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1. Introduction 

Within industry, the concept of maintenance can be handled in different ways. It can be 
done periodically at predefined times, according to the type of machine, and according to 
the manufacturers’ recommendations. In this case, it is referred to as scheduled preventive 
maintenance. Maintenance done when there is faulty equipment is commonly called 
corrective maintenance. Employing electrical machines’ operating signals may be useful for 
diagnosis purposes. 

Three-phase electrical machines such as induction motors or generators are used in a wide 
variety of applications. In order to increase the productivity and to reduce maintenance 
costs, condition monitoring and diagnosis is often desired. A wide variety of conditioning 
monitoring techniques has been introduced over the last decade. These include the electric 
current signature and stator vibrations analysis (Cusido & Romeral & Ortega & Espinoza, 
2008; Blodt & Granjon & Raison & Rostaing, 2008; Blodt & Regnier & Faucher, 2009; Riera & 
Daviu & Fulch, 2008). 

Nowadays, industry demands solutions to provide more flexible alternatives for 
maintenance, avoiding waste of time in case of major requirements to unforeseen failures, as 
well as time of scheduled maintenance. This creates the necessity to propose and implement 
predictive technologies, which ensure that machinery receive attention only when they 
present some evidence of their mechanical properties deterioration (Taylor, 2003). 
Vibrations have been one of the usual machinery’s physical state indicators. 

Some issues related to failures in machinery are as follows: 

1. Different problems can be apparent with the same frequency. For example, the 
unbalance, the one-axis flexion, the misalignment or some resonances, all can be 
apparent within the same frequency interval. Likewise, a machine may vibrate due to 
problems related with another machine to which it is coupled. 

2. Models do not precisely represent the machine’s behavior, since frequently studies 
assume that the constituent parts and load mechanics are perfectly symmetric. 
Likewise, in the electrical motor’s case, normally it is assumed that electrical sources 
are balanced. 
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3. The precise analysis of a problem at a given frequency depends on the presence of one 
or more related frequencies. In the current methods, an important difficulty is the need 
to monitor through sophisticated sensors. Additionally, failures detection depends on 
the load’s inertia. 

Different detection techniques for machines' state monitoring have been studied. Some 
techniques are based on analyzing electrical signals, some others are based on vibration 
measurements, and some combine them. In this paper, vibration measurements are used for 
monitoring purposes. 

Vibrations must be properly evaluated, especially those associated to rotating machinery. 
Capturing vibration patterns, using identification techniques and signal processing, 
distinctive signatures for failures detection can be set. This could help to anticipate the 
occurrence of equipment damage, and therefore, corrective actions can be taken to avoid the 
high cost of a partial or total machinery replacement, as well as economic expenses caused 
by their unavailability. 

2. Preliminaries 

In this research, historical developments around the vibration analysis have been reviewed, 
while the use of emerging technologies are proposed to identify failures in rotating electrical 
machines. Through a wavelet decomposition, it is possible to extract information that 
enables the detection of signal changes under significant vibrations, affecting the 
equipments’ useful life. The vibration signals have been utilized to detect failures in rotating 
electrical machines. However, the use of Fourier-based techniques is not practical, because 
such techniques need stable and long-term records. 

No given rules exist to allow characterization of the type of machine, size, or even some 
specific operating characteristics through vibration patterns. It is relevant to establish 
strategies able to identify a failure, and even to differentiate among the types of failures. 
Thus, the neural networks may be quite useful. Through learning elements, neural 
networks are able to infer the actual conditions of the system under analysis. In this 
application, the Adaptive Network Based Fuzzy Inference System (ANFIS) has been 
selected for such purposes. 

ANFIS is an Artificial Neuro-Fuzzy Inference System, which is functionally equivalent to 
fuzzy inference systems. It represents a Sugeno-Tsukamoto fuzzy model, that uses a 
hybrid learning algorithm (Omar, 2010; Jang, 1993; Jang & Sun, 1996; Bonissone & Badami 
& Chiang & Knedkar & Schutter, 1996; Jang & Gulley, 1995; Michie & Spregelhart & 
Taylor, 1994). 

2.1 Fuzzy inference systems 

It is necessary to study other alternatives because the system models based on conventional 

mathematical tools, like differential equations, is not well suited for dealing with ill-defined 

and uncertain systems (Proakis, 2001). Through the use of vibration signals, it is possible to 

implement tools able to differentiate characteristics to establish the electrical machine’s 

conditions. A fuzzy inference system employing fuzzy if-then rules can model the qualitative 

aspects of human knowledge and reasoning processes without employing precise 
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quantitative analyses. The fuzzy modeling or fuzzy identification, was first explored 

systematically by Takagi and Sugeno (Takagi & Sugeno, 1985). There are some basic aspects 

of this approach that require some comments. In particular: 

1. Vibration signals in electrical machines have information, which can be used to predict 

the machine’s state. Figure 1, shows the basic inference composition.  

2. Patterns captured under different conditions may be similar, therefore it is necessary an 

inference system that facilitates the identification process.  

 
 
 

 
 
 
 

Fig. 1. Basic inference system 

2.2 Fuzzy if-then rules 

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A THEN B, 

where A and B are labels of fuzzy sets (Zadeh, 1965) characterized by appropriate 

membership functions. Due to their concise form, fuzzy if-then rules are often employed to 

capture the imprecise modes of reasoning that play an essential role in the human ability to 

make decisions in an environment of uncertainty and imprecision. An example that 

describes a simple fact is: 

 If vibration is high, it is possible the bars’ failure  

where vibration and failure are linguistic variables (Jang, 1994); high (small) are linguistic 

values or labels that are characterized by membership functions.  

A different form of fuzzy if-then rules, proposed by (Omar, 2010; Takagi & Sugeno, 1985,  as 

cited in Jang, 1993), have fuzzy sets involved only in the premise part.  Both types of fuzzy 

if-then rules have been used extensively in both modeling and control. Through the use of 

linguistic labels and membership functions, a fuzzy if-then rule can easily capture the spirit 

of a “rule of thumb” used by humans. From another point of view, due to the qualifiers on 

the premise parts, each fuzzy if-then rule can be viewed as a local description of the system 

under consideration. Fuzzy if-then rules form a core part of the fuzzy inference system 

described in the following. 
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2.3 Fuzzy inference system structure for vibration analysis  

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy models, fuzzy 
associative memories (FAM), or fuzzy controllers when used as controllers. Basically, a 
fuzzy inference system is composed by five functional blocks (Jang, 1993), Fig. 2. 

 

 

Fig. 2. Fuzzy inference system structure 

 i. A rule base containing a number of fuzzy if-then rules. 

 ii. A database which defines the membership functions of the fuzzy sets used in the 
fuzzy rules. 

 iii. A decision-making unit which performs the inference operations on the rules. 

 iv. A fuzzification interface which transforms the crisp inputs into degrees of match 
with linguistic values. 

 v. A defuzzification interface which transforms the fuzzy results of the inference into a 
crisp output. 

Frequently, the rule base and the database (e.g. vibrations data in different conditions) are 
jointly referred to as the knowledge base.  

The steps of fuzzy logic (inference operations upon fuzzy if-then rules) performed by fuzzy 
inference systems for machine’s diagnoses are shown in Figure 3. 

Several types of fuzzy logic have been proposed in the open research. Depending on the 
types of fuzzy reasoning and fuzzy if-then rules employed, most fuzzy inference strategies 
may be classified as follows (Jang, 1993).  
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Fig. 3. Flowchart of the followed inference strategy 
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Type 1: The overall output is the weighted average of each rule’s crisp output induced by 

the rule’s firing strength and output membership functions. The output membership 

functions used in this scheme must be monotonic functions (lee, 1990). 

Type 2: The overall fuzzy output is derived by applying maximization operation to the 

qualified fuzzy outputs, each of which is equal to the minimum of firing strength and the 

output membership function of each rule. Various schemes have been proposed to choose 

the final crisp output based on the overall fuzzy output; some of them are the centroid of 

area, mean of maxima, maximum criterion, etc., (Lee, 1990). 

Type 3: In (Lee, 1990, as cited in Takagi & Sugeno, 1985) fuzzy if-then rules are used. The 

output of each rule is a linear combination of input variables plus a constant term, and the 

final output is the weighted average of each rule’s output. 

2.4 ANFIS basics 

In ANFIS, the adaptive network structure is a multilayer feed-forward network where 

each node performs a particular function (node function) on incoming signals as well as a 

set of parameters pertaining to this node. The node functions may vary from node to 

node, and the choice of each node function depends on the overall input-output function 

that the adaptive network is required to carry out. Notice that links in an adaptive 

network indicate the flow direction of signals between nodes; no weights are associated 

with the links. 

Functionally, there are almost no constraints on the node functions of an adaptive network, 

except piecewise differentiability. Structurally, the only restriction of the network 

configuration is that it should be of feed-forward type. Due to these minimal restrictions, the 

adaptive network’s applications are immediate and immense in various areas. (Jang, 1993) 

proposed a class of adaptive networks that are functionally equivalent to fuzzy inference 

systems. The proposed architecture is referred to as ANFIS, standing for adaptive-network-

based fuzzy inference system. 

An adaptive network is a structured network composed by nodes and directional links, 

which connect nodes, Fig. 4. All or some nodes are adaptive. It means that results depend on 

nodes’ parameters, and the learning rules specify how these parameters must change in 

order to minimize an error. The adaptive network is constituted by a multilayer feedback 

network, where each node performs a particular task (node function) on the incoming 

signals, as well as a set of node parameters. 

The ANFIS can be trained by a hybrid learning algorithm (Jang, 1993; Jang & Sun, 1996; Jang 

& Gulley, 1995). It uses a two-pass learning cycle. In the forward pass, the algorithm uses 

the least-squares method to identify the consequent parameters on the layer 4. In the 

backward pass, the errors are propagated backward and the premise parameters are 

updated by gradient descent. 

ANFIS is a tradeoff between neural and fuzzy systems, providing: (i) smoothness, due to the 
Fuzzy interpolation; (ii) adaptability, due to the neural net backpropagation; (iii) ANFIS 
however has a strong computational complexity restriction. 
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Fig. 4. Set of calculations in ANFIS 

where: 
 xi is the input into node i 
Ai is the linguistic label 
μAi is the Ai’s membership function. 
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{ai, bi, ci} is the set of parameters. Modifying these parameters, the shape of the bell functions 
change, so that exhibit different forms of membership functions for the linguistic label Ai. 
ϖ is the level-3 output. 
{pi, qi, ri}: is the set of parameters, which at this level may be referred to as consequent 
parameters.  

2.5 Vibration analysis by wavelets 

The raw material to make any inference about the machinery's condition is the information 
captured from vibration signals. The proposition is to utilize the vibration’s raw signals to 
infer about the engine’s state. A structured analysis may characterize the nature of the 
vibration, figure 5. 

Wavelets transformation is the disintegration of a signal which becomes represented by 
means of function approximations and differences, which are divided by levels, figure 6, 
each of which have different resolutions, being equivalent to filtering the signal through a 
filter bank. The initial filtering takes the signal and passes it through the first bank, resulting 
in two signals with different frequency bands (high and low bands). 

 

Fig. 5. Vibration patterns under failure and normal conditions. 

The time-frequency resolution of the transformed wavelet satisfies the Nyquist sampling 
theorem. That is, the maximum frequency component embedded into a signal can be 
uniquely determined if the signal is sampled at a frequency Fs, which exceeds or equals the 
double of the signal’s maximum frequency Fmax. At the limit, if Fs = 2Fmax then: 
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  Fmax = Fs/2 = 1/(2T)  (1) 

where T is the sampling interval. That is, if the frequency Fmax of the original signal is 
divided into two sub-frequency bands, where p / 2  is the highest frequency band, it leads 
to Fs= p and T = 1 / p. To clarify the concept, consider the scheme of underlying filters, 
which perform the discrete wavelet transformation. Under this concept, for each filtering 
level the incoming signal is split into low and high frequencies. Since the output from low 
frequencies is subjected to additional filters, the resolution increases as the spectrum is 
divided again into two sub-bands.  

The resolution time is reduced because of the decimation that takes place. The above-
mentioned strategy has been employed to make an inference about the engine's state, using 
vibration measurements as input 

 

 

Fig. 6. Time-Frequency resolution of a transformed wavelet 

3. Proposition 

It is important to emphasize that the main aim of this chapter is the inference system, and to 

present the structured method for signal processing. The necessary requirements to 

establish the machine’s operating conditions are presented below, and consist in a hybrid 

method decomposed in two phases. Phase I is the adequacy of the signal, while phase II is 

the inference or identification procedure, figure 7. Both phases I and II may be represented 

by two functional blocks that perform different treatments to the vibration signals. 

The process of the adequacy signal is necessary because the exclusive ANFIS application to 

minimally invasive faults does not generate a successful inference process  
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Fig. 7. Stages of the inference system 

In this application, measurements are taken by a 12-bit LIS3L02ASA vibration sensor 

(accelerometer based on MEMS - Microelectromechanical system), which provides 

measurement of displacement in three axes. Additionally, to reduce the noise/signal 

proportion, filtering is added. 

Thus, the triaxial accelerometer, is one of the most important parts of the 

instrumentation system, being located in the engine body, which measures vibrations 

based on three axes (x, y, z) using a sampling rate of 1500Hz. The ADS7841 is a converter 

equipped with serial synchronous communication interface with 200KHz conversion 

rate. After the digitalized data is sent via the RS232 card to capture, the system data 

acquisition uses a MAX3243 circuit. 

The sensor provides vibration measurements in three axes. In this research, it was noticed 

that the perpendicular axes to the axis of rotation have more useful information to identify a 

failure occurrence. Thus, in order to optimize the computational load, data from the x-axis 

were used. 

4. Case study 

The machine used in this study is a 1 HP induction motor, where the load is represented by 

an alternator coupled to the motor through a band. The alternator feeds a bank of resistors, 

Fig. 8. Vibration measurements of machines in good condition and under fault conditions 

are captured and processed in ANFIS to simulate an inference process to identify the 

occurrence of a specific failure. 
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Fig. 8. Induction motor’s arrangement 

 

Fig. 9. Vibrations under different conditions 

The proposed hybrid method aims to identify the fault states in rotating machines, 
distinguishing the smooth operation from failure conditions by measuring vibration signals. 
Vibration measurements have been monitored in three axes: x, y, and z under the following 
operating conditions: 
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1. A motor in good condition 

2. A motor with bearing fault 

3. A motor with broken bars 

In the case of bearing failure, there is a minimally invasive phenomenon in the machine’s 
vibration, contrary to a broken bars failure, which gives rise to notorious vibration, Fig 9. 
The preliminary coarse filtering process is performed by the assembled sensor. 

Likewise, at a first glance, the vibrations in the axial direction are more noticeable. Thus, 
their measurements are employed in the following analysis. 

5. Results and discussion  

As above mentioned, some minor failures such as bearing failures are not distinguishable by 
exclusive use of ANFIS, figure 10. This is why the use of wavelets provides an effective tool 
for the identification of different types of failures in electric machines. 

The results presented in the following are attained through simulations using real data, 
when the induction motor is under normal operating conditions and failure. 

Phase I: 

To exemplify the proposed strategy, the following results are obtained by using the x-axis 
measurement only. Firstly, the wavelet decomposition requires that n levels be selected, so 
that the inference process has sufficient information to identify the faulted condition. That 
is, the quantity of levels is proportional to the filtering quality. In this application, due to the 
good performance obtained when a correlation test to verify the data stability is carried out, 
n = 2 will be used.  

That is, the number of levels affects the number of sets resulting from the wavelet 
decomposition, leading to four functions: two for high frequency, and two for low frequency. 
Figure 11 shows the wavelet decomposition corresponding to the motor in good condition. 

In this study the Meyer wavelet family is used (which properties are symmetry, 
orthogonality, biortogonality) and the Shannon Entropy decomposition was used (Zadeh, 
1965; Proakis, 2001; Anderson, 1984; Oppemheim & Schafer 2009) 

Phase II: 

Once the wavelet decomposition is evaluated, data must be structured and handled by the 
software, with the proper procedure.  

Training data: the historical data set representing each particular state of the machine 
requires the corresponding wavelet decomposition. 

Checking data: data used to test and infer. From a practical standpoint, they are the vibration 
measurements under the studied condition.  

Tags: correspond to that feature that allows the user to differentiate one condition from 
another. For the studied case, numerical levels will be used for each engine’s state. 

Applying the proposed method to failures on bearings and broken bars, Figures 12-13 depict 
a typical result. It is noteworthy that the checking and training data are perfectly 
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differentiable through level changes observed in the data. Labels are selected by the user to 
have a reference, which is the state that the machine is undergoing. 

 

Fig. 10. Bearing failure ANFIS without wavelet decomposition  

 

Fig. 11. A machine in good condition: wavelet decomposition, n=2. 

Additionally, Figures 14-15 display the Root Mean Squared Error (RMSE) between the 
checking and training curves, for both failures, where the RMSE is a quadratic scoring rule, 
which measures the average magnitude of the error. Expressing the expression in words, the 
difference between the forecasted and the corresponding observed values are each squared 
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and then averaged over the sample. Finally, the square root of the average is calculated, 
since the errors are squared before they are averaged. 

 

Fig. 12. Bearing failure 

 

Fig. 13. Broken bars failure 
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Fig. 14. Error between checking and training curves for bearing failures  

It is important to clarify that, for the training-optimization process, ANFIS uses a 

combination of the method by least squares and gradient descent. 

 

Fig. 15. Error between checking and training curves for broken bars 

In Figures 16-17 the mean for both failures are exhibited, which have been calculated as an 

average data set for each level, where it is clear that inference process has been successful, 

because the labels are clearly differentiable, where positive and negative values are the 
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result of a previous selection of tags formed by numerical extremes to differentiate the states 

where the motor is. 

 

 

Fig. 16. Mean under bearing failure 

 

 

Fig. 17. Mean under broken bars failure 
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6. Conclusions 

The study of vibration in rotating electrical machines through ANFIS requires the use of 
signal conditioning tools, which are introduced through the training and test arrays. Special 
care should be taken with some overlapping modes, especially in those failures that, due to 
their nature, do not generate large perturbations in oscillations, but represent an imminent 
risk to the engine’s life. 

The failures considered in the electrical machines studied, reflected changes in the three axes 
x, y and z. However, they are most noticeable in those that are axial to the axis of rotation, 
allowing the detection of failures through the analysis on a single axis, instead opening the 
way for the use of less sophisticated sensors, reducing the implementation costs. 

In the inference process it is quite attractive to use pragmatic strategies to handle large 
amount of measured information, and able to identify the machinery’s operating condition. 

The errors between the check and learning curves for the two types of studied failures are 
satisfactory for identification purposes in both cases. Thus, ANFIS has been successfully 
applied to distinguish between such failures. 
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