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1. Introduction

Transcriptional bursting, also known as transcriptional pulsing, is a fundamental property
of genes from bacteria to humans (Chubb et al., 2006; Golding et al., 2005; Raj et al., 2006).
Transcription of genes, the process which transforms the stable code written in DNA into the
mobile RNA message can occur in "bursts" or "pulses". This phenomenon has recently come
to light with the advent of new technologies, such as MS2 tagging, to detect RNA production
in single cells, allowing precise measurements of RNA number, or RNA appearance at
the gene. Other, more widespread techniques, such as Northern Blotting, Microarrays,
RT-PCR and RNA-Seq, measure bulk RNA levels from homogeneous population extracts.
These techniques lose dynamic information from individual cells, and give the impression
transcription is a continuous smooth process. The reality is that transcription is irregular, with
strong periods of activity, interspersed by long periods of inactivity. Averaged over millions of
cells, this appears continuous. But at the individual cell level, there is considerable variability,
and for most genes, very little activity at any one time.

The bursting phenomenon, as opposed to simple probabilistic models of transcription, can
account for the high variability in gene expression occurring between cells in isogenic
populations (Blake et al., 2003). This variability in turn can have tremendous consequences
on cell behaviour, and must be mitigated or integrated. In certain contexts, such as the
survival of microbes in rapidly changing stressful environments, or several types of scattered
differentiation, the variability may be essential (Losick & Desplan, 2008). Variability also
impacts upon the effectiveness of clinical treatment, with resistance of bacteria to antibiotics
demonstrably caused by non-genetic differences (Lewis, 2010). Variability in gene expression
may also contribute to resistance of sub-populations of cancer cells to chemotherapy (Sharma
et al., 2010).

Bursting may result from the stochastic nature of biochemical events superimposed upon a
2 or more step fluctuation. In its most simple form, the gene can exist in 2 states, one where
activity is negligible and one where there is a certain probability of activation (Raj & van
Oudenaarden, 2008). Only in the second state does transcription readily occur. Whilst the
nuclear and signalling landscapes of complex eukaryotic nuclei are likely to favour more
than two simple states—for example, there are over twenty post-translational modifications
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of nucleosomes known, this simple two step model provides a reasonable framework for
understanding the changing probabilities affecting transcription. What do the restrictive
and permissive states represent? An attractive idea is that the repressed state is a closed
chromatin conformation whilst the permissive state is an open one. Another hypothesis is
that the fluctuations reflect transition between bound pre-initiation complexes (permissive)
and dissociated ones (restrictive) (Blake et al., 2003; Ross et al., 1994). Bursts may also
result from bursty signalling, cell cycle effects or movement of chromatin to and from
transcription factories. Nonetheless, to the best of our knowledge, there is no generally
accepted explanation for this phenomenon. Transcriptional bursting in prokaryotic cell is
particularly puzzling given the simplicity of the transcription initiation process, as opposed
to eukaryotic cells.

There is evidence that the cooperative interaction of distant operators through a single
repressor molecule has a strong influence on the transcriptional bursting observed in the lac
operon of E. coli (Choi et al., 2008). Since the repression regulatory mechanism in E. coli’s
trp operon involves cooperativity between two repressor molecules bound to neighbouring
operators, it is interesting to investigate whether such cooperative interaction has any effect
upon the system transcriptional dynamics. The present chapter is advocated to tackling
this question from a mathematical modelling perspective. We also investigate the effects
of the enzymatic feedback-inhibition regulatory mechanism (also present on the trp operon
regulatory pathway) on the system dynamic behaviour.

2. Theory

2.1 The trp operon

The amino acid tryptophan can be synthesized by bacteria like E. coli through a series of
catalysed reactions. The catalysing enzymes in E. coli are made up of the polypeptides
encoded by the tryptophan operon genes: trpE, trpD, trpC, trpB, and trpA, which are
transcribed from trpE to trpA. Transcription is initiated at promoter trpP, which is located
upstream from gene trpE. The trp operon is regulated by three different negative-feedback
mechanisms: repression, transcription attenuation, and enzyme inhibition. Below these
regulatory mechanisms are briefly reviewed based on (Brown et al., 1999; Grillo et al., 1999;
Jeeves et al., 1999; Xie et al., 2003; Yanofsky, 2000; Yanofsky & Crawford, 1987). The reader
should consult Figure 1 for a better understanding.

Repression in the trp operon is mediated by three operators (O1, O2, and O3) overlapping
with the operon promoter, trpP (see Figure 1A). When an active repressor is bound to an
operator it blocks the binding of a RNA polymerase to trpP and prevents transcription
initiation. The trp repressor normally exists as a dimeric protein (called the trp aporepressor)
and may or may not be complexed with tryptophan (Trp). Each portion of the trp aporepressor
has a binding site for tryptophan.

The trp aporepressor cannot bind the operators tightly when not complexed with tryptophan.
However, if two tryptophan molecules bind to their respective binding sites the trp
aporepressor is converted into a functional repressor. The resulting functional repressor
complex can tightly bind to the trp operators and so the synthesis of the tryptophan
producing enzymes is prevented. This sequence constitutes the repression negative-feedback
mechanism: an increase in the concentration of tryptophan induces an increase in the
concentration of the functional repressor, thus preventing the synthesis of tryptophan.
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Fig. 1. Schematic representation of the three regulatory mechanisms found in the tryptophan
operon: A) repression, B) transcription attenuation, and C) enzyme inhibition. A glossary
with the meaning of all the geometric forms in this figure is shown in panel D. See the main
text for further explanation.

Transcription attenuation works by promoting an early termination of mRNA transcription,
see Figure 1B. The transcription starting site in the trp operon is separated from trpE by a
leader region responsible for attenuation control. The transcript of this leader region consists
of four segments (termed Segments 1, 2, 3, and 4) which can form three stable hairpin
structures between consecutive segments. After the first two segments are transcribed they
form a hairpin which stops transcription (c.f. Figure 1B-I). When a ribosome binds the
nascent mRNA, it disrupts Hairpin 1:2 and transcription is re-initiated along with translation.
Segment 1 contains two tryptophan codons in tandem. If there is scarcity of tryptophan,
and thus of loaded tRNATrp, the ribosome stalls in the first segment. The development
of Hairpin 2:3 (the antiterminator) is then facilitated, and transcription proceeds until the
end (c.f. Figure 1B-II). However, if tryptophan is abundant, the ribosome rapidly finishes
translation of Segments 1 and 2 and promotes the formation of a stable hairpin structure
between Segments 3 and 4 (c.f. Figure 1B-III). RNA polymerase molecules recognize this
hairpin structure as a termination signal and transcription is prematurely terminated.

Enzyme inhibition takes place through anthranilate synthase, the first enzyme to catalyse a
reaction in the catalytic pathway that leads to the synthesis of tryptophan from chorismate.
This enzyme is a hetero-tetramer consisting of two TrpE and two TrpD polypeptides.
Anthranilate synthase is inhibited by tryptophan through negative feedback. This feedback
inhibition is achieved when the TrpE subunits in anthranilate synthase are individually bound
by a tryptophan molecule, see Figure 1C. Therefore, an excess of intracellular tryptophan
inactivates most of the anthranilate synthase protein avoiding the production of more
tryptophan.
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3. Methods

3.1 Model development

There are three different repressor binding sites (operators) overlapping the trp promoter.
Hence, the promoter can be in eight different states, with each operator being either free or
bound by a repressor molecule. Furthermore, when two repressor molecules are bound to
the first and second operators, they do it cooperatively (Grillo et al., 1999). As discussed in
Appendix A, this cooperativity allows the grouping of the promoter states into two different
sets that we term the permissive and the restrictive global states. The transitions within each
global state and those from the permissive global state to the restrictive global state being
much faster than those from the restrictive global to the permissive global states. This fact
justifies the assumption that the system “instantaneously” reaches a stationary probability
distribution for the states within every global state. This supposition in turn permits the
derivation of the following expressions for the transition rates from the permissive into the
restrictive global states (k+), and vice versa (k−):

k+ =
k+i RA/Kj + k+j RA/Ki

1 + RA/Ki + RA/Kj
, (1)

k− =
k−i + k−j

kc
, (2)

where k+i and k+j are the rates for the reactions where a repressor molecule binds to the

first and second operators, respectively; k−i and k−j are the rates for the reactions in which

a repressor molecule detaches from the first and second operator; RA is the number of active
repressors; Ki = k−i /k+i ; and Kj = k−j /k+j .

On the other hand, when the promoter is in the permissive global state, the probability that it is
not bound by any repressor and so it is free to be bound by a polymerase to start transcription
is

PR =
1

(1 + RA/Kk)(1 + RA/Ki + RA/Kj)
. (3)

Repressor molecules are activated when they are bound by a couple of tryptophan molecules.
The kinetics of repressor activation were analysed in (Santillán & Zeron, 2004), where the
number of active repressors is demonstrated to be given by

RA = RT

(

T

T + KT

)2

, (4)

where RT stands for the total number of repressor molecules, while T is the tryptophan
molecule count. Substitution of Eqn. (4) into Eqns. (1) and (3) permits the calculation of
the promoter inactivation rate (k+) and the probability PR in terms of the tryptophan level
(T).

Due to transcriptional attenuation, only a fraction of the polymerase molecules that initiate
transcription reach the end of the trp genes and produce functional mRNA molecules, which
in turn are translated to produce the proteins coded by the trp genes. Santillán and Zeron
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(2004) found that the probability that transcription is not prematurely terminated due to
transcriptional attenuation is:

PA =
1 + 2αT

(1 + αT)2
, (5)

with α a parameter to be estimated.

It follows from the considerations in the previous paragraphs that a promoter in the restrictive
global state is completely incapable of being expressed, but its activity level when it is in the
permissive global state is a function of the tryptophan level T and is given by the product of
PR and PA. Therefore, if kE denotes the rate of enzyme synthesis by a fully active promoter,
the enzyme synthesis rate when the promoter is in the permissive state at a given tryptophan
level turns out to be:

kEPR(T)PA(T). (6)

Tryptophan is synthesized by proteins which are assembled from the polypeptides coded by
the trp genes. Conversely, tryptophan is mainly consumed in the synthesis of all kinds of
proteins in E. coli. Thus, the equation governing the tryptophan-level dynamics is:

dT

dt
= kT EPI(T)− ρ(T)− µT,

where µ is the bacterial growth rate, kT is the tryptophan rate of synthesis per enzyme
molecule

PI(T) =
Kn

I

Tn + Kn
I

is the probability that an enzyme molecule is not feedback inhibited by tryptophan, and

ρ(T) = ρmax
T

T + Kρ

is the rate of tryptophan consumption associated to protein synthesis. If we assume that these
processes are much faster than those associated to gene expression and protein degradation,
then we can make the following quasi-steady state approximation: dT/dt = 0, and the
tryptophan molecule count can be uniquely calculated in terms of the enzyme molecule count
as the root of the following algebraic equation:

kT EPI(T)− ρ(T)− µT = 0. (7)

Following previous modelling studies we assume that the enzyme degradation rate is
negligible as compared with the bacterial growth rate, µ. On the other hand, instead of
considering a cell that grows exponentially, we assume that we have a constant-volume cell
and that the effective enzyme degradation rate is µ.

The facts previously discussed in the present section provide enough information to develop
a model for the trp operon regulatory pathway. This model consists of four chemical reactions:
promoter activation, promoter inactivation, enzyme synthesis, and enzyme degradation,
whose rates are k−, k+(T(E))RA(T(E)), kEPR(T(E))PA(T(E)), and µE, respectively. Figure
2 provides a schematic representation of such a model. It is worth emphasizing that
the repression regulatory feedback loop is implicitly accounted for by functions k+(T(E))
and PR(T(E)), that function PA(T(E)) corresponds to the attenuation feedback regulatory
mechanism, and the feedback enzyme inhibition is implicit in the function T(E), obtained
after solving Eqn. (7).
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Fig. 2. Schematic representation of the mathematical model here developed for tryptophan
operon gene regulatory circuit.

3.2 Parameter estimation

We paid special attention to the estimation of all the model parameters from reported
experimental data. The parameter values we employ in the present work and the detailed
procedure to estimate them are presented in Appendix B.

3.3 Numerical methods

The time evolution of the reaction network that models the tryptophan operon regulatory
pathway was simulated by means of the Gillespie algorithm, which we implemented in
Python.

4. Results

We carried out stochastic simulations with the model described in the previous section. As
formerly stated, we made use of Gillespie’s algorithm to mimic the system dynamic evolution
for 200,000 min. In the first simulation we employed the parameter values estimated in
Appendix B, which correspond to a wild-type bacterial strain. The results are summarized in
Figure 3. In Figure 3A the cumulative sum of the promoter activity is plotted vs. time. We can
appreciate there the existence of alternated activity and inactivity periods, just like it has been
observed in transcriptional bursting. To further investigate this phenomenon we calculated
the histograms of the permissive and restrictive period lengths. The results are shown in
Figures 3B and 3C, respectively. Observe that both histograms are well fitted by exponential
distributions, in agreement with the reported experimental data on transcriptional bursting.
Finally, we present in Figures 3D and 3E the histograms for the enzyme and tryptophan
molecule counts, respectively.

One feature worth noticing is that the histogram for the enzyme abundance is well fitted by
a gamma distribution with parameters k = 32.5 and θ = 63. This last fact is in agreement
with the existence on transcriptional bursting in the trp operon of E. coli. It has been proved
that in such a case, the protein count obeys a gamma distribution, with parameters k and θ
respectively interpreted as the average number of transcriptional bursts occurring during an
average protein lifetime and the mean number of proteins produced per burst (Shahrezaei &
Swain, 2008). It is also interesting to point out that the coefficient of variation in the tryptophan
molecule count is similar to that of the enzyme molecule count.
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Fig. 3. Statistical analysis of the simulation corresponding to the wild-type strain. A) Plot of
the cumulative promoter activity vs. time. B) Histogram of the promoter permissive time
intervals and best fit to an exponential distribution. C) Histogram of the promoter restrictive
time intervals and best fit to an exponential distribution. D) Histogram of the enzyme
molecule count and best fit to a gamma distribution. E) Histogram of the tryptophan
molecule count.

In order to understand the influence of the slow promoter gating between the global
permissive and restrictive states on the operon dynamics, we increased the value of
parameters k+x and k−x (x = I, j, k) by a factor of 100. In this way, the promoter switching rate
among all its available states gets faster, without altering each state’s stationary probability.
We repeated the simulation described in the previous paragraph with this new parameter set
and the results are condensed in Figure 4.

We observe by comparing Figures 3A and 4A that there are many more alternated activity
and inactivity periods in the fast-switching model than in that corresponding to the wild
type strain. Concomitantly, the periods are shorter in the former case. Interestingly, the
accumulated promoter activity is quite similar for both models. This last result comes from
our increasing parameters k+x and k−x by the same factor, and is in agreement with the fact that
the mean enzyme and tryptophan counts are quite similar in both models (see below).

In Figures 4B and 4C we present the histograms for the activity and inactivity periods, and
the corresponding fits to exponential distributions. By comparing with the wild-type period
distributions we can see that the mean values of both the activity and inactivity periods
decrease. However the decrease of the activity-period average is about twice as large as that
of the average of the inactivity period.

Finally, the histograms for the enzyme and tryptophan molecule counts are plotted in Figures
4D and 4E. Notice that the histogram for the enzyme count is well approximated by a gamma
distributions with parameters k = 2079 and θ = 1. Therefore, by making the promoter
switching rate faster we increased the frequency of bursting, but decreased in the same
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Fig. 4. Statistical analysis of the simulation corresponding to the strain with fast
promoter-transition rates. A) Plot of the cumulative promoter activity vs. time. B) Histogram
of the promoter permissive time intervals and best fit to an exponential distribution. C)
Histogram of the promoter restrictive time intervals and best fit to an exponential
distribution. D) Histogram of the enzyme molecule count and best fit to a gamma
distribution. E) Histogram of the tryptophan molecule count.

amount the number of proteins synthesized per burst. In that way, the average enzyme
count remains the same (compare with Figure 3D). However, the variation coefficient is much
smaller in the fast promoter switching model than in the wild-type one. Recall that, in the

gamma distribution, the mean and the standard deviation are: µ = θk and σ = θ
√

k, while the

variation coefficient is given by CV = σ/µ = 1/
√

k.

We further simulated a bacterial mutant strain lacking the feedback inhibition regulatory
mechanism. To mimic this mutation we increased the value of parameter KI by two orders of
magnitude, up to KI = 500, 000 molecules. We analysed this last simulation in a similar way
than the previous ones and present the results in Figure 5.

A comparison of Figures 3A and 5A reveals that the promoter level of activation is
generally smaller in the inhibition-less mutant strain than in the wild-type strain, because the
accumulated activity is about three times smaller in the former case. Nonetheless the length
of the activity and inactivity periods seem to be similar. This last assertion is corroborated
by the plots in Figures 5B and 5C, where we can see the the activity and inactivity period
histograms are well fitted by exponential distributions, and that the corresponding mean
values are similar to the corresponding ones in the wild-type strain.

In agreement with the fact that the promoter level of activity is smaller in the inhibition-less
than in the wild-type strain, the mean protein count is smaller in the first case (compare
Figures 3D and 5D). On the other hand, the coefficient of variation (CV) is similar in both cases.
To understand why this happens when one would expect a larger CV in the inhibition-less
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intervals and best fit to an exponential distribution. C) Histogram of the promoter restrictive
time intervals and best fit to an exponential distribution. D) Histogram of the enzyme
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Fig. 6. Plots of the normalized enzyme count and the normalized tryptophan count,
averaged over 1,000 independent simulations, vs. time for the wild-type (blue line), the fast
promoter-transition (red line), and the inhibition-less (green line) E. coli strains.

mutant because of the reduced enzyme count, we fitted the histogram in Figure 5D and found
that the best fit is obtained with parameters k = 40 and θ = 1.2. Since the values of k for the
inhibition-less and the wild-type strains are similar, we conclude that the burst frequency is
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comparable in both cases. However, the number of proteins produced per burst is notably
smaller in the inhibition-less strain due to the reduced promoter activity, as well as to the
increased level of transcriptional attenuation.

We note that, in contrast with the two previous simulations, the variation coefficient of the
tryptophan molecular count in the inhibition-less strain is much larger than the coefficient of
variation for the enzyme count. To our understanding, this happens because, being enzyme
inhibition absent, there is a highly non-linear relation between the enzyme and tryptophan
molecule counts.

In order to investigate the effect of the inhibition-less mutation and of the increased promoter
switching rate on the trp operon response time, we carried out 1,000 simulations with each
bacterial strain (including the wild type), starting with the promoter in the restrictive state
and zero enzyme and tryptophan molecules as initial conditions. Then, we averaged the
enzyme and the tryptophan counts over all the simulations, and plotted the results in Figure
6 to compare how fast each strain approaches the steady state. We can see there that the
inhibition-less strain is the one with the shortest response time, followed by the wild type and
the fast promoter switching strains, respectively.

5. Concluding remarks

In this work we have introduced a stochastic mathematical model for the tryptophan operon.
Our objectives were twofold: 1) to investigate whether the reported reaction rates of the
interaction between repressor and the operators can give rise to transcriptional bursting; and
2) to study the dynamic effects of transcriptional bursting, if it exists, and of the feedback
enzyme-inhibition regulatory mechanism.

Regarding the first objective our results indicate that, indeed, the reported reaction rates
make the promoter switching between its available states slow enough so as to give
rise to transcriptional bursting. As previously discussed, this assertion is supported by
the agreement between our model results and a number of reported experimental facts.
Interestingly, experiments on the lac operon also suggest that transcriptional bursting has its
origin in the kinetics of the repressor-operator interaction. As a matter of fact, Choi et al. (2008)
demonstrated that the cooperativity present when a single repressor molecule is bound to two
distant operators is responsible of generating two different types of bursts in the expression
of lac operon.

In our model we have assumed that the trp promoter activation rate k− is independent of the
tryptophan concentration. This assumption is supported by direct and indirect experimental
measurements of the promoter activation and deactivation rates on the lac and several other
promoters (Choi et al., 2008; So et al., 2011). Those reports demonstrate that modulation of
gene expression is mainly achieved by changing the promoter deactivation rate.

Regarding our second objective, our results allow us to put forward the following conclusions:

• Transcriptional bursting increases the noise level and decreases the system response time
after a nutritional shift. To the best of our understanding, the noise level is increased
because the promoter-transition events become less frequent as the promoter-repressor
interactions slow down, thus enhancing the concomitant stochastic effects. On the
other hand, the faster system response can be explained by a single burst of intense
transcriptional activity, occurring during the first couple of minutes after the nutritional
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shift. This burst allows most of the cells to reach tryptophan levels superior to two thirds
of the steady-state level.

• Enzyme inhibition also has important dynamic effects. It increases the noise level
in the enzyme count, but decreases the noise level in the number of tryptophan
molecules. Furthermore, this regulatory mechanism also increases the system response
time. Knowing that the presence of a strong negative feedback is capable of reducing
the noise in a biological system (Austin et al., 2006; Becskei & Serrano, 2000; Dublanche
et al., 2006), we can explain the above observations as follows: the fact that the wild-type
E. coli strain has lower tryptophan levels than the inhibition-free strain means that the
transcriptional-attenuation and the repression feedback loops are weaker in the first strain;
this weakening of both negative feedback loops is responsible for the increment of the noise
level in the enzyme count. For the same reasons, the presence of the enzyme-inhibition
feedback loop reduces the noise level in the tryptophan count, but makes it necessary to
produce much more enzymes to fulfil the required tryptophan production. This increased
enzyme synthesis requirement lengthens the system response time.

Finally, if we assume that having a tryptophan operon with short response times and low noise
levels in the tryptophan molecular count are beneficial traits for E. coli then we can speculate
from the previously discussed facts that evolution has bestowed this system with an optimal
trade-off between short response times and low tryptophan noise.
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7. Appendix

A. Promoter dynamics modelling

Three different operators are overlap with the trp promoter and each of them can be bound by
a repressor molecule. Therefore, the eight promoter states can be denoted as {i, j, k}, where
i, j, k = 0, 1 represent the binding state of the first, second, and third repressors, respectively.
A zero (one) value means that the corresponding operator is free from (bound by) a repressor
molecule.

Let k+i , k+j , and k+k respectively denote the rates of binding of a repressor molecule to the

first, second, and third operators, when the other two are free. Similarly, let k−i , k−j , and k−k
respectively represent the dissociation rate of a repressor molecule solely bound to the first,
second, and third operators.

It is known that the first and second operators are bound by repressor molecules cooperatively
and the cooperativity constant kc > 1 has been measured. Here we assume that this
cooperativity means that the rate of dissociation for a repressor molecule bound to either the
first or the second operator is respectively given by k−i /kc or k−j /kc, when both operators

are bound by repressor molecules. Under this assumption, the eight different promoter
states can be grouped into two sets that we call the permissive and the restrictive global
states. The permissive global state consists of states (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1),
and (0, 1, 1), while the restrictive global state consists of (1, 1, 0), and (1, 1, 1). From the

189Transcriptional Bursting
in the Tryptophan Operon of E. coli and Its Effect on the System Stochastic Dynamics

www.intechopen.com



12 Will-be-set-by-IN-TECH

way the were constructed, the transitions within each global state and the transitions from
the permissive to the restrictive global state are much faster than the transitions from the
restrictive to the permissive global state. From the above considerations we make an adiabatic
approximations for all the transitions within the permissive state, and thus:

P(0, 0, 0) RA
Ki

= P(1, 0, 0),

P(0, 0, 0) RA
Kj

= P(0, 1, 0),

P(0, 0, 0) RA
Kk

= P(0, 0, 1),

P(0, 0, 1) RA
Ki

= P(1, 0, 1),

P(0, 0, 1) RA
Kj

= P(0, 1, 1),

where P(i, j, k) stands for the probability of state i, j, k within the restrictive global state, RA

denotes the number of active repressors, and Kx = k−x /k+x (x = i, j, k). It follow from the
equations above and the constraint P(0, 0, 0) + P(1, 0, 0) + P(0, 1, 0) + P(0, 0, 1) + P(1, 0, 1) +
P(0, 1, 1) = 1 that

P(0, 0, 0) = 1
(1+RA/Kk)(1+RA/Ki+RA/Kj)

,

P(1, 0, 0) = RA/Ki

(1+RA/Kk)(1+RA/Ki+RA/Kj)
,

P(0, 1, 0) =
RA/Kj

(1+RA/Kk)(1+RA/Ki+RA/Kj)
,

P(0, 0, 1) = RA/Kk

(1+RA/Kk)(1+RA/Ki+RA/Kj)
,

P(1, 0, 1) = RA/Ki×RA/Kk

(1+RA/Kk)(1+RA/Ki+RA/Kj)
,

P(0, 1, 1) =
RA/Kj×RA/Kk

(1+RA/Kk)(1+RA/Ki+RA/Kj)
.

Let k+ (k−) be the transition rate from each of the states in the permissive (restrictive) global
state to each if the states in the restrictive (permissive) global state. From Zeron and Santillán
(2010), these rates are given by

k+ = k+i (P(0, 1, 0) + P(0, 1, 1)) + k+j (P(1, 0, 0) + P(1, 0, 1)) =
k+i RA/Kj + k+j RA/Ki

1 + RA/Ki + RA/Kj
,

and

k− =
k−i + k−j

kc
(P(1, 1, 0) + P(1, 1, 1)) =

k−i + k−j
kc

,

since P(1, 1, 0) + P(1, 1, 1) = 1.

Finally, when the promoter is in the permissive global state, the probability that it is not bound
by any repressor and so it is free to be bound by a polymerase to start transcription is

PR = P(0, 0, 0) =
1

(1 + RA/Kk)(1 + RA/Ki + RA/Kj)
.

Thus PR can be interpreted as the operator activity level.
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B. Estimation of the model parameters

In this work we consider a bacterial doubling time of 40 min, and thus

µ ≃ 0.017 min−1.

From the website E. coli Statistics, the total number of proteins in E. coli is about 3.6
millions, while the average protein size is 360 residues. On the other hand, we have from the
website B1ONUMB3RS (http://bionumbers.hms.harvard.edu/) that the abundance of
tryptophan in the E. coli proteins is around 1.1%. The data above imply that there are of the
order of 14.256 million tryptophan molecules assembles in the E. coli proteins at any given
time. If we further consider that all the proteins in a bacterium have to be doubled before it
duplicates (every 40 min), then the average tryptophan consumption rate is

ρmax ≃ 360, 000 molecules/min.

Since this consumption rate cannot be maintained when the tryptophan level is too low, we
assumed that the consumption rate for this amino acid is given by

ρ(T) = ρmax
T

T + Kρ
,

with
Kρ = 1, 000 molecules.

This choice for Kρ guarantees that the tryptophan consumption rate is most of the time very
close to ρmax, except when there are of the order of a few thousand molecules of the amino
acid.

According to the website E. coli Statistics (http://redpoll.pharmacy.
ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi), the average tryptophan molecule count
in this bacterium is

T∗ ≃ 80, 000 molecules.

From Morse et al. (1968), the average number of anthranilate synthase enzymes in E. coli is

E∗ ≃ 2, 000 molecules.

Caligiuri & Bauerle (1991) found from their experimental data that the probability that an
anthranilate synthase enzyme is not feedback inhibited by tryptophan can be approximated
by the following function:

PI(T) =
Kn

I

Kn
I + Tn

,

with
KI ≃ 2, 500 molecules, and n ≃ 1.2.

Let kT be the tryptophan synthesis rate per anthranilate synthase molecule. Given, that the
average tryptophan synthesis rate must equal the consumption rate for this amino acid, we
can solve for kT from the following equation kT E∗PI(T∗) = ρmax. After doing the math we
obtain

kT ≃ 12, 000 molecules/min.
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Consider the promoter model discussed in Section 3. Let Pact be the probability that the
promoter is in the global permissive state. We have thus that, in the stationary state,
k+RAPact = k−(1 − Pact). Then, by solving for Pact in the previous equation and taking into
consideration that, when the promoter is in the global permissive state, the probability that
it is ready to be bound by a polymerase is PR. The stationary promoter activity level as a
function of the tryptophan molecule count is

1

1 + k+(T)RA(T)/k−
PR(T).

It is straightforward to test that the promoter activity level equals one when T = 0 molecules.
On the other hand, Yanofsky & Horn (1994) measured that the operon expression level
is maximal under conditions of tryptophan starvation, and that the repression regulatory
mechanism decreases the promoter activity level by 60 times when the tryptophan level
reaches its normal value. Thus, we must have that

1

1 + k+(T∗)RA(T∗)/k−
PR(T

∗) = 1/60.

This last result can then be used to estimate parameter KT—see Eqn. (4). Thus, from Eqn. (4)
and given that (Gunsalus et al., 1986)

RT ≃ 400 molecules,

we obtain after some algebra that

KT ≃ 1.7 × 106 molecules.

Grillo et al. (1999) estimated the following values for the promoter-repressor interaction rates:

k+i ≃ 8.1 molecules−1min−1,

k−i ≃ 6.0 min−1,

k+j ≃ 0.312 molecules−1min−1,

k−j ≃ 0.198 min−1,

k+k ≃ 0.3 molecules−1min−1,

k−k ≃ 36.0 min−1,

kc ≃ 40.0

The probability that transcription is not prematurely terminated due to transcriptional
attenuation is given by Eqn. (5). On the other hand, Yanofsky & Horn (1994) measured that
one of every ten polymerases that have initiated transcription finish transcribing the operon
genes when the tryptophan level is at its normal value. This means that PA(T) = 0.1. We
obtain from this that

α ≃ 2.3 × 10−4 molecules−1.

Finally, the value of parameter kE is chosen so that, when T = T∗, the average enzyme
molecule count is E∗. We found by inspection that

kE ≃ 30, 000 molecules/min.

complies with this requirement.
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