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1. Introduction

Cognitive radio refers to a set of technologies aiming to increase the efficiency in the use of
the radio frequency (RF) spectrum. Wireless communication systems are offering increasing
bandwidth to their users, therefore the spectrum demand is becoming higher. However, RF
spectrum is scarce and operators gain access to it by a licensing scheme by which public
administrations assign a frequency band to each operator. Currently, this allocation is static
and inflexible in the sense that a licensed band can only be accessed by one operator and their
clients (licensed users). However, it is a known fact that while some RF bands are heavily used
at some locations and at particular times, many other bands remain largely underused FCC
(2002). This is, in fact, a classical property of tele-traffic systems, i.e. traffic intensity is highly
variable during a day. The consequence is a paradoxical situation: while the spectrum scarcity
problem hinders the development of new wireless applications, there are large portions of
unoccupied spectrum (spectrum holes or spectrum opportunities).

Cognitive radio provides the mechanisms allowing unlicensed (or secondary) users to
access licensed RF bands by exploiting spectrum opportunities. Cognitive radio is
based on software-defined radio, which refers to a wireless communication system that
can dynamically adjust transmission parameters such as operating frequency, modulation
scheme, protocol and so on. It is crucial that this opportunistic access is performed with
the least possible impact on the service provided to licensed users. Therefore, cognitive
users should implement algorithms to detect the spectrum use (spectrum sensing), identify the
spectrum holes (spectrum analysis) and decide the best action based on this analysis (decision
making). Once the decision is made, the cognitive user performs the spectrum access according
to a medium access control (MAC) protocol facilitating the communication among unlicensed
users with minimum collision with other licensed and unlicensed users.

Dynamic spectrum access (DSA) refers to the mechanism that manages the spectrum use in
response to system changes (e.g. available channels, unlicensed user requests) according
to certain objectives (e.g. maximize spectrum usage) and subject to some constraints (e.g.
minimum blocking probability for licensed users). DSA can be implemented in a centralized
or distributed fashion. In the former one, a central controller collects all the information
required about current spectrum usage and the transmission requirements of secondary users
in order to make the spectrum access decision, which is generally derived from the solution of
some optimization problem. In distributed DSA unlicensed users make their own decisions
autonomously, according to their local information. Compared to centralized DSA, this
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scheme requires greater computational resources at the user terminal and generally does not
achieve globally optimal solutions. On the other side, distributed schemes imply a smaller
communication overhead.

MAC protocols for DSA can also include spectrum trading features. In situations of low
spectrum usage, the licensed operator may decide to sell spectrum opportunities to unlicensed
users. In order to do this in real-time, a protocol is required to support negotiations on access
price, channel holding time, etc, between the spectrum owner and secondary users. There
are several models for spectrum trading. In this work, we consider the bid-auction model, in
which secondary users bid for the spectrum of a single spectrum owner.

This chapter addresses the design of DSA MAC protocols for centralized dynamic spectrum
access. We explore the possibilities of a formal design based on a Markov decision process
(MDP) formulation. We survey previous works on this issue and propose a design framework
to balance the grade-of-service (e.g. blocking probability) of different user categories and
the expected economic revenue. When two or more contrary objectives are balanced on an
optimization problem, there is not an optimal solution, in the strict sense, but a Pareto front,
defined as the set of values, for each individual objective, such that any objective can not be
improved without worsening the others. In this work we study the Pareto front solutions for
two possible access models. The first one consists of simply providing priority to the licensed
users, and the second one is an auction-based model, where unlicensed users offer a bidding
price for the spectrum opportunities. In the priority-based access, the centralized policy
should balance the blocking probability of each class of users. In the auction-based access,
the trade-off appears between the blocking probability of primary users and the expected
revenue.

The content structure of the rest of this chapter is the following. Section 2 provides a brief
introduction to Markov Decision Processes. Section 3 reviews previous works using the
MDP approach in cognitive radio systems. Section 4 explains the system model and MDP
formulation for both DSA procedures considered. Section 5 contains the performance analysis
of each model based on numerical evaluations of practical examples. Section 6 summarizes
the conclusions of this work.

2. Introduction to Markov Decision Processes

Markov Decision Processes (MDPs) are an application of a more general optimization
technique known as dynamic programming (DP). The goal of DP is to find the optimal values
of a variable when these values (decisions or actions) must be chosen in consecutive stages.
The algorithms to solve DP problems rely on the principle of optimality, which states that in
an optimal sequence of decisions, every subsequence must also be optimal. DP is generally
applied in the framework of dynamical systems. Several basic concepts must be introduced
to understand this framework:

• State: Is determined by the values of the variables that characterize the system.

• Stage: In a discrete-time dynamical system, a stage is a single step in the temporal advance
of the process followed by the system. At each stage the system performs a transition from
on state to an adjacent one. A process may consist of a finite or infinite number of stages.

• Action: At each state, there may be one or several variables whose value can be chosen
in order to influence the transition performed at the present stage. The values selected
constitute the action at this stage.
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• Cost: Each pair state-action is associated to a return or outcome, which we will generally
refer to as cost. Sometimes the outcome has a positive meaning and is considered a benefit.
Additionally, we can compute the total outcome obtained in the whole process. Depending
on how it is computed, this overall cost is referred to as total discounted cost or average
cost, among others.

• Policy: A policy is a function that relates the states with the actions taken at each stage, for
the whole duration of the process considered. An optimal policy is the one that attains the
best overall cost for a given objective.

As can be anticipated from previous definitions, the goal of DP is to find the optimal policy for
a given process. DP is, in fact, a decomposition strategy for complex optimization problems.
In this case, the decomposition exploits the discrete-time structure of the policy.

Markov Decision Processes are the application of DP to systems described by controlled
discrete-time Markov chains, that is, Markov chains whose transition probabilities are
determined by a decision variable.

Let the integer k denote the k-th stage of an MDP. At a given stage, let i and u denote the state
of the system and the action taken, respectively. The set of possible values of the state, the state
space, is denoted by S, therefore i ∈ S. The control space U, is defined similarly. In general, at
each state i only a subset of actions U(i) ⊆ U is allowed. We restrict our attention to processes
where both S, U(i) and U are independent of k. In this case, the transition probability from
state i to state j is denoted as pij(u). A policy takes the form: u = µ(i), and because it does
not depend on k it is said to be a stationary policy. It is said that a policy is admissible if
µ(i) ∈ U(i) for i ∈ S. At each state i, the policy provides the probability distribution of next
state as pij(µ(i)), for j ∈ S.

The cost of each pair action-state is denoted by g(i, u). Sometimes the costs are associated to
transitions instead of states. Let g̃(i, u, j) denote the transition cost from state i to state j. In
this case, we use the expected cost per stage defined as:

g(i, u) = ∑j∈S g̃(i, u, j)pi,j(u) (1)

The objective of the MDP is to find the optimal stationary policy µ such that the total cost
is minimized. The total cost may be defined in several ways. We will focus our attention on
average cost problems. In this case, the cost to be optimized is given by the following equation

λ = limN→∞
1

N
E

{

N−1

∑
k=1

g (xk, µ(xk))

}

(2)

where xk represents the system’s state at the k-th stage. Note that in the definition of the
average cost λ we are implicitly assuming that its value is independent of the initial state of
the system. This is generally not always true. However there are certain conditions under
which this assumption holds. For example, in our scenario, the value of the per-stage cost is
always bounded and both S and U are finite sets. Moreover, there is at least one state, n that
is recurrent in every stationary policy. Given previous conditions, the limit in the right side of
(2) exists and the average cost does not depend on the initial state.

Sometimes the system is modeled as a continuous-time Markov chain. In this case, as we
shall see, the definition of the average cost is slightly different. In order to solve it by means
of the known equations for average cost MDP problems, we have to construct an auxiliary
discrete-time problem whose average cost equals the one of the continuous-time problem.
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Given the conditions for the limit in 2 to exist, the optimal average cost can be obtained by
solving the following Bellman’s equation

h (i) = min
u∈U

[

g
(

i, u
)

− λ +
N

∑
j=1

pij

(

u
)

h (j)

]

i ∈ S (3)

with the condition h (n) = 0. It is known (see Bertsekas (2007)) that previous equations have
a unique solution and the stationary policy µ providing the minimum at the right side of (3)
is an optimal policy. h(i) is known as relative or differential cost for each state i. It represents
the minimum, over all policies, of the difference between the expected cost to reach n from i
for the first time and the cost that would be incurred if the cost per stage were equal to the
average λ at all states.

There are several computational methods for solving Bellman equation: the value iteration
algorithm, the policy iteration algorithm and the linear programming method provide exact
solutions to the problem (see Bertsekas (2007) and Puterman (2005)). However, when the
dimension of the sets S and U is relatively large, the problem becomes so complex that solving
it exactly may be computationally intractable. This is known as the curse of dimensionality in
dynamic programming. In some situations, we are not able to compute all the transition
probabilities pij(u) of the model, therefore obtaining an exact solution is impossible. For
these cases multiple approximate methods have been developed within the framework of
approximate dynamic programming (see Powell (2005)) or reinforcement learning.

There are several variations for MDP problems. One of the most important ones refers to
the time horizon over which the process is assumed to operate. It may be finite, when the
optimization is done over a finite number of stages, or infinite, when the number of stages
is assumed to be infinite. The latter type of problems present some theoretical difficulties,
and some technical conditions must hold to be solvable. However, when these conditions
are present, infinite-horizon problems require less computational effort than finite-horizon
problems with similar dimension. Sometimes, more than one performance objective must be
attained. In these cases, it is usual to set bounds in all the objectives except one, which should
be optimized assuring that the other objectives remain within their bounds, i.e. the rest of
objectives constitute constraints on the MDP problem. This strategy is known as constrained
MDP (CMDP). To solve these problems, the most usual approaches are to re-formulate the
problem as a linear-programming one or to use Lagrangian relaxation on the constraints.
Finally, in some problems, the control decision at each state must be taken without complete
knowledge of the state. Instead of directly observing the state, the controller observes an
additional variable related with the state, so that the probability of each state can be inferred.
These problems are known as Partially Observable MDP (POMDP) and are tractable, in
general, only for small dimensional problems. The more complex versions of MDPs are, in
fact, generalizations of the problem. As we will see, some problems must be formulated
as Constrained POMDP, for which very few results are available so far and are generally
addressed by heuristic methods.

3. MDP applications in cognitive radio

MDP has been frequently applied in the design of MAC protocols in cognitive radio. They
can be classified into two classes: decentralized and centralized access protocols. In the
decentralized case, each unlicensed user is responsible of performing spectrum sensing and
spectrum access, in general with limited, and sometimes unreliable, information about the
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spectrum usage. In consequence, it is usual to find partially observed MDP (POMDP)
formulations of the problem, which easily become intractable when the dimension of the
problem increases. The access of secondary users to the spectrum should have the less possible
impact on licensed users. When including these restrictions on the formulation the resulting
problem is a constrained POMDP. In the centralized case, a central device, generally referred
to as spectrum broker, performs spectrum management, controlling the access of secondary
users to idle spectrum channels. It is usually assumed that the spectrum broker has perfect
information about the spectrum usage, therefore the problem is formulated as an MDP, or as
a CMDP if constraints are included.

3.1 Decentralized access

In Zhao et. al. (2007), the activity of a licensed user is modeled as an on-off model represented
by a two-state Markov chain. The problem of channel sensing and access in a spectrum
overlay system was formulated as a POMDP. The actions consists on sensing and accessing a
channel, and the channel sensing result is considered an observation. The reward is defined
as the number of transmitted bits. The objective is to maximize the expected total number
of transmitted bits in a certain number of time slots under the constraint that the collision
probability with a licensed user should be maintained below a target level.

Geirhofer et. al. (2008) propose a cognitive radio that can coexist with multiple parallel
WLAN channels, operating below a given interference constraint. The coexistence between
conventional and cognitive radios is based on the prediction of WLAN’s behavior by means
of a continuous-time Markov chain model. The cognitive MAC is derived from this model by
recasting the problem as a constrained Markov decision process (CMDP).

The goal in Chen et. al (2008) is to maximize the throughput of a secondary user while
limiting the probability of colliding with primary users. The access mechanism comprises the
following three basic components: a spectrum sensor that identifies spectrum opportunities, a
sensing strategy that determines which channels to sense and an access strategy that decides
whether to access based on potentially erroneous sensing outcomes. This joint design was
formulated as a constrained partially observable Markov decision process (POMDP).

The approach in Li et. al. (2011) is to maximize the throughput of the secondary user subject
to collision constraints imposed by the primary users. The formulation follows a constrained
partially observable Markov decision process.

3.2 Centralized access

In Yu et. al. (2007) the spectrum broker controls the access of secondary users based on a
threshold rule computed by means of an MDP formulation with the objective of minimizing
the blocking probability of secondary users. In order to cope with the non-stationarity of
traffic conditions, the authors propose a finite horizon MDP instead of an infinite horizon one.
The drawback is that the policy cannot be computed off-line, imposing a high computational
overhead on the system.

Tang et. al. (2009) study several admission control schemes at a centralized spectrum
manager. The objective is to meet the traffic demands of secondary users, increasing spectrum
utilization efficiency while assuring a grade of service in terms of blocking probability
to primary users. Among the schemes analyzed, the best performing one is based on a
constrained Markov decision process (CMDP).
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Centralized access has received less attention than decentralized access in cognitive radio
research in general and in the application of MDP in particular. On the one hand,
decentralized access constitutes a harder research challenge because each agent only has
partial and sometimes unreliable information about the wireless network and the spectrum
bands. This leads to the harder POMDP problems. On the other hand, although centralized
access relies on a spectrum broker which generally has full information about the system
state, the dimension of the problem increases proportionally to the total number of managed
channels. Therefore, although the MDP or CMDP problem may be solvable, its dimension
imposes a serious computational overhead. This drawback may be overcome with an
off-line computation of the policies. However, when traffic conditions are non-stationary
this approach is not applicable and approximate solutions based on reinforcement learning
strategies should be explored. In this work we focus on the application of MDP to centralized
access and how it can be exploited to balance GoS of each class of user.

3.3 Other applications

Other applications of MDP have been found within the framework of cognitive radio. In
Hoang et. al. (2010), authors propose an algorithm based on finite-horizon MDP to schedule
the duration of spectrum sensing periods and data transmission periods at the cognitive users
aiming to improve their throughput. Berthold et. al. (2008) formulate the spectral resource
detection problem as an MDP allowing the cognitive users to select the frequency bands with
the most available resources. Galindo-Serrano and Giupponi (2010) deals with the problem
of aggregated interference generated by multiple cognitive radios at the receivers of primary
(licensed) users. The problem is formulated as a POMDP and it is solved heuristically by
means of an approximated dynamic programming method known as distributed Q-learning.

In this paper we highlight another application of MDP: dynamic trading of spectrum bands.
While this issue has been typically addressed with a game-theoretic approach, we explore the
use of MDP and CMDP formulations to balance benefit and grade of service for primary users
in a centralized spectrum access framework.

4. System model

In this section we consider two models for coordinated spectrum access. In the first one,
secondary users are accepted or rejected according to an admission policy that only considers
the impact on the blocking probability for primary users. In this first model there is a
trade-off between the blocking probability of licensed and unlicensed users. The second
model includes a spectrum bidding procedure, in which secondary users offer a price, within
a finite countable set of prices for mathematical tractability, for the use of a channel. In the
second model the trade-off appears between the the blocking probability of licensed users
and the expected benefit obtained from spectrum rental.

4.1 Priority-based access

This access is only based on priority, not in bidding price, i.e. licensed users are given higher
priority than secondary users. Therefore the objective is to minimize the blocking probability
of licensed users but also that of unlicensed users. The general rule is that primary users are
always accepted if there are available channels but, depending on the available channels, the
controller can deny access to secondary users. Once a secondary user occupies a channel, it is
this user who decides when to release this channel and it can not be removed by the controller.
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There are several approaches to address this type of problems. One of them is to formulate
an MDP where the expected cost is obtained as a linear combination (more precisely a convex
combination) of the blocking probability of each class of users. By adjusting the weighting
factors we can compute a Pareto front for both blocking probabilities. A Pareto front is defined
as the set of values corresponding to several coupled objective functions such that, for every
point of the set, one objective cannot be improved without worsening the rest of objective
values. In this type of access, the Pareto front allows to fix a blocking probability value for the
licensed users and know the best possible performance for unlicensed users.

Incoming traffic is characterized by a classic Poisson model. Licensed users arrive with a
rate of λL arrivals per unit of time. The arrival rate for unlicensed users is denoted by
λU . The licensed spectrum managed by the central controller is assumed to be divided into
channels (or bands) with equal bandwidth. Each user occupies a single channel. The average
holding times for licensed and unlicensed users are given by 1/µL and 1/µU respectively,
where µL and µU denote the departure rate for each class. Because a Poisson traffic model
is considered, both the inter-arrival time and the channel holding times are exponentially
distributed random variables for both user classes. The model can be easily extended
including more user classes, the probability that a user occupies two or more channels, and so
on. Essentially the procedure is the same, but the Markov chain would comprise more states
as more features are considered in the model. In this model, the state of the Markov chain is
determined by the number of channels k occupied by licensed users (LU), and the number of
channels s occupied by secondary users (SU). Because spectrum is a limited resource, there is
a finite number N of channels. Figure 1 depicts a diagram of the model and its parameters.
Note that we can map all the possible combinations of (k, s) for 0 ≤ k ≤ N, 0 ≤ s ≤ N and
k + s ≤ N to a single integer i such that

0 ≤ i ≤
N (N + 1)

2
+ N + 1. (4)

The number in the right hand side of 4 is the total number of states. Let NT denote this number.

Fig. 1. Diagram of the priority based access model. The system has N channels that can be
occupied by k licensed users (LU) and s secondary users (SU) such that k + s ≤ N. The total
departure rates for each type of users depend on k and s.

The model described above consists of a continuous-time Markov chain. In the framework
of MDPs we have to define the actions and the costs of these actions. Let g(i, u) denote the
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instantaneous cost of taking action u at state i. In the system considered action u is simply
defined as

u =

{

1 , if incoming user is not accepted

0 , otherwise
(5)

The above formula refers only to unlicensed users. It is assumed that licensed users are
always accepted unless all channels are occupied. The function g(i, u) is given by the convex
combination of two per-stage cost functions, i.e. g(i, u) = αgL(i, u) + (1 − α)gU(i, u), where

gL(i, u) =

{

1 , if i ≡ (k, s) and k + s = N

0 , otherwise
(6)

where the symbol “≡” denotes equivalence, i.e. i maps a state (k, s) such that k + s = N.
Similarly,

gU(i, u) =

{

1 , if i ≡ (k, s) and k + s = N

u , otherwise
(7)

These functions determine the blocking probability per unit of time for each class of users.
Note that the blocking probability is defined as the probability that the system does not
provide a channel to an incoming user. The objective is to find a policy such that, for a relative
importance given to each cost (determined by α), the expected average value of the combined
cost is minimized. The function to minimize is then given by

lim
K→∞

1

E {tK}
E

{

∫ tK

0
g (x(t), u(t))

}

(8)

where tK is the completion time of the K-th transition. The problem can be solved by
formulating its auxiliary discrete-time average cost problem. Let γ be a scalar greater than
the transition rate at any state of the chain, i.e. γ > vi(u). We can compute the transitions
probabilities p̃i,j(u) for the auxiliary discrete-time problem from the probabilities pi,j(u) of the
original problem as

p̃i,j(u) =

{

vi(u)
γ pi,j(u) , if i �= j

1 − vi(u)
γ , if i = j

(9)

It is known (see Bertsekas (2007)) that if the scalar λ and the vector h̃ satisfy

h̃ (i) = min
u∈{0,1}

[

g
(

i, u
)

− λ +
NT

∑
j=1

p̃ij

(

u
)

h̃ (j)

]

i = 1, . . . , n (10)

then λ and the vector h with components h(i) = γh̃(i) solve the original problem. It can
be anticipated that the structure of this problem, essentially a connection admission control
problem, requires a threshold type solution in which upcoming unlicensed users will only be
admitted into the system if the number of occupied channels is below certain threshold.

4.2 Auction-based access

As explained in the introduction, public administrations assign the spectrum bands to wireless
operators by a license scheme. Generally, operators gain spectrum licenses by bidding for
them in public auction processes. We refer to this spectrum assignment framework as primary
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market. The increasing demand of spectrum and the existence of spectrum holes have
revealed the inefficiency of this mechanism. One practical and economically feasible way
to solve this inefficiency is to allow spectrum owners to sell their spectrum opportunities in
a secondary market. In contrast to the primary market, the secondary operates in real-time.
Secondary users, that may be operators without a spectrum license, submit their bids for
spectrum opportunities to the spectrum owner, who determines the winner or winners by
giving them access to the band and charging them the bidding price.

The arrival processes are modeled, as in previous subsection, as independent Poisson
processes. The arrival rates for licensed and unlicensed users are λL and λU respectively. The
service rates are µL and µU . Again, it is assumed that each incoming user occupies a single
channel. The system state is given by the number of primary users k and secondary users s
holding a channel: (k, s) for 0 ≤ k ≤ N, 0 ≤ s ≤ N and k+ s ≤ N. Each state is mapped into an
integer i ≡ (k, s), so that i = 0, 1, . . . NT, where NT is given by 4. For mathematic tractability,
the bidding prices are classified into a finite set of values: B = {b1, b2, . . . bm} given in money
charged per unit of time. Each price on this set has a probability pi, i = 1 . . . m to be offered
by an incoming user. Obviously ∑

m
i=1 pi = 1. Figure 2 depicts the model described.

1

3

2

N

L

U

k· L

s· U
.
.
.

k LU

s SU

p1· U

p2· U

pm· U

.

.

.
.
.
.

b1

b2

bm

Fig. 2. Diagram of the auction based access model. Secondary users (SU) can offer up to m
different bid prices. Each bid offer is assigned a probability. The access policy decides upon
each offer according to the price offered and the system’s state.

In this case, the objective of the MDP is to obtain the maximum economic profit with the
minimum impact on the licensed users. The control u at each stage determines the admitted
and rejected bidding prices. Logically, the control should be defined as a threshold, i.e. when
u = i only bids equal or above pi are admitted. For notation convenience, the control u =
m + 1 indicates that no bid is accepted. The per-stage reward function g(i, u) is given by the
linear combination of gL(i, u) (defined in previous subsection) and gU(i, u) defined, in this
model, as the expected benefit at stage i when decision u is made. Therefore g(i, u) = αgL(i, u)
+ βgU(i, u) where the scalars α and β are weighting factors. Note that β < 0 since the objective
is to minimize the average expected cost given by g(i, u). Let Bi denote the expected income
when an unlicensed user whose bidding price is bi is accepted. Since the average channel
holding time for unlicensed users is 1/µU , then Bi = bi/µU . Given a control u, P (r|u) denotes
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the conditional probability that the bidding price of the next accepted secondary user is br.

P (r|u) =

⎧

⎨



pr

∑
m
j=u pj

, if r ≥ u

0 , otherwise
(11)

Let us define g̃U(i, u, j) as the average benefit associated to the transition from state i to state
j. Its expression is

g̃U(i, u, j) =

{

pU ∑
m
r=1 Br P (r|u) , if j = i + 1

0 , otherwise
(12)

where pU = λU/(λU + λL) denotes the probability that the next arrival corresponds to a
secondary user. Therefore, the per-stage benefit gU(i, u) is given by

gU(i, u) = ∑
NT

j=1 g̃U(i, u, j)pi,j(u)

= pi,i+1(u)pU ∑
NT

j=1 BrP (r|u) .
(13)

We can formulate the auxiliary discrete-time average cost problem for the model described.
The equation providing the optimum average cost λ is

h̃ (i) = min
u∈{0,1}

[

αgL(i, u) + βgU(i, u)vi(u)− λ +
NT

∑
j=1

p̃ij

(

u
)

h̃ (j)

]

(14)

for i = 1, . . . , n. The structure of this problem also anticipates a threshold-type solution. In
this case, there will be a set of thresholds, one per bidding price. By properly adjusting the
weighting factors α and β we can also compute a Pareto front allowing us to determine the
maximum possible benefit for a given blocking objective for the licensed users.

4.3 Constrained MDP

So far, the approach to merge several objectives consisted on combining them into a single
objective by means of a weighted sum and solving the problem as a conventional MDP.
However, as explained in Section 2, when several objectives concur in an MDP problem, the
formulation strategy may consist on optimizing one of them subject to constraints on the other
objectives. This strategy results in a CMDP formulation of the problem. Solving MDPs by
iterative methods such as policy or value iteration allows us to find deterministic policies,
i.e. policies that associate each system’s state i ∈ S to a single control u ∈ U(i), where U(i)
is a subset of U containing the controls allowed in state i. However, these policies do not,
in general, solve CMDP problems. Instead, the solution of CMDPs is a randomized policy,
defined as a function that associates each state to a probability distribution defined over the
elements in U(i).

There are mainly two approaches to solve CMDPs, linear programming (LP) and Lagrangian
relaxation of the Bellman’s equation. This paper follows the former one. Each feasible LP
formulation relies on the use of the dual variables φ (i, u), defined as the stationary probability
that the system is in state i and chooses action u under a given randomized stationary policy.
The problems addressed in this paper result, under every stationary policy, in a truncated
birth-death process, since primary users are always accepted. In consequence, every resulting
Markov chain is irreducible, in other words, it is recurrent and there are not transient states.
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Moreover, the state and action spaces are finite. Under these circumstances, as shown in
Puterman (2005), every feasible solution of the LP problem corresponds to some randomized
stationary policy. Therefore, if the constrained problem is feasible, then there exists an optimal
randomized stationary policy.

The LP approach consists of expressing the objective and the constraints in terms of φ (i, u).
Once the problem is discretized, the average cost is defined as

λ = lim
K→∞

1

K
E

{

K

∑
k=0

g (xk, uk)

}

(15)

where k denotes the decision epoch of the process. The objective is to find the policy µ solving

min
µ

λ (16)

The constraints are defined similarly to the main objective: each constraint impose a bound
on an average cost related to different per-stage cost. Each constraint has the following form:

c = lim
K→∞

1

K
E

{

K

∑
k=0

c (xk, uk)

}

≤ β (17)

where c (x(t), u(t)) is the real-valued function providing the per-stage cost associated to the
constraint β. Therefore the constrained average reward MDP with one constraint is defined
as

min λ
s.t.

c ≤ β
(18)

Given the characteristics of the problem (finite state and action spaces and recurrent Markov
chain under every policy), the limits in (15) and (17) exist and are equal to

λ = ∑
i∈S

∑
u∈U(i)

g (i, u) φ (i, u) (19)

and
c = ∑

i∈S
∑

u∈U(i)

c (i, u) φ (i, u) (20)

respectively. In addition, the following conditions must be hold by the dual variables:

∑
u∈U(j)

φ (j, u) = ∑
i∈S

∑
u∈U(i)

pi,j (u) φ (i, u) (21)

for all j ∈ S, which is closely related to the balance equations of the Markov chain and

∑
i∈S

∑
u∈U(i)

φ (i, u) = 1, (22)

which, together with φ (j, u) ≥ 1 for i ∈ S and u ∈ U(i) correspond to the definition of φ (i, u)
as a limiting average state action frequency. In consequence, the LP for the CMDP has the
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following formulation

minφ ∑
i∈S

∑
u∈U(i)

g (i, u) φ (i, u)

s.t.

∑
i∈S

∑
u∈U(i)

c (i, u) φ (i, u) ≤ β

∑
u∈U(j)

φ (j, u)− ∑
i∈S

∑
u∈U(i)

pi,j (u) φ (i, u) = 0

∑
i∈S

∑
u∈U(i)

φ (i, u) = 1

φ (j, u) ≥ 1

(23)

Assuming that the problem is feasible and φ∗ is the optimal solution of the LP problem above,
the stationary randomized optimal policy µ∗ is generated by

qµ∗(i) (u) =
φ∗ (i, u)

∑u′∈U(i) φ∗ (i, u′)
(24)

for cases where the sum in the denominator is nonzero. Otherwise, the state is transitory and
the control is irrelevant. Note that qµ∗(i) (u) denotes the probability of choosing action u at

state i under policy µ∗.

Using the approach above in the problems described in previous section is straightforward:

• Priority-based access: in the LP problem (23) replace g (i, u) by gU (i, u) defined in (7), and
c (i, u) by gL (i, u) defined in (6). For each value of β we obtain the point in the Pareto front
corresponding to a blocking probability β for the licensed users.

• Auction-based access: in the LP problem (23) replace g (i, u) by gU (i, u) defined in (13), and
c (i, u) by gL (i, u) defined in (6). As in previous case, for each value of β we obtain a point
in the Pareto front.

5. Numerical results

In this section we provide examples of the Pareto front computation procedures described in
previous section for each DSA type.

5.1 Priority based access

For this DSA scheme we will consider three scenarios characterized by the asymmetry
between the traffic intensity of licensed and unlicensed users. In every scenario, the average
holding time is equal for every user, independently of their type. Therefore the service rate
µL =µU = 5. Assuming that the time unit is an hour, this results in an average holding time
of 12 minutes per connection. The total traffic (λ = λL + λU) is 40 calls/h, which results in a

total incoming traffic of 8 Erlangs. In a wireless cell covering 2.5 km2 of urban area (cell radius

equal to 400 m), with 2000 people per km2 and a 10% aggregate market penetration (licensed
and unlicensed users), the number of covered users is around 500, and the resulting traffic
intensity is 0.016 Erlangs per user. The number of available channels is set to N = 10, in order
to evaluate the system in a relatively congested situation. With the assumed traffic intensity
we can estimate the blocking probability of the system for the aggregate traffic by means of
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the well-known Erlang’s B formula (see Kleinrock (1975)):

E (n, ρ) =
ρn

n!

∑
j=n
j=0

ρj

j!

(25)

where n is the number of channels and ρ denotes the utilization factor. In our case ρ=λ/µL

= λ/µU . According to this formula, if the system accepted every incoming user, the total
blocking probability would be E (10, 8)=0.12. As we will see, this probability is an upper
bound for the blocking probability of the primary users, which are always accepted if the
system has any available channel, and a lower bound for the secondary users.

The three scenarios are summarized in Table 1.

parameter scenario 1 scenario 2 scenario 3

λL (calls/h) 30 20 10
λU (calls/h) 10 20 30

µL=µU (calls/h) 5 5 5

N 10 10 10

Table 1. Parameters values at the three scenarios of the priority based access problem.

First, we show in Fig. 3 the Pareto front obtained by means of an MDP where the blocking
costs of licensed and unlicensed users were merged by means of a convex combination. The
Pareto front was obtained by solving each MDP problem for 10000 values of the α parameter
ranging from 0.01 to 1.
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Fig. 3. Pareto fronts obtained for the priority-based access in scenario 1 (a), scenario 2 (b) and
scenario 3 (c)

All the three scenarios receive the same total traffic intensity. However, when the traffic
intensity of the primary users is smaller, the Pareto front is closer to both axes, i.e. the
performances of both the primary and secondary users improve. This is an expectable
result since only the traffic of secondary users is controlled by the access policy. When the
optimization affects to a higher portion of the total amount of traffic the improvement is also
more noticeable, showing the benefits of the MDP formulation.

The Pareto fronts obtained by means of the CMDP formulation in previous scenarios are
identical to those shown in Fig. 3, showing that both formulations are equivalent in terms
of finding the Pareto front for the priority-based access problem. The only difference relies
on practical considerations. The CMDP approach allows us to find a policy with a predefined
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blocking probability for primary users while the MDP formulation implies the exploration of
the Pareto front, since there is no a priori relationship between α and this blocking probability.
On the other hand, implementing the policy solving the CMDP problem implies to randomize
at least one control (it can be shown that the number of required randomized controls equals
the number of constraints). While this is technically feasible, a stationary deterministic policy
is simpler to implement.

5.2 Auction based access

For the auction-based access we consider again the three scenarios defined in previous section.
Additionally we define three classes of secondary users (SU), characterized by the price that
they offer per minute of channel occupation. The bid offers per class are: class 1: 0.01 $/m,
class 2: 0.02 $/m and class 3: 0.03 $/m. Additionally, we define the probability of an SU
incoming call being of each class. The SU class probability distribution is: class 1 probability:
0.5, class 2 probability: 0.3 and class 3 probability: 0.2. We summarize SU class definition in
Table 2.

SU class class 1 class 2 class 3

offered price ($/m) 0.01 0.02 0.03
probability 0.5 0.3 0.2

Table 2. Classification of SU in terms their bid offers and their probabilities.

Note that both the offered prices and their probability distributions are static, i.e. they do
not change over time and are independent of the system occupation. It is not completely
unrealistic taking into account typical tariff policies of wireless operators. In this environment
the class structure and the probability distribution may be seen as types of contracts for
secondary users and market penetration of each type of contract respectively. However,
for a more dynamical auction process, where bidders are able to change their bid offers
adaptively, the model should be revised. One possibility would be to define one probability
distribution for each state. More detailed modeling strategies would increase the complexity
of the MDP solving algorithm or even make them intractable. This is a classic problem of
MDP formulation, known as the curse of dimensionality and is typically addressed by means of
the heuristic approach of approximate dynamic programming.
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Fig. 4. Pareto fronts obtained for the auction-based access in scenario 1 (a), scenario 2 (b) and
scenario 3 (c)

Figure 4 shows the Pareto fronts for the auction-based system in the three scenarios. As
in previous subsection, the MDP and the CMDP approaches provided similar results. It
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can be observed that, for the same traffic intensity (the three scenarios receive 40 calls per
unit of time) when the traffic share of the secondary users is higher (scenarios with higher
number) the Pareto front moves away from the y-axis, i.e. the income obtained from secondary
users increases and it also approaches the x-axis, i.e. the blocking probability of the licensed
users diminishes. It is interesting to check that, especially in scenarios 2 and 3, a very small
increment of the blocking probability of licensed users can multiply the benefit obtained from
spectrum leasing by a factor of 2 or 3. On the other hand, these figures also indicate that
once the income surpasses certain threshold, Pareto-optimal policies can only produce small
increments of the income by dramatically rising the blocking probability.

6. Conclusions

This chapter has surveyed the use of MDP formulation within the framework of cognitive
radio. We have reviewed the fundamentals of MDP and its generalizations, such as CMDP,
POMDP and constrained POMDP. While most previous works focus on decentralized access,
we focus on centralized access. The main difference between them is that when the access
relies on a central controller or spectrum broker, it generally has full knowledge of the
spectrum occupation, while in decentralized access decision have to be taken with partial
and sometimes unreliable information about channel occupation. Therefore, centralized
schemes are more suitable to MDP or CMDP modeling, while decentralized ones generally
require POMDP or constrained POMDP which are intractable in many cases and require
approximated or heuristic algorithms. We consider two types of access: one where only
one type of secondary user tries to access the licensed spectrum and other where users
are classified according to the price they are willing to pay for the use of the spectrum.
The first one is referred to as priority-based access and the second one as auction-based
access. The main issue of the problems addressed is that two contrary objectives coexist.
In priority-based access, the controller tries to reduce the blocking probability of both types
of users. In auction-based, the objectives are to reduce blocking probability for licensed
users and to increase the income received from spectrum leasing. For these problems there
does not exists an optimal policy, but a set of Pareto optimal policies. The performance of
these policies lie on the Pareto front, defined as the set of points where one objective cannot
be improved without worsening the other one. We have shown how to compute these
Pareto fronts for each access scheme by weighting the objectives in an MDP problem and by
formulating a CMDP. The first approach requires solving Bellman’s equation and the second
requires solving a linear program. We have obtained the Pareto fronts for several scenarios,
showing the influence of traffic share on system’s performance. The Pareto front is a very
usual tool to determine the performance threshold for each objective upon which further
increments on this objective require excessive degradation of the other one. MDP and CMDP
are useful tools for developing centralized access policies for cognitive radio systems. One
drawback is the so-called curse of dimensionality, that may render computationally intractable
the problem as the sizes of the state and action spaces increase. In addition, although policies
can be computed off-line, alleviating the computational overhead of the access controller,
the system’s parameters may be variable, requiring many pre-computed policies and thus
imposing large memory requirements.
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