Sugeno fuzzy model with two fuzzy if-then 
rules we have: 

Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1 

Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2 

Fig. 4 shows the reasoning procedure for the considered Sugeno model. Fig. 5 depicts the 
ANFIS architecture. As it is shown nodes of the same layer have similar functions. The 
output of the ith node in layer l is as Ol,i.  

 

Fig. 4. A two-input first-order Sugeno fuzzy model with two rules 

 

 

Fig. 5. Equivalent ANFIS architecture 
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Following few paragraphs contain brief description of the different layers: 

Layer 1: Every node i in this layer is an adaptive node with a node function: 

 Ol,i=μAi(x),         for i=1, 2, or           
  (1) 

 Ol,i=μBi-2(y),       for i=3, 4 

where x (or y) is the input to node i and Ai (or Bi-2) is an attribute associated with this node. In 
other words, Ol,i is the membership grade of a fuzzy set A (= A1, A2, B1 or B2) and it specifies 
the degree to which the given input x (or y) satisfies the quantifier A. Here the membership 
function for A can be any appropriate parameterized membership function such as the 
generalized bell function:  

  




A 2

1
( )

1
ib

i

i

x
x c

a

   (2) 

where {ai, bi, ci} is the premise parameters set. Changing the values of these parameters 
leads to change of the bell-shaped function. Therefore various forms of membership 
functions for fuzzy set A are possible. 

Layer 2: Every node in this layer is a fixed node labeled Prod, whose output is the product 
of all the incoming signals:  

 O2,i =wi = μAi (x) μBi (y), i = 1, 2                      (3) 

Each node output represents the firing strength of a rule. In general, any other T-norm 
operators that perform fuzzy AND can be used as the node function in this layer. 

Layer 3: Every node in this layer is a fixed node labeled Norm. The ith node calculates the 
ratio of the ith rule's firing strength to the sum of all rules' firing strengths:  

   
3,

1 2

1,2i
ii

w
O w i

w w
                   (4) 

Outputs of this layer are called normalized firing strengths. 

Layer 4: Every node i in this layer is an adaptive node with a node function  

    4, ( )i ii i i i iO w f w p x q y r                       (5) 

where iw  is a normalized firing strength from layer 3 and {pi, qi, ri} is the parameter set of 

this node. Parameters in this layer are referred to as consequent parameters. 

Layer 5: The only node of this layer is a fixed node labeled Sum, which computes the overall 
output as the summation of all incoming signals:  

   
 5,1

i i
i

i i
i

i
i

w f
overall output O w f

w
                       (6) 
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It can be observed that the ANFIS architecture has two adaptive layers: Layers 1 and 4. 
Layer 1 has modifiable parameters {ai,bi, ci} and {aj,bj, cj} related to the input MFs. Layer 4 
has modifiable parameters {pij,qij, rij} pertaining to the first-order polynomial. The task of 
the learning algorithm for this ANFIS architecture is to tune all the modifiable parameters to 
make the ANFIS output match the training data. Learning or adjusting these modifiable 
parameters is a two-step process, which is known as the hybrid learning algorithm. In the 
forward pass of the hybrid learning algorithm, the premise parameters are hold fixed, node 
outputs go forward until layer 4 and the consequent parameters are identified by the least 
squares method. In the backward pass, the consequent parameters are held fixed, the error 
signals propagate backward and the premise parameters are updated by the gradient 
descent method. The detailed algorithm and mathematical background of the hybrid 
learning algorithm can be found in (Jang et al., 1997; Wang & Elhag, 2008). 

The basic learning rule of ANFIS is the back propagation gradient descent, which calculates 
error signals (defined as the derivative of the squared error with respect to each node’s 
output) recursively from the output layer backward to the input nodes. This learning rule is 
exactly the same as the back-propagation learning rule used in the common feed-forward 
neural networks. From the ANFIS architecture in Fig. 5, it is observed that given the values 
of premise parameters, the overall output f can be expressed as a linear combination of the 
consequent parameters. On the basis of this observation, a hybrid-learning rule is employed 
here, which combines the gradient descent and the least-squares method to find a feasible 
set of antecedent and consequent parameters. The details of the hybrid rule are given in 
(Jang et al., 1997), where it is also claimed to be significantly faster than the classical back-
propagation method. 

 

Fig. 6. Hybrid learning procedure of ANFIS 
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There are two passes in the hybrid-learning procedure for ANFIS. In the forward pass of the 
hybrid-learning algorithm, functional signals go forward till layer 4 and the consequent 
parameters are identified by the least-squares estimate. In the backward pass, the error rates 
propagate backward and the premise parameters are updated by the gradient descent. 
When the values of the premise parameters are fixed, the overall output can be expressed as 
a linear combination of the consequent parameters 

 

 
 

     

     
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which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2 (Jang et al., 1997; 
Kandel & Langholz, 1993; Li et al., 2001; Sivanandam et al., 2007). A flowchart of hybrid 
learning procedure for ANFIS is shown schematically in Fig. 6 (Aydin et al., 2006). 

5. Case studies and some typical applications of fuzzy inference system for 
managing bridges 

As it is mentioned in earlier parts of this chapter and is shown in Fig. 1 the main concerns of 
bridge management systems are diagnosis of the encountered problems (deteriorations 
and/or damage detection) and finding the current condition of the bridge structure. It was 
also discussed that diagnosis and current condition determination accompany with 
ambiguity. In this section some case studies and applications are presented to show how 
fuzzy inference system can be used in bridge management issues. 

5.1 A fuzzy system for concrete bridge damage diagnosis (DIASYN system) 

Bridge management systems (BMSs) are being developed in recent years to assist various 
authorities on the decision making in various stages of bridge maintenance, which requires, 
first of all, appropriate preliminary deterioration diagnosis and modeling.  

Diagnosis Synthesis (DIASYN) is a fuzzy rule-based inference system for bridge damage 
diagnosis and prediction which aims to provide bridge designers with valuable information 
about the impacts of design factors on bridge deterioration.  

DIASYN is supposed to be a concept demonstration system for providing the bridge 

maintenance engineers and the bridge design engineers with assistance to obtain 

preliminary but important knowledge on individual bridge defects. 

The DIASYN system incorporates a fuzzy reasoning process containing a rule base with its 

acquisition and update facility and a fuzzy inference engine with an explanation facility, 

and a user interface with option selecting capacity. Fuzzy logic is utilized to handle 

uncertainties and imprecision involved. The rules are if-then statements that describe 

associations between fuzzy parameters. Given the required input data, the inference engine 

evaluates the rules and generates an appropriate conclusion. Users can choose to make 

diagnoses of new cases or to update the rule base with new training data through the user 

interface. 
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The fuzzy rules provide associations between observed bridge conditions and damage 
causes. They are created by a rule generation algorithm that can convert crisp training data 
into fuzzy statements. The training data are collected from bridge inspection records and 
formalized into standard vectors. In the operational mode, the system reads a state vector of 
observed bridge condition and the inference engine performs damage cause implication 
through evaluation of the rules. The output of this implication procedure is a linguistic 
variable that describes the possible damage cause with a confident degree. This linguistic 
variable can be defuzzified by the explanation facility if a crisp output is desired. In the 
updating mode, new training vectors are input to generate new rules together with the 
existing training data. New rules, if any, will be installed in the rule base before the system 
gives a prompting of updating finished as output. 

Inputs of DIASYN are: 

 Design factors, i.e. structural type, span length, deck width, number of spans, wearing 
surface type, skew angle, etc., 

 Environmental factors, i.e. humidity and precipitation, climate region, traffic volume, 
temperature variations, etc., 

 Other factors, such as structure age, function class and location of damages. 

The inference engine in DIASYN basically executes Mamdani’s original reasoning 
procedure. The overall firing strength of the individual rule whose antecedents are 
connected with an AND operator, the intersection, is typically determined by taking the 
minimum value of the individual firing strengths of the antecedents.  

After system training it is ready to be used to diagnose new bridge deterioration case. Two 

test examples are use for system verification, one for crack diagnosis and one for spalling 

diagnosis. The input data of the bridge including survey and inspection information which 

shows that a crack occurs in superstructure with a specific condition mark, and a spalling in 

support-structure with another given condition mark. The inference results, along with 

expert opinions indicate that the particular crack was caused by ‘loads and its likes’ with a 

confidence degree of ‘very true’, and that the spalling was caused by ‘others’ with a 

confidence degree of very true. Both of the results are in accordance with the expert opinion, 

which suggests ‘overloaded’ and ‘aging’ are the causes of the crack and spalling, 

respectively (Zhao & Chen, 2001, 2002). 

5.2 An adaptive neuro-fuzzy inference system for bridge risk assessment 

Bridge risks are often evaluated periodically so that the bridges with high risks can be 
maintained timely. Modeling bridge risks is a challenging job facing Highways Agencies 
because good mathematical models can save them a significant amount of cost and time. 

In this case study an adaptive neuro-fuzzy system (ANFIS) using 506 bridge maintenance 

projects for bridge risk assessment is introduced. The system can help British Highways 

Agency to determine the maintenance priority ranking of bridge structures more 

systematically, more efficiently and more economically in comparison with the existing 

bridge risk assessment methodologies which require a large number of subjective judgments 

from bridge experts to build the complicated nonlinear relationships between bridge risk 

score and risk ratings. 
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The 506 bridge maintenance projects dataset is randomly split into two sample sets: training 
dataset with 390 projects and testing dataset with 116 projects. Both the training and testing 
datasets cover all levels and types of bridge risks. 

Inputs to the ANFIS are safety risk rating (SRR), functionality risk rating (FRR), 
sustainability risk rating (SURR), and environment risk rating (ERR). All inputs range from 
0 to 3 with 0 representing no risk, 1 low risk, 2 medium risk and 3 high risk. Output to the 
ANFIS is the risk scores (RSs) of the 506 bridge projects, which ranges from 5 to 99. 

With the 390 training dataset, two generalized bell-shaped membership functions are chosen 

for each of the four inputs to build the ANFIS, which leads to 16 if–then rules containing 104 

parameters to be learned. Fig. 7 shows the model structure of the ANFIS that is to be built 

for bridge risk assessment in this study. 

Inputs
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operations

Output
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Risk 
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Fig. 7. Model structure of the ANFIS for bridge risk assessment 

The developed ANFIS system for bridge risk assessment learns the if–then rules between 
bridge risk scores and risk ratings from the past bridge maintenance projects and memorizes 
them for generalization and prediction. It has been observed that ANFIS outperforms 
artificial neural networks to perform better than multiple regression models (Wang & Elhag, 
2007). Differing from artificial neural network, ANFIS is transparent rather than a black box. 
Its if–then rules are easy to understand and interpret. In this case study the performances of 
the ANFIS and ANN in modeling bridge risks are compared, where the two models are 
trained using the same training dataset and validated by the same testing dataset. 
Comparison shows that the ANFIS has smaller root mean squared error and mean absolute 
percentage error as well as bigger correlation coefficient for both the training and testing 
datasets than the ANN model. In other words, the ANFIS achieves better performances than 
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the ANN model. Therefore, ANFIS is a good choice for modeling bridge risks. Moreover, 
ANN is a black box in nature and its relationships between inputs and outputs are not easy 
to be interpreted, while ANFIS is transparent and its if–then rules are very easy to 
understand and interpret. But the drawback of ANFIS is its limitation to the number of 
outputs. It can only model a single output. In summary, ANFIS is a good choice and 
powerful tool for modeling bridge risks (Wang & Elhag, 2008). 

5.3 Fuzzy concrete bridge deck condition rating method for practical bridge 
management system 

Bridge management system (BMS) is a tool for structured decision making and 
planning/scheduling for bridge infrastructure inspection, maintenance and repair or 
retrofit. Any BMS is basically constructed based on data stored in inventory and inspection 
databases. One of the important and crucial efforts in managing bridges is to have some 
criteria to show the current condition of the elements of bridges based on the results from 
inspection data. As the results are not precise and are related to the depth and extent of the 
inspectors’ expertise, there are some uncertainties in any evaluation. On the other side 
condition of bridges are rated linguistically in many cases with some kinds of vagueness in 
description of the bridge element conditions. Based on these facts in this case study a new 
fuzzy method is introduced to deal with these shortcomings from the uncertain and vague 
data. The fuzzy bridge deck condition rating method is practically based on both subjective 
and objective results of existing inspection methods and tools. The parameters of the model 
are selected as fuzzy inputs with membership functions found from some statistical data 
and then the fuzziness of the condition rating is calculated by the fuzzy arithmetic rules 
inherent in the fuzzy expert system. Since one of the most proven and experienced 
advantages of fuzzy inference systems is the tolerability for noisy (uncertain and vague) 
data it is believed that this proposed system can be an alternative method for current rating 
indices amongst many others which are almost used deterministically. 

In this case study Fuzzy Inference System is used to translate the concrete bridge deck 
inspection results to condition rating (Tarighat & Miyamoto, 2009). 

In literature the proposed rating methods are resulted from either visual inspection or 
nondestructive tests. Here, in order to enhance the capabilities of both methods (visual 
inspection and nondestructive tests) a hybrid inspection results is used to calculate the 
condition rating of the concrete bridge deck. Fig. 8 shows the type of inspection results.  

The linguistic attributes of observed symptoms are defined as following fuzzy sets. 

A1 = {No; Yes} 
A2 = {NoCracks; HairlineCracks; WideCracks} 
A3 = {No; Maybe; Yes} 
A4 = {Firm; Moderately; Hollow; Very Hollow} 
A5 = {Low; Moderate; High} 

Considering Gaussian membership functions for inputs and applying Mamdani’s method as 
fuzzy inference system Fig. 9 shows the proposed system for predicting of bridge deck 
condition rating. For design of fuzzy inference system 162 rules are defined based on the 
experts’ experience and available facts from previous inspection results. Finally Fig. 10 can 
be used to convert the crisp condition rating result to linguistic term. 
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Fig. 8. Type of inspection results 

 

 

Fig. 9. Proposed fuzzy system for bridge deck condition rating. 
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Fig. 10. Concrete bridge deck condition rating in linguistic terms. 

To verify the proposed method an inspected concrete bridge deck is used. The layout of 

inspection is shown in Fig. 11. The proposed method is applied to the red slab and green 

haunch girder of the deck shown in Fig. 11. 

 

Fig. 11. Concrete bridge deck inspection layout. 

Fuzzy condition rating method facilitates data collection in inspection process. No area 

calculation is required and it needs only the good judgment of the inspector to find out the 

condition rating. The inspection data is shown in Table 2. Since the symptoms and 

deterioration/damages of girders and slabs of a deck are totally similar the proposed model 

can be used for them during bridge inspection process. 

 

Deck 
element 

Spalling 
condition 

Crack 
width 

condition 

Delamination 
condition 

Hammer 
tapping 

condition 

Corrosion 
probability 
condition 

Fuzzy 
condition 

rating 

Slab 
(Red Area) 

20 50 90 50 10 75.2 

Girder 
(Green Area) 80 70 40 70 90 78.9 

Table 2. Inspection data for typical slab and haunch girder of the reinforced concrete bridge 
deck. 

To compare these results with a well-defined and in-use condition rating method the 

following seven-state rating scale, which reflects the different damage states associated with 

chloride-induced corrosion is used (Federal Highway Administration (FHWA), 1995; 

Morcous, Lounis, & Mirza, 2003). Table 3 provides a summary description of the adopted 

condition rating system as the benchmark. 
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Description Condition rating (CR) 

Excellent condition: no contamination; no corrosion; no 

repaired area 
1 

Very good condition: minor cracks, no spalls or 

delaminations; chloride contaminated or repaired areas 62% 

(of total deck area) 

2 

Satisfactory condition: spalls or delaminations 62%; cracked, 

corroded, contaminated, or repaired area 610% 
3 

Fair condition: spalls or delaminations 65%; cracked, 

corroded, contaminated, or repaired area 620% 
4 

Poor condition: spalls or delaminations 610%; cracked, 

corroded, contaminated, or repaired area 625% 
5 

Critical condition: spalls or delaminations 615%; cracked, 

corroded, contaminated, or repaired area P25% 
6 

Failed condition (total loss of serviceability or functionality): 

extensive spalling, delamination, repaired areas P30%; 

maintenance required 

7 

Table 3. Condition rating system for concrete bridge decks (Federal Highway 
Administration (FHWA), 1995; Morcous et al., 2003). 

Based on Table 3 the condition rating for typical slab and haunch girder under consideration 

are 6 and 5. Scaling is required to be able to compare the results, therefore the above 

mentioned numbers should be multiplied by 14.28 to get a 100-based score system. Table 4 

provides the comparison. It is shown that results from proposed method can estimate the 

condition rating very well.  

 

Deck 

Component 

Proposed fuzzy condition 

rating system 

Scaled (to 100) Condition 

Rating based on the selected 

references 

Absolute value 

Difference of 

the proposed 

method to the 

selected 

references 

Numerical 

value 

Linguistically 

index 

Numerical 

value 

Linguistically 

index 

Slab CR 75.2 Bad 85.7 
Critical 

condition 
10.5 

Girder CR 78.9 Bad 71.4 Poor condition 7.5 

Table 4. Comparison of the condition ratings from two methods. 

5.4 A two stage method for structural damage identification using an adaptive neuro-
fuzzy inference system and practice swarm optimization 

All the above three case studies are of diagnosis and assessment types. As declared earlier 

another important task of any BMS or BHMS is the possibility to locate damaged area or 

components. The present case study is about damage detection (Fallahian & Seyedpoor, 2010). 

In this case study, an efficient methodology is proposed to accurately detect the sites and 
extents of multiple structural damages. The proposed methodology has two main phases 
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combining the adaptive neuro-fuzzy inference system (ANFIS) and a particle swarm 
optimization (PSO) as an optimization solver. In the first phase, the ANFIS is employed to 
quickly determine the structural elements having the higher probability of damage from the 
original elements. In the second phase, the reduced damage problem is solved via the 
particle swarm optimization (PSO) algorithm to truthfully determine the extents of actual 
damaged elements. 

Structural damage detection techniques can be generally classified into two main categories. 
They include the dynamic and static identification methods requiring the dynamic and static 
test data, respectively. Furthermore, the dynamic identification methods have shown their 
advantages in comparison with the static ones. Among the dynamic data, the natural 
frequencies of a structure can be found as a valuable data. Determining the level of 
correlation between the measured and predicted natural frequencies can provide a simple 
tool for identifying the locations and extents of structural damages. Two parameter vectors 
are used for evaluating correlation coefficients. A vector consists of the ratios of the first nf  

vector natural frequency changes ΔF due to structural damage, i.e. 
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h

F F
F

F
                          (8) 

where Fh and Fd denote the natural frequency vectors of the healthy and damaged structure, 
respectively. Similarly, the corresponding parameter vector predicted from an analytical 
model can be defined as: 
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where F(X ) is a natural frequency vector that can be predicted from an analytic model and 
XT = {x1, ..., xi, ..., xn} represents a damage variable vector containing the damage extents    
(xi, i=1, …, n) of all n structural elements. 

Given a pair of parameter vectors, one can estimate the level of correlation in several ways. 
An efficient way is to evaluate a correlation-based index called the multiple damage location 
assurance criterion (MDLAC) expressed in the following form: 
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The MDLAC compares two frequency change vectors, one obtained from the tested 

structure and the other from an analytical model of the structure. The MDLAC varies from a 

minimum value 0 to a maximum value 1. It will be maximal when the vector of analytical 

frequencies is identical to the frequency vector of damaged structure, i.e., F(X ) = Fd . 

The key point of this case study is that ANFIS concept can be effectively utilized to 
determine the most potentially damaged element (MPDE) of an unhealthy structure. For 
this, some sample structures having the damaged elements are randomly generated based 
on the damage vector X as the input and the corresponding MDLAC(X) as the output. In 
other words some scenarios are defined for damaged structures. Then, an exhaustive search 
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is performed using the ANFIS within the available input-output data to arrange the 
structural elements according to their damage potentiality. Essentially, the exhaustive 
search technique builds an ANFIS network for each damage variable from original ones and 
trains the network for a little epoch and reports the performance achieved. The step by step 
summary of the exhaustive search algorithm for determining the MPDE of an unhealthy 
structure is as follows: 

a. Establish the pre-assigned parameters of the intact structure. 
b. Randomly generate a number of sample structures having some damaged elements 

within the allowed space of damage variables X. 
c. Determine the natural frequencies of the sample structures using a conventional finite 

element analysis. 
d. Estimate the level of correlation between unhealthy structure and each sample structure 

by evaluating the MDLAC(X) index via equation (10).  
e. Randomly split the sample structures into two sets with some samples for training and 

remaining samples for testing the ANFIS, respectively. 
f. Build an ANFIS model for each damage variable as the input and the MDLAC(X) as the 

output. This leads to n ANFIS models equal to the total number of structural elements. 
g. Calculate the root mean square error (RMSE) for training and testing sets as: 

 


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where ac and pr represent the actual and predicted values of the MDLAC(X), also nt is the 
number of training or testing samples. 

a. Sort the structural elements according to increasing their training RMSE values and 
select the first m arranged elements, having the least RMSE errors, as the reduced 
damage vector, denoted here by XrT = {xr1, xr2, …, xrm}. 

b. End of the algorithm. 

Now it is time to identify damage using optimization algorithms. As mentioned above, the 

MDLAC index will reach to a maximum value 1 when the structural damage occurs. This 

concept can be utilized to estimate the damage vector using an optimization algorithm. For 

this aim, the unconstrained optimization problem with discrete damage variables reduced 

may be stated as: 
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where Rd is a given set of discrete values and the damage extents xri (i= 1, ...,m) can take 

values only from this set. Also, w is an objective function that should be minimized. 

The selection of an efficient algorithm for solving the damage optimization problem is a 

critical issue. Needing fewer structural analyses for achieving the global optimum without 

trapping into local optima must be the main characteristic of the algorithm. In this study, a 
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particle swarm optimization (PSO) algorithm working with discrete design variables is 

proposed to properly solve the damage problem.  

In order to show the capabilities of the proposed methodology for identifying the multiple 
structural damages, two illustrative test examples are considered. The first example is a 
cantilever beam discussed in detail and the second one is a bending plate discussed in brief. 
The numerical results for these examples demonstrate that the combination of the ANFIS 
and PSO can produce an efficient tool for correctly detecting the locations and sizes of 
damages induced (Fallahian & Seyedpoor, 2010). 

6. Conclusion 

Fuzzy logic inference methods can be used for managing bridges. Models based on FIS 
consider simultaneously several facts or knowledge combinations as rules and indicate the 
final answer or guess which is very close to practical existing situation as the hypothesis of 
the greatest belief. The reasoning process is very clear and easy to understand by users who 
are not experts in the performance of decision support systems. For bridge inspection no 
deteriorated area calculation is needed and the only requirement is the good inspector’s 
judgment. It should be noted that fuzzy systems can tolerate some noise to predict the 
outputs. This means that during bridge deck inspection if in some cases judgment is not 
correct, but close to real condition, the proposed method can estimate the condition very 
well without a major difference from practical point of view. It is clear that in deterministic 
methods incorrect judgment or decision changes the category of the predefined condition 
and overall condition rating drastically. Another point that should be notified is that FIS can 
be applied in areas with high nonlinearity. When nonlinearity is high the prediction 
accuracy is expected to be improved by using ANFIS comparing to Mamdani’s method. 
Accuracy of the method can be improved when an adaptive optimization method is used for 
constructing similar model based on the training data from inspections. FIS modeling is 
suitable for prioritization of repairing bridges and budgeting tasks in which relatively 
simple and practical reasoning is required for decision makers. Even in cases that human 
expertise is not available, we can still set up intuitively reasonable initial membership 
functions and start the learning process to generate a set of fuzzy if-then rules to 
approximate a desired data set. The efficiency of rule-based reasoning can be improved by 
comparing different inference methods. Generally the inferred results are in agreement with 
the expert’s opinion, and can provide substantial assistance to authorities in their planning. 
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