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Design of a Fuzzy Temperature Controller 

R.M. Aguilar, V. Muñoz and Y. Callero 
University of La Laguna 

Spain 

1. Introduction  

The reason for using fuzzy logic in control applications stems from the idea of modeling 
uncertainties in the knowledge of a system’s behavior through fuzzy sets and rules that are 
vaguely or ambiguously specified. By defining a system’s variables as linguistic variables 
such that the values they can take are also linguistic terms (modeled as fuzzy sets), and by 
establishing the rules based on said variables, a general method can be devised to control 
these systems: Fuzzy Control (Babuška, 1998; Chen, 2009). Fuzzy control is a class of control 
methodology that utilizes fuzzy set theory (Pedrycz, 1993). The advantages of fuzzy control 
are twofold. First, fuzzy control offers a novel mechanism for implementing control laws 
that are often based on knowledge or on linguistic descriptions. Second, fuzzy control 
provides an alternative methodology for facilitating the design of non-linear controllers for 
plants that rely on generally uncertain control that is very difficult to relate to the 
conventional theory of non-linear control (Li & Tong, 2003; A. Sala et al., 2005). 

Every day we mindlessly perform complex tasks: parking, driving, recognizing faces, packing 
the groceries at the supermarket, moving delicate objects, etc. To solve these tasks (overcome 
an obstacle), we gather all the information necessary for the situation (topology of the terrain, 
characteristics of the obstacle such as speed, size, …). With this information and by relying on 
our experience, we can carry out a series of control actions that, thanks to the feedback present 
between the system under control and our bodies, can achieve the desired goal. 

The controller receives the performance indices (reference) and the system output. To 
replace the human in a control process, a controller must be added. The controller is a 
mathematical element, and as such all of the tasks that it is able to perform must be perfectly 
defined. This control link is studied in Control Theory and is based on two principles: 

1. The system to be controlled must be known so that its response to a given input can be 
predicted. This prediction task requires having a complete model of the system. This 
identification phase is essential to the performance of the control algorithm. 

2. The objective of the control must be specified in terms of concise mathematical formulas 
directly related to the system’s variables (performance index). 

When a system’s complexity increases, mathematics cannot be used to define the 
aforementioned points. The model cannot be defined due to non-linearities, to its non-
stationary nature, to the lack of information regarding the model, and so on. 
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We are, however, living in rapidly evolving times where the main goal is to break the 
limitations that exist in our use of machines in an effort to increase productivity. The use of 
and advances in intelligent machines will fundamentally change the way we work and live. 

To this end, we are building autonomous control systems that are designed to work properly 

for long periods of time under given uncertainties in the system and the environment. These 

systems must be capable of compensating for faults in the system without any outside 

intervention. Intelligent autonomous control systems use techniques from the field of Artificial 

Intelligence (AI) to achieve autonomy. These control systems consist of conventional control 

systems that have been augmented using intelligent components, meaning their development 

requires interdisciplinary research (Jang et al., 1997). 

The emergence and development of Artificial Intelligence is of great importance. AI can be 

defined as that part of computer science that is charged with the design of intelligent 

computers, meaning systems that exhibit those characteristics that we associate with 

intelligent human behavior, such as understanding, learning, reasoning, problem solving, 

etc. Fuzzy Control is one of the new techniques in Intelligent Control, one that aims to 

imitate the procedure we humans use when dealing with systems (Cai, 1997). For example, 

when operating a water tap, if we want to obtain the desired flow rate, we reason using 

terms such as: 

 “If the flow is low, turn the handle all the way left” 

“If the flow is high, turn the handle right a little bit”, etc. 

Precise quantities such as “2 liters/second” of “65 degrees counterclockwise” do not appear 

in these rules, and yet we manage to achieve the desired flow rate. 

We also apply this form of reasoning to more complex situations, from regulating not only 
the flow rate but the water temperature, and even when driving a car. In none of these cases 
do we know precise values; rather, vague magnitudes suffice, such as “very hot”, “near”, 
“fast”, etc. 

Another important consideration is that the control can be expressed as a set of rules of the 
type: “For certain conditions with some variables, do these actions in others”. In this 
structure, the conditions are called antecedents and the actions consequents. 

We may conclude that human reasoning in these situations involves applying logic to 

uncertain magnitudes. If we want to implement this control artificially, the most convenient 

course of action is to use a tool that models uncertain magnitudes, this being Fuzzy Set 

Theory, and apply a logic to these magnitudes, this being Fuzzy Logic (Klir & Yuan, 1995). 

Both elements belong to a new field in the symbolic branch of Artificial Intelligence that has 

found in Fuzzy Control one of its main applications, even above other, more formal 

applications such as expert systems. The fact that it mirrors the process of human reasoning 

justifies the success of this new method, due to its ease of use and understanding. In a few 

years AI has blossomed and experienced great commercial success, eclipsing even that of 

expert systems. 

In this chapter we will consider the fuzzy control of a liquid’s temperature. This is a very 

simple academic problem that can be solved using various techniques, such as a classic PI 
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control scheme (Horváth & Rudas, 2004). We will use it in this text, however, to illustrate the 

design and operation of a fuzzy controller. 

An introduction to fuzzy control is presented first, followed by a description of the general 
outline. In subsequent sections we describe each of the steps in the design of the fuzzy 
controller: choice of inputs and outputs, rule base, fuzzy quantification, and fuzzification, 
inference and defuzzification mechanisms. We conclude with a simulation of the proposed 
temperature controller. 

2. Fuzzy logic applied to control: Fuzzy control of temperature 

The use of the Fuzzy Logic methodology in real systems is immediately applicable to those 
systems whose behavior is known based on imprecisely defined rules. This imprecision 
arises from the complexity of the system itself. The way to approach such a problem is to 
reduce the complexity by increasing the uncertainty of the variables (J. Sala et al., 2000; 
Yager & Filev, 1994). Thus, in problems that present non-linearities, and to which classical 
control techniques are hardest to apply, these techniques are very useful and easy to use 
(Takana & Sugeno, 1992; Tanaka & Wang, 2001; Wang, 1994). 

In the vast majority of systems, be they highly complex or not, the systems’ behavior can be 
given by a set of rules that are often imprecise, or that rely on linguistic terms laden with 
uncertainty. This results in rules of the type “If the volume is large, the pressure is small”, 
which define the behavior of a system. If we focus on the rules that are defined to control the 
system, we can formulate different rules of the type “If the cost is small and the quality is 
good, make a large investment”. 

This last rule type is the most frequently seen in daily life. For example, to regulate water 
flow from a faucet, we need only apply rules of the type “If the flow is excessive, close the 
tap a lot”, or “If the flow is low, open the tap a little” in order to carry out the desired action. 
Using precise magnitudes such as “flow rate of 1.2 gallons/minute” or “turn 45º clockwise” 
is unnecessary. 

Therefore, a general knowledge base for the system is available; that is, a set of rules that 

aim to model the actions to be carried out on the system so as to achieve the desired action. 

Said rules are provided by an expert, one whose experience with handling the system 

provides him with knowledge of how the system behaves. 

The Mandani fuzzy inference mechanism is very useful when applying Fuzzy Logic to the 

control of systems (Passino, 1998). If we consider a classic feedback scheme, the controller 

has enough information about the system to determine the command that must be applied 

to said system so as to achieve a desired setpoint. The idea, put forth by Zadeh, for using 

Fuzzy Control algorithms relies on introducing the knowledge base into the controller such 

that its output is determined by the control rules proposed by the expert. Said rules contain 

fuzzy sets (linguistic terms) in the antecedents and in the consequents, and hence they are 

referred to as a whole as a fuzzy control rule base. 

If we wish to apply this control scheme to a real system, the fuzzy controller must be 

adjusted to existing sensor and actuator technology, which relies on precise magnitudes 

(Jantzen, 2007). The exact values provided by a sensor must therefore be converted into the 
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fuzzy values that comprise the variables of the antecedent in the rule base. Likewise, the 

fuzzy values inferred from the rules must be transformed into exact values for use in the 

actuators. A diagram of this process is shown in Figure 1. 

 

Fig. 1. Fuzzy controller 

A block diagram for a fuzzy control system is given in Figure 1. The fuzzy controller 
consists of the following four components: 

1. Rule base: set of fuzzy rules of the type “if-then” which use fuzzy logic to quantify the 
expert’s linguistic descriptions regarding how to control the plant. 

2. Inference mechanism: emulates the expert’s decision-making process by interpreting 
and applying existing knowledge to determine the best control to apply in a given 
situation. 

3. Fuzzification interface: converts the controller inputs into fuzzy information that the 
inference process can easily use to activate and trigger the corresponding rules. 

4. Defuzzification interface: converts the inference mechanism’s conclusions into exact 
inputs for the system to be controlled. 

We shall now present a simple temperature control example, shown in Figure 2, to 
introduce each of the fuzzy controller components.  

 

Fig. 2. Temperature controller. 
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Consider the system shown in Figure 2, where To is the temperature of the liquid that we 
wish to control and Ta is the ambient temperature. The input produced by the heating 
element is denoted with the letter q, and the desired temperature is Td. The model for the 
system, keeping in mind that there are two energy sources (one generated by the heating 
element and one from the environment), is given by the transfer matrix that results when 
each of the inputs is considered separately. The expression shown in Equation 1 yields G1(s) 
and G2(s), given in Equations 2 and 3, respectively. 
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where: 

1. M: Mass of liquid 
2. Ce: Specific heat 

3. : heat transfer coefficient between the tank and the environment 
4. A: heat transfer area 
5. To: temperature of liquid 
6. Ta: ambient temperature 
7. Q: heat input 

This is a simple academic problem and many techniques are available for solving it, such as 
a classic PI controller. We will use it in this text, however, to illustrate the design and 
operation of a fuzzy controller. 

3. General outline of the fuzzy controller 

We may conclude then that the procedure for implementing these fuzzy techniques to 
control systems consists of two very different stages: 

1. First stage, to be completed before the control algorithm is executed, and consisting of: 
a. Establishing the controller’s input and output variables (linguistic variables). 
b. Defining each variable’s fuzzy sets. 
c. Defining the sets’ membership functions. 
d. Establishing the rule base. 
e. Defining the fuzzification, inference and defuzzification mechanisms. 
2. Second stage, to be completed with each step of the control algorithm, and consisting of: 
a. Obtaining the precise input values. 
b. Fuzzification: Assigning the precise values to the fuzzy input sets and calculating the 

degree of membership for each of those sets. 
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c. Inference: Applying the rule base and calculating the output fuzzy sets inferred from 
the input sets. 

d. Defuzzification: Calculating the precise output values from the inferred fuzzy sets. 
These precise values will be the controller’s outputs (commands) and be applied to the 
system to be controlled. 

This scheme is applied to classical feedback control techniques, as shown in Figure 3. The 
classical controller is replaced by a fuzzy controller, which performs the same function. The 
variables in lower case indicate precise values (‘r’ for the setpoint, ‘e’ for the error, ‘u’ for the 
command and ‘y’ for the output), while upper case letters indicate the corresponding fuzzy 
variables. 

 

Fig. 3. Fuzzy controller in the feedback loop. 

4. Fuzzy controller inputs and outputs 

If we assume the presence of an expert in the feedback loop that controls the temperature 
system, as shown in Figure 4, then a fuzzy controller must be designed that automates the 
way in which the human expert carries out this control task. To do this, the expert must 
indicate (to the designer of the fuzzy controller) what information he receives as the input to 
his decision-making process. Assume that in the temperature control process, the expert 
observes the error and the variation in this error to carry out his control function; that is, he 
makes his decision based on the result obtained from Equation 4: 

  ( ) ( ) ( )e t r t y t  (4) 

Though there are many other variables that can be used as the input (e.g., the integral of the 
error), we will adopt this one since it is the one used by the expert. 

We must next identify the variables to be controlled. For the temperature control case 
proposed, we can only control the amount of energy (q) supplied by the heating element. 
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Fig. 4. Human control of a temperature system. 

Once the fuzzy controller’s inputs and outputs are selected, the next step is to determine the 
reference input desired, which in our case will be r=60 (step input of sixty). 

The fuzzy control system, then, with its inputs and outputs, would be as shown in Figure 5. 

 

Fig. 5. Fuzzy controller for a temperature system. 

5. Inclusion of control knowledge in the rule base 

Assume that the human expert provides a description in his own words of the best way to 
control the plant. We will have to use this linguistic description to design the fuzzy 
controller. 

5.1 Linguistic description 

An expert uses linguistic variables to describe the time-varying inputs and outputs of the 
fuzzy controller. Thus, for our temperature system, we might have: 

1. “error” to describe e(t) 
2. “error variation” to describe de(t)/dt 

3. “increase-energy-supplied” to describe u(t) 

We used the quotes to emphasize how certain words or phrases. Though there are many 
possible ways to describe the variables linguistically, choosing one or another has no effect 
on how the fuzzy controller works, it only simplifies the task of constructing the controller 
using fuzzy logic. 

Just as e(t) takes on a value, for example, 0.1 at t=2 (e(2)=0.1), so do linguistic variables  take 
on “linguistic values”, that is, the values of the linguistic variables change over time. For 
example, to control the temperature, we can have the “error”, “error-variation” and 
“increase-energy-supplied” take on the following values: 
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1. LN  Large Negative 
2. MN  Medium Negative 
3. SN  Small Negative 
4. ZE  Zero 
5. SP  Small Positive 
6. MP  Medium Positive 
7. LP  Large Positive 

 

Fig. 6. Temperature system in different states. 
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Let us now consider how we can describe the system’s dynamics based on the linguistic 
variables and the values they assume. In the case of the temperature controller, each of the 
following phrases represents different system states: 

1. The error is Large Negative, indicating that the temperature of the liquid is much 
higher than desired, Figure 6.a. 

2. The error is Small Negative and the error-variation is Small Positive, indicating that the 
temperature of the liquid is somewhat higher than the setpoint and dropping to the 
desired value, Figure 6.b. 

3. The error is Zero and the error-variation is Small Negative, indicating that the 
temperature of the liquid is more or less at the setpoint but rising, Figure 6.c. 

4. The error is Zero and the error-variation is Small Positive, indicating that the 
temperature of the liquid is more or less at the setpoint but falling, Figure 6.d. 

5. The error is Small Positive and the error-variation is Small Positive, indicating that the 
temperature of the liquid is below the setpoint and dropping further, Figure 6.e. 

6. The error is Large Positive and the error-variation is Large Negative, indicating that the 
temperature of the liquid is well below the setpoint but increasing, Figure 6.f. 

5.2 Rules 

Next we will use the linguistic quantifiers defined earlier to craft a rule set that captures the 
expert’s knowledge regarding how to control the system. Specifically, we have the following 
rules to control the temperature: 

1. If the error is LN, MN or SN, then increase-energy-supplied is LN. 

This rule quantifies the situation in which the liquid’s temperature is above that desired, 
meaning heat must not be supplied. 

2. If the error is LP and the error-variation is SP, then increase-energy-supplied is LP. 

This rule quantifies the situation in which the liquid’s temperature is far below the setpoint 
(undesired situation) and decreasing, requiring a substantial heat input. 

3. If the error is ZE and the error-variation is SP, then increase-energy-supplied is SP. 

This rule quantifies the situation in which the liquid’s temperature is close to the desired 
temperature but decreasing slightly, meaning that heat must be supplied to correct the error. 

Each of the three rules above is a “linguistic rule”, since it uses linguistic variables and 
values. Since these linguistic values are not precise representations of the magnitudes they 
describe, then neither are the linguistic rules. They are merely abstract ideas on how to 
achieve proper control, and may represent different things to different people. And yet, 
experts very often use linguistic rules to control systems. 

5.3 Rule base 

Using rules of the type described above, we can define every possible temperature control 
situation. Since we used a finite number of linguistic variables and values, there is a finite 
number of possible rules. For the temperature control problem, given two inputs and seven 
linguistic variables, there are 72=49 possible rules (every possible combination of the values 
of the linguistic variables). 
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A convenient way of representing the set of rules when the number of inputs to the fuzzy 
controller is low (three or fewer) is by using a table. Each square represents the linguistic 
value of the consequent of a rule, with the left column and the top row containing the 
linguistic values of the antecedent’s variables. A temperature control example is shown in 
Table 1. Note the symmetry exhibited by the table. This is not coincidental, and corresponds 
to the symmetrical behavior of the system to be controlled. 

 

error/error-variation LN MN SN ZE SP MP LP 

LP LN LN LN LP LP LP LP 

MP LN LN LN MP LP LP LP 

SP LN LN LN SP SP LP LP 

ZE LN LN LN ZE MP MP LP 

SN LN LN LN SN ZE SP MP 

MN LN LN LN MN SN ZE SP 

LN LN LN LN LN MN SN ZE 

Table 1. Rule base for controlling temperature. 

6. Fuzzy quantification of knowledge 

Until now we have only quantified the expert’s knowledge of how to control a system in an 

abstract manner. Next, we shall see how, using fuzzy logic, we can quantify the meaning of 

the linguistic descriptions so as to automate the control rules specified by the expert in a 

fuzzy controller. 

6.1 Membership functions 

Let us now quantify the meaning of the linguistic variables using the membership functions. 

Depending on the specific application and the designer (expert), we may select from various 

membership functions. 

The fuzzy partitions for both the input variables (error and error-variation) and for the 

output variable (increase-energy-supplied) will consist of seven diffuse groups uniformly 

distributed in a normalized universe of discourse with range [-1,1]. Figure 7 shows the 

partition for the input variables, and Figure 8 that corresponding to the output variable. 

The membership functions for the controller’s input variables, at the edge of the universe of 

discourse, are saturated. This means that at a given point, the expert regards all values 

above a given value as capable of being grouped under the same linguistic description of 

“large-positive” or “large-negative”. The membership function of the controller’s output 

variable, however, cannot be saturated at the edge if the controller is to function properly. 

The basic reason is that the controller cannot tell the actuator that any value above a given 

value is valid; instead, a specific value must always be specified. Moreover, from a practical 

standpoint, we could not carry out a defuzzification process that considers the area of 

conclusion of the rule if, as an output, we have membership functions with an infinite area. 
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Fig. 7. Fuzzy partition of controller input variables. 

 

 

Fig. 8. Fuzzy partition of controller output variable. 

7. Fuzzification, inference and defuzzification 

In order to complete the design of the controller, we need to define the fuzzification, 

inference and defuzzification procedures. 

In most practical applications of fuzzy control, the fuzzification process used is the 

“singleton”, where the membership function is characterized by having degree 1 for a single 

value of its universe (input value) and 0 for the rest. In other words, the impulse function 

could be used to represent a membership function of this type, Figure 9. It is especially used 

in implementations because in the absence of noise, the input variables are guaranteed to 
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equal their measured value. We also avoid the calculations that would be required if another 

membership function were used, such as Gaussian fuzzification, which requires 

constructing a Gaussian-shaped membership function to represent the exact value being 

provided by the sensor. 

 

Fig. 9. Fuzzification process for the controller’s input variable. 

In order to define the inference mechanism, we have to determine how to carry out the basic 
operations. Since we are using Mandani’s model, we have decided to implement the T-norm 
as the minimum and the S-norm as the maximum. 

The last step is to define the defuzzification process. For this temperature control case, we 
will use the center of gravity. 

8. Simulation of fuzzy temperature control 

Normally, before proceeding with the implementation of the controller, a simulation is 
performed to evaluate its performance. The results of the simulation can aid in improving 
the design of the fuzzy controller and in verifying that it will work correctly when it is 
implemented. Such a simulation is shown below, implemented using Matlab (Sivanandam 
et al., 2007), specifically Simulink to simulate the control loop and fuzzy toolbox to 
implement the fuzzy controller. 

The controller designed earlier is defined using the fuzzy toolbox in Matlab, yielding the 
fuzzy system shown in Figure 10. The fuzzy partition of the inputs and output is shown in 
Figure 11. As for the output surface, it is shown in Figure 12. 

With this tool, we can see how the inference process is carried out, Figure 13. 

The next step is to carry out a simulation with the temperature system to check the control 
system’s performance. To do this, we will use the simulation tool Simulink, which allows us 
to implement the control loop in blocks and to use the fuzzy system made with the fuzzy 
toolbox as the controller. The diagram of the control system, then, is as shown in Figure 14. 
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Fig. 10. Fuzzy controller for the temperature system. 

 

 

Fig. 11. Fuzzy partition of the fuzzy controller inputs (error and error-variation) and output 
(increase command). 
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Fig. 12. Control surface. 

 

 

Fig. 13. Inference process for LP error (0.9) and LN error-variation (-0.8). 
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Fig. 14. Fuzzy temperature control. 

A prerequisite step to studying the results of the fuzzy controller is to adjust its parameters. 
In other words, we used fuzzy partitions that were normalized between -1 and 1, and yet 
the error, the error variation and the commanded increase have to take on values within a 
different range. To do this, we use gains that scale these variables within the design range of 
the fuzzy controller, adjusting these gains to achieve the desired specifications. These gains 
are called gains of scale (gs) and their effect is as follows: 

1. If gs = 1, there is no effect on the membership functions. 
2. If gs > 1, then the membership functions are uniformly contracted by a factor of 1/gs. 
3. If gs < 1,  then the membership functions are uniformly expanded by a factor of 1/gs. 

 

Fig. 15. Output of fuzzy temperature controller. 
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For the temperature controller, we have selected a gain of scale for the controller’s error 
input of Ke=0.0238, of Kev=1 for the error variation and of Kci=5000 for the command 
increase. The values Ke and Kev are needed to keep the error and the error variation bounded 
in the same margins. The Kci value is used to match up the maximum command to the 
maximum value of resistance (2000 watts). The values used in the gains of scale have been 
selected through an adaptive method based on the results of successive simulations.  

The results yielded by this system are as shown in Figure 15. By applying the maximum 
command (2000 watts), we can reach the setpoint value in 1000 seconds. The rules that are 
applied at first (trigger force equal to 0 is shown in black, with the brightness increasing to 
white as we progress to a trigger force equal to 1)  correspond to rules 27-31, which involve 
LP. Then the 20-22 group takes over, these rules controlling MP errors and small error 
variations. Next to activate are those rules for dealing with SP errors. Lastly, rule 7, with 
trigger force 1, is activated for dealing with ZE error and ZE error variation.  

If the setpoint is changed at t=2,200 seconds, the result is as shown in Figure 16. When the 
setpoint is changed, a new command is output since the MP and SP error rules are activated. 

 

Fig. 16. Output of fuzzy temperature controller with change at  t=2200 seconds. 

9. Conclusions  

Fuzzy logic is based on the method of reasoning that is typically used by experts to handle 
all kinds of systems, from the simplest to the very complex. This method (control) can be 
formulated with rules of the type if-then applied to inexact magnitudes such as “many”, 
“fast”, “cold”, etc. Implementing this method of reasoning requires a representation of these 
vague magnitudes and an associated logic. These are the Theory of Diffuse Groups and 
Diffuse Logic, respectively. 
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In this chapter we have presented the steps required to implement fuzzy controllers. Such 
controllers, when integrated into systems that handle precise values, require a translation 
process before and after the reasoning method is applied. Hence the three-step structure of 
fuzzy controllers: fuzzification, inference and defuzzification. 

The different stages were explained using an example involving temperature control. This is 
a trivial, academic problem that can be solved using many techniques, such as with a 
classical PI controller; in this chapter, however, we used this example to illustrate the design 
of a fuzzy controller, as well as its mode of operation. 
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