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1. Introduction

Linear spectral transform techniques such as the discrete Fourier transform and wavelet

analysis over real and complex fields have been routinely applied in the literature (Burrus

et al. (1998); Strang & Nuygen (1996)). Furthermore, extensions of these techniques over finite

fields (Blahut & Burrus (1991); Caire et al. (1993)) have led to applications in the areas of

information theory and error control coding (Blahut (2003); Dodd (2003); Sakk (2002); Wicker

(1994)). The goal of this chapter is to review the Galois Field Fourier Transform, the associated

convolution theorem and its application in the field of error control coding. In doing so, an

interesting connection will be established relating the convolution theorem over finite fields

to error control codes designed using finite geometries (Blahut (2003); Lin & Costello (1983);

Wicker (1994)).

While a complete exposition of the field of error control would be out of context for this

chapter, we refer the interested reader to the recent characterizations of Low-Density Parity

Check (LDPC) codes (Pusane et al. (2011); Smarandache et al. (2009); Xia & Fu (2008)). Such

formulations have led to a resurgence of interest in the design (Kou et al. (2001); O.Vontobel

et al. (2005); Tang et al. (2005); Vandendriesscher (2010)) and decoding (Kou et al. (2001); Li

et al. (2010); Liu & Pados (2005); Ngatched et al. (2009); Tang et al. (2005); Zhang et al. (2010))

of finite geometry codes. The formulation in this chapter is meant to serve as a guiding

principle relating finite geometric properties to algebraic ones. The vehicle we have chosen

to demonstrate these relationships is an example from the field of error control. In particular,

we show how a generalized Fourier-like convolution theorem can be applied as a decoding

methodology for finite geometry codes.

We begin in Section 2 by reviewing the Galois Field Fourier Transform (GFFT) followed by

an overview of error control coding in Section 3. In addition, in Section 3.1 it is demonstrated

how the GFFT can be applied within the context of error control coding. Section 4 then goes on

to generalize these results to linear transformations using Pascal’s triangle as an example. The

combinatorics of such a transformation naturally lead to the design of codes derivable from
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2 Will-be-set-by-IN-TECH

finite geometries. Finally, Sections 5 and 6 conclude this chapter by deriving and applying the

generalized convolution theorem.

2. The Galois Field Fourier Transform

We are particulary interested in the case of finite fields where p is a prime number and α ∈

GF(pm) is an element of order n. The Galois Field Fourier Transform (GFFT) and its inverse

of a vector v = {v0, v1, ..., vn−1} over GF(p) of length n can be related via the equations:

Vj =
n−1

∑
i=0

αijvi j = 0, ..., n − 1

and

vi = (n)−1
n−1

∑
j=0

α−ijVj i = 0, ..., n − 1.

For any vector f over GF(p) where the above equations hold true, we define

F (v) ≡ V = {V0, V1, ..., Vn−1} (1)

as the GFFT of v and

F−1(V) = v = {v0, v1, ..., vn−1} (2)

as the inverse GFFT of F.

Using this formulation, given two vectors

v = {v0, v1, ..., vn−1}

w = {w0, w1, ..., wn−1}
(3)

over GF(p) and their associated transforms

F (v) = V = {V0, V1, ..., Vn−1}

F (w) = W = {W0, W1, ..., Wn−1},
(4)

the familiar convolution theorem can be demonstrated to hold true for the finite field case.

Specifically, computing

xj =
n−1

∑
k=0

vkw(j−k) (5)

is equivalent to computing

xj = F−1(VjWj). (6)

3. Error control coding

Given a message encoded as a vector µ of length k over GF(p), the goal of error control coding

(ECC) is to transform the message vector into a code vector C of length n > k in a way that

causes C to be robust to errors arising over a communication channel (such as a wireless
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The Fourier Convolution Theorem over Finite Fields:Extensions of its Application to Error Control Codin 3

link, fiber optic cable, etc). Rather than the message vector µ, it is the code vector C that is

transmitted over a channel where the receiver is only able to observe a received vector Ĉ.

Ideally, in the absence of any noise, it should be the case that Ĉ = C. On the other hand, if

noise is present on the channel, the method used to transform (i.e. ’encode’) the message µ

into the code vector C provides a way to recover µ from Ĉ. The basic strategy behind ECC is,

given a message,

a. Embed a k dimensional message vector µ in a larger vector space of dimension n to create

the code vector C.

b. The addition of channel noise converts C into the received vector Ĉ.

c. If the channel noise does not cause Ĉ to be confused with other possible encodings, the

original code vector C can be recovered using some predetermined decoding scheme.

Conceptually speaking, the Ĉ that lies within a predefined noise ’sphere’ with respect to

the original C will be decoded as the (ideally) unique C; hence, µ can be recovered as well.

The size of the noise sphere (which is designed as part of the code) determines how many

errors can be corrected.

The general idea behind ECC then is to find a C that minimizes ||C − Ĉ|| ; however,

numerically determining the minimum distance solution is wrought with dimensionality

issues that can lead to computational intractability. Hence, classes of codes have been devised

that relate the message encoding method to the decoding algorithm. Such algorithms are often

iterative (Blahut (2003); Lin & Costello (1983); Wicker & Kim (2003)) and converge upon the

optimal solution by exploiting the mathematical structure designed into the code.

Two important quantities in the field of ECC are the Hamming weight and the Hamming

distance. Consider two vectors v and w of length n over GF(p).

Definition 3.1. The Hamming weight wH(v) of a vector v is defined as the number of non-zero

components in v.

Definition 3.2. The Hamming distance between v and w is defined as the number of components that

differ between v and w.

For example, over GF(3), assuming n = 5, v = {0 2 1 0 2} and w = {0 2 2 1 2}, according to

the above definitions we have that wH(v) = 3, wH(w) = 4 and dH(v, w) = 2.

An important quantity for defining the noise sphere is referred to as dmin which is the

minimum Hamming distance between all code vectors defined in the code class. To correct

up to t errors in any code vector, it turns out that dmin = 2t + 1. Furthermore, when the ECC

is a linear code, a major simplification arises where dmin is simply the minimum Hamming

weight computed over all non-zero code vectors in the code class.

3.1 Application of the GFFT to Reed-Solomon codes

The GFFT and the convolution theorem have been applied in the field of error control coding

for the construction of a class of linear codes known as Reed-Solomon codes (Blahut (2003);

Wicker (1994)). The algorithm for encoding a message vector µ over GF(pm) of length k is
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quite straightforward. To be able to correct up to t errors, create a vector of length n by

appending µ with 2t consecutive zeros. The code vector C is then derived by computing the

inverse GFFT of the appended construction. One approach to proving that this construction

is capable of correcting up to t errors involves applying the GFFT convolution theorem.

Specifically, given a code vector C, a locator vector Λ must be defined such that CjΛj = 0 for

all j = 0, · · · , n. Letting c and λ denote the GFFT of C and Λ, the convolution theorem implies

c ∗ λ = 0. Based upon the convolution approach, the conclusion can be reached that the

inverse GFFT construction leads to Reed-Solomon codes capable of correcting up to t errors

in the code vector (Blahut (2003); Wicker (1994)).

The key feature of the GFFT approach to constructing Reed-Solomon codes described above is

that restrictions are placed on the position and the number of zeros appended to the message

vector. To summarize:

i. Addition of zeros to the message vector µ of length k is performed at prescribed locations.

ii. The resulting vector is then inverse transformed in order to compute the code vector C.

iii. The error correcting properties of this code can be demonstrated by applying the

convolution theorem.

In this work, one our of goals is to demonstrate that, given other linear transformations

inducing a convolution theorem, the above steps can be generalized to other classes of

codes. As we shall see, the key is to define the transform and the structure of how zeros

are introduced into the message vector.

4. Pascal codes

4.1 The Pascal matrix over finite fields

Let us now focus our attention on the case of GF(p) where p is prime. Our starting point will

be:

Definition 4.1. Let p be a prime number, then the ijth entry of a pm × pm mth order Pascal matrix

Ppm over GF (p) is defined as

pij = (j!)((j − i)!i!)−1 mod p

=

(

j

i

)

mod p
(7)

for i, j = 0, 1, ..., pm − 1 and, by convention, if i > j, then pij = 0.

In other words, Ppm is an upper triangular matrix whose non-zero entries are the elements of

Pascal’s triangle taken mod p. For the purposes of this work, it is useful to observe that Ppm

also has a Kronecker product description (Sakk & Wicker (2003)):

Ppm = Pp ⊗ Ppm−1 mod p (8)

where Pp is a 1st order Pascal matrix.
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Example 4.2. Consider the binary case where p = 2 and m = 3. Equation (8) gives

P23 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Example 4.3. Consider the ternary case where p = 3 and m = 2. Equation (8) gives

P32 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1 1 1 1 1

0 1 2 0 1 2 0 1 2

0 0 1 0 0 1 0 0 1

0 0 0 1 1 1 2 2 2

0 0 0 0 1 2 0 2 1

0 0 0 0 0 1 0 0 2

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

4.2 The inverse of the Pascal matrix

As Section 5 will require understanding Qpm ≡ P−1
pm , we introduce the following.

Observation 4.4. Let p be prime and let Qp be the p × p matrix defined by

qij =

{

(−1)j−i(j
i) mod p if j ≥ i,

0 otherwise
for i,j=0, 1, ..., p-1. (9)

Then Qp = P−1
p mod p.

This result easily follows from the integer case (Call & Velleman (1993); Heller (1963)).

Furthermore, it has been demonstrated that (Sakk (2002)):

Observation 4.5. If p is prime and Pp is a 1st order Pascal matrix over GF(p), then

P
p
p mod p = Ip (10)

where Ip = p × p identity matrix.

Hence, it easily follows that

Corollary 4.6. If p is prime and Pp is a Pascal matrix over GF(p), then

Qp = P−1
p mod p = P

p−1
p mod p. (11)
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Example 4.7. A Pascal matrix over GF(5) and its inverse:

Pp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1

0 1 2 3 4

0 0 1 3 1

0 0 0 1 4

0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Qp = P4
p =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 4 1 4 1

0 1 3 3 1

0 0 1 2 1

0 0 0 1 1

0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Based upon Equation (8), it should be clear that

Qpm = Qp ⊗ Qpm−1 mod p. (12)

Finally, based upon Equation (10), it also follows that, for the mth order case,

P
p
pm mod p = Ipm (13)

where Ipm = pm × pm identity matrix. In a manner similar to the m = 1 case, this

characterization provides a path to computing the mth order inverse

Qpm ≡ P−1
pm mod p = P

p−1
pm mod p. (14)

4.3 Error control codes designed from Pascal matrices

In a manner similar to the GFFT approach to Reed-Solomon codes summarized in Section

3.1, it has been pointed out that Ppm can also be used to transform message vectors with the

appropriate coordinates set equal to zero (Sakk & Wicker (2003)). More precisely, we have the

following:

Definition 4.8. Consider an mth order Pascal matrix over GF(p) and let r be an integer such that

0 ≤ r ≤ m(p − 1). Also, consider the p-ary expansion of an index

i = i0 p0 + i1 p1 + · · ·+ im−1 pm−1

where 0 ≤ ij ≤ p − 1 for 0 ≤ j ≤ m − 1. A codeword c for an rth order Pascal code of length pm,

denoted by Pp(r, m), is generated by

C = µPpm (15)

where

µ =
(

µ0 µ1 · · · µpm−1

)

is a message vector of length pm − 1 such that µi ∈ GF(p),

{

µi = 0 i f wp(i) > r

µi �= 0 i f wp(i) ≤ r
(16)
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and

wp(i) ≡
m−1

∑
j=0

ij.

Error control codes derived from the mth order Pascal matrix over GF(2) (i.e. binary data) have

been related (Forney (1988); Massey et al. (1973)) to a class of codes known as rth order binary

Reed-Muller codes RM(r, m) of length 2m (MacWilliams & Sloane (1977); Wicker (1994)). In

addition, it has been further demonstrated (Sakk (2002)) that P2(r, m) codes over GF(2) are

equivalent to RM(r, m) codes with minimum distance dmin = 2m−r. These observations have

been extended where it has been demonstrated that Pp(r, m) codes over GF(p) are equivalent

to generalized Reed-Muller codes (GRM) codes (Sakk (2002)).

To place this class of codes in the same context as that outlined in Section 3.1, we must

show how to introduce zeros into the message vector, apply the Pascal matrix as the linear

transformation and, based upon this transformation, introduce a convolution theorem. From

the definition above, a given code is specified by choosing p, m and a value of 0 ≤ r ≤

m(p − 1). The code vector length then becomes n = pm; and, for this class of codes, a given

value of r defines the length k of the message. The rest of the n − k components of µ must be

set to zero in a systematic way that leads to the minimum distance property of the code.

Example 4.9. Consider P23 in Example 4.2 (hence, n = 23 = 8) and a message vector µ =

(µ0, µ1, ..., µ7) and let s be the number of consecutive zeros in the vector µ for a given value of

r:
r = 0 (dmin = 8) : s = 7 µ = (µ0, 0, 0, 0, 0, 0, 0, 0) (k = 1)

r = 1 (dmin = 4) : s = 3 µ = (µ0, µ1, µ2, 0, µ4, 0, 0, 0) (k = 4)

r = 2 (dmin = 2) : s = 1 µ = (µ0, µ1, µ2, µ3, µ4, µ5, µ6, 0) (k = 7)

r = 3 (dmin = 1) : s = 0 µ = (µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7) (k = 8)

Example 4.10. Consider P32 in Example 4.3 (hence, n = 32 = 9) and a message vector µ =

(µ0, µ1, ..., µ8) and let s be the number of consecutive zeros in the vector µ for a given value of

r:
r = 0 (dmin = 9) : s = 8 µ = (µ0, 0, 0, 0, 0, 0, 0, 0, 0) (k = 1)

r = 1 (dmin = 6) : s = 5 µ = (µ0, µ1, 0, µ3, 0, 0, 0, 0, 0) (k = 3)

r = 2 (dmin = 3) : s = 2 µ = (µ0, µ1, µ2, µ3, µ4, 0, µ6, 0, 0) (k = 6)

r = 3 (dmin = 2) : s = 1 µ = (µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, 0) (k = 8)

r = 4 (dmin = 1) : s = 0 µ = (µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8) (k = 9)

In the above examples, dmin is shown in parentheses for each value of r; furthermore, observe

that dmin = s + 1. Recalling for a moment the GFFT approach to Reed-Solomon code design,

the minimum distance of a code where the message vector has n − k consecutive zeros can

be shown to be dmin = n − k + 1 (Blahut (2003); Wicker (1994)). It is apparent that, by using

a Pascal matrix as the transform, a result similar to that of the GFFT can be ascertained. The

major difference is that, for Reed-Solomon codes, the string of zeros must occur at the end of

the message vector before applying the GFFT to create C. For P(r, m), in addition to the string

of consecutive zeros, based upon the structure of Ppm , zeros must also be dispersed in other

positions within µ to form code vectors C = µPpm .

237The Fourier Convolution Theorem over Finite Fields:
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5. Extensions of the Fourier convolution theorem over finite fields

The convolution operation involves relating the componentwise product of two vectors in

one domain to the convolution of their transforms (Blahut & Burrus (1991)). Many linear

transforms have well-defined convolution operations. For instance, the Hadamard transform

yields the so-called logical or ’dyadic’ convolution operation (Ahmed et al. (1973); Dodd

(2003); Robinson (1972)). In this chapter, we develop extensions of the convolution theorem

that can be used to reveal useful properties of other classes of codes. As an example, we

demonstrate how the GFFT approach can be applied to describe generalized Reed-Muller

codes (Blahut (2003)).

To begin the formulation, we consider the componentwise product γj = µjλj of two vectors

µ = (µ0 ... µn−1) and λ = (λ0 ... λn−1). Furthermore, we consider matrix transforms such that

C ≡ µPpm and Λ ≡ λPpm or, equivalently, µ = CQpm and λ = ΛQpm where (Ppm )−1 ≡ Qpm .

(here, ’µ’ denotes the message vector and ’C’ denotes the code vector). We demonstrate a

formulation analogous to the convolution operation that describes γ = ΓQpm :

Γi =
n−1

∑
j=0

γj pji mod p i = 0, 1, ..., n − 1

=
n−1

∑
j=0

(µjλj)pji mod p

=
n−1

∑
j=0

µj(
n−1

∑
k=0

Λkqkj)pji mod p

=
n−1

∑
k=0

Λk(
n−1

∑
j=0

µjqkj pji) mod p

≡
n−1

∑
k=0

ΛkTi,k mod p i = 0, 1, ..., n − 1

(17)

where n = pm.

Notice that if we are dealing with familiar spectral transforms such as the Fourier or the

Hadamard transform (where P denotes the forward transform and Q denotes the inverse

transform), Ti,k takes on a simple form. This is because the product qkj pji in ∑
n−1
j=0 µjqkj pji

reduces to a term that enables us to take the transform of µ as C f (i,k) = 1
n (∑

n−1
j=0 µj pj, f (i,k)).

For the case of the Fourier transform f (i, k) = i − k and Ti,k = C(i−k); as expected, one ends

up with the convolution theorem (Blahut (2003); Wicker (1994)). In the case of a Hadamard

transform, f (i, k) = i ⊕ k (where ⊕ denotes bit-by-bit addition of the binary expansions of i

and k) and Ti,k = C(i⊕k). Here, the bit-by-bit addition ⊕ of the binary expansions of i and k

over GF(2) would result in the dyadic convolution (Ahmed et al. (1973); Robinson (1972)).

For the codes in this presentation, the qkj pji term in the above summation leads to a

convolution theorem that depends on the matrix Ppm . Furthermore, this theorem can also

be applied to demonstrate how to decode C to recover the message vector µ. In Equation (17)

238 Fourier Transform Applications
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qkj = (−1)j−k( j
k) mod p and pji = (i

j) mod p; therefore, the product qkj pji will not lead to an

expression that readily reduces the inner summation to a single term. To see why, let’s write

out Ti,k as follows:

Ti = (Ti,0 Ti,1 ... Ti,n−1)

= (µ0 µ1 ... µn−1)

⎡

⎢

⎢

⎢

⎢

⎣

q00 p0i q10 p0i · · · q(n−1)0 p0i

q01 p1i q11 p1i · · · q(n−1)1 p1i

...
... · · ·

...

q0(n−1)p(n−1)i q1(n−1)p(n−1)i · · · q(n−1)(n−1)p(n−1)i

⎤

⎥

⎥

⎥

⎥

⎦

= (µ0 µ1 ... µn−1)

⎡

⎢

⎢

⎢

⎢

⎣

p0i

p1i

. . .

p(n−1)i

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

q00 q10 · · · q(n−1)0

q01 q11 · · · q(n−1)1
...

... · · ·
...

q0(n−1) q1(n−1) · · · q(n−1)(n−1)

⎤

⎥

⎥

⎥

⎥

⎦

≡ µDiQ
T
pm

(18)

where T denotes the matrix transpose.

Observation 5.1. The components of the vector Ti = (Ti,0 Ti,1 ... Ti,n−1) can be written as a linear

combination of the components of C = (C0 ... Cn−1).

Proof: Let

Mi ≡ DiQ
T
pm (19)

where Di is defined in Equation (18) and

Ai ≡ Qpm Mi = Qpm DiQ
T
pm

⇒ Mi = Ppm Ai.
(20)

Then,

Ti = µMi = µPpm Ai = CAi. (21)

Combining this result with Equation (17) we conclude

Γi =
n−1

∑
k=0

ΛkTi,k mod p i = 0, 1, ..., n − 1

=
n−1

∑
k=0

Λk(CAi)k mod p i = 0, 1, ..., n − 1

(22)

So, instead of Ti,k reducing to one single component of the vector C (as one might expect

from a typical convolution operation), the Pascal convolution requires a linear combination of

the components of C. Although this operation is slightly more complicated than the Fourier

approach, the identity in Equation (8) does induce a simplification.

Observation 5.2. (Symbolic Computation of Pascal Convolution)

For the 1st order case where n = p and i = 0, ..., p − 1, using Equation (19) let M̂i ≡ Mi,
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using Equation (18) let D̂i ≡ Di and let Âi ≡ Qp M̂i. Then, for any 0 ≤ j ≤ pm − 1 where

j = j0 p0 + j1 p1 + ... + jm−1 pm−1 and Aj = Qpm Mj,

Aj = Âjm−1
⊗ ... ⊗ Âj1 ⊗ Âj0 (23)

where Mj ≡ DjQ
T
pm .

Proof: The statement is clearly true for the first order case m = 1 since j = j0. By induction

let j = j0 p0 + j1 p1 + ... + jm−1 pm−1 and assume that

Dj = D̂jm−1
⊗ ... ⊗ D̂j1 ⊗ D̂j0

where 0 ≤ jk ≤ p − 1 for all k = 0, ..., m − 1. Consider any j′ = j0 p0 + ... +

jm−1 pm−1 + jm pm and apply Equation (18) along with Lucas’ theorem to obtain the

following intermediate result:

D̂jm ⊗ D̂jm−1
⊗... ⊗ D̂j0 = D̂jm ⊗ Dj

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(jm
0 )

(jm
1 )

. . .

( jm
p−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⊗

⎡

⎢

⎢

⎢

⎢

⎢

⎣

( j
0)

( j
1)

. . .

( j
pm−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(j′

0)

(j′

1)
. . .

(
j′

pm+1−1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Dj′

(24)

Therefore, Dj = D̂jm−1
⊗ ...⊗ D̂j1 ⊗ D̂j0 is true. Next, successively apply the identity (AC)⊗

(BD) = (A ⊗ B)(C ⊗ D) to obtain:

M̂jm−1
⊗ ... ⊗ M̂j1 ⊗ M̂j0 = (D̂jm−1

QT
p )⊗ ... ⊗ (D̂j1 QT

p )⊗ (D̂j0 QT
p )

= (D̂jm−1
⊗ ... ⊗ D̂j1 ⊗ D̂j0 )(Q

T
p ⊗ QT

p ⊗ ... ⊗ QT
p )

= DjQ
T
pm

= Mj

Finally, we arrive at the desired conclusion

(Âjm−1
⊗ ... ⊗ Âj1 ⊗ Âj0 ) = (Qp M̂jm−1

)⊗ ... ⊗ (Qp M̂j1 )⊗ (Qp M̂j0 )

= (Qp ⊗ Qp ⊗ ...Qp)(M̂jm−1
⊗ ... ⊗ M̂j1 ⊗ M̂j0 )

= Qpm Mj

= Aj.
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Observation 5.2 tells us that, in order to calculate Tj = CAj for arbitrary n = pm, one need

only calculate Âi for i = 0, ..., p − 1 and then take successive Kronecker products. The initial

set of Âi for i = 0, ..., p − 1 can easily be calculated by referring back to Equation (20) where

Âi = Qp M̂i = QpD̂iQ
T
p .

An interesting property concerning the Ai is that the sum

pm−1

∑
i=0

Ai =
pm−1

∑
i=0

QpD̂iQ
T
p

(where the sum is taken mod p) is a matrix of ones. This follows from two observations. First,

from the definition of Di in Equation (18), ∑
pm−1
i=0 Di is a matrix whose (pm − 1, pm − 1) entry

is one and all other entries are zero. Second, it can also be demonstrated that the last column

of Qpm must be a column of ones. Therefore, Qp ∑
pm−1
i=0 D̂iQ

T
p = ∑

pm−1
i=0 Ai is a matrix of ones.

Example 5.3. For p = 2, the 1st order case n = p gives i = 0, 1; hence, over GF(2),

Pp =

[

1 1

0 1

]

, Qp = Pp =

[

1 1

0 1

]

,

we calculate

Â0 = QpD̂0QT
p =

[

1 1

0 1

] [

1 0

0 0

] [

1 0

1 1

]

=

[

1 0

0 0

]

Â1 = QpD̂1QT
p =

[

1 1

0 1

] [

1 0

0 1

] [

1 0

1 1

]

=

[

0 1

1 1

]

.

From Observation 5.2, to obtain the Aj for n = p2 and j = 0, 1, 2, 3, one need only take successive

Kronecker products as:

A0 = Â0 ⊗ Â0 =

⎡

⎢

⎢

⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

, A1 = Â0 ⊗ Â1 =

⎡

⎢

⎢

⎣

0 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

,

A2 = Â1 ⊗ Â0 =

⎡

⎢

⎢

⎣

0 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

⎤

⎥

⎥

⎦

, A3 = Â1 ⊗ Â1 =

⎡

⎢

⎢

⎣

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 1

⎤

⎥

⎥

⎦

.

As expected, the Ai are symmetric matrices. Also, notice, as mentioned above, that ∑
pm−1
i=0 Ai is a

matrix of ones. For the case where n = p2, let us now apply Observation 5.1 to calculate the Pascal

convolution of the vectors C = (C0, C1, C2, C3) and Λ = (Λ0, Λ1, Λ2, Λ3). Using Equation (22), we

have:
Γ0 = Λ0C0 + Λ1(0) + Λ2(0) + Λ3(0)

Γ1 = Λ0C1 + Λ1(C0 + C1) + Λ2(0) + Λ3(0)

Γ2 = Λ0C2 + Λ1(0) + Λ2(C0 + C2) + Λ3(0)

Γ3 = Λ0C3 + Λ1(C2 + C3) + Λ2(C1 + C3) + Λ3(C0 + C1 + C2 + C3).

(25)
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To close this section, we draw some immediate conclusions from Equation (25):

• Because of the Kronecker product, a good deal of self-similar structure can be observed in

the resulting vector Γ. For instance, the coefficients of the Λi can be computed by iteration

starting with the initial ’seed’ generated by Â0 and Â1. As an example, the coefficient of

Λ1 in Γ1 can be computed by adding the coefficient of Λ0 in Γ0 to the coefficient of Λ0 in

Γ1. The coefficients of Λ2 and Λ3 in Γ2 and Γ3 can be computed by adding the coefficients

of Λ0 and Λ1 in Γ0 and Γ1 to the coefficients of Λ0 and Λ1 in Γ2 and Γ3, and so on.

• Looking at the result columnwise, the set of coefficients associated with a given Λi appear

to be the checksums for an R(r, 2) binary Reed-Muller code ((MacWilliams & Sloane, 1977,

p.385-388), (Wicker, 1994, p.155-165)). As pointed out in the next section, although this

observation is true for the binary case, an orthogonal set of checksums for p > 2 will not

come about by this method. It is the dual of the Pascal convolution that will lead to the

decoding of GRM codes.

6. Majority logic decoding using Pascal convolution

GRM codes fall into a larger category of codes known as Euclidean geometry codes (Blahut

(2003); Lin & Costello (1983); MacWilliams & Sloane (1977); Wicker (1994)) where it is

well-known that a technique known as ’majority logic decoding’ (MLD) can be used to

recover the message vector. Based upon statements made in Section 4, it should be clear

that Pascal codes are also MLD. However, the role played by the Pascal convolution in the

decoding strategy is worthy of mention. As pointed out in the conclusions of Example 5.3, the

checksums of a majority logic decoding (MLD) scheme for GRM codes can be derived using

the dual of the convolution relation derived above. We now demonstrate this observation

more clearly.

Because of the similar forms of Ppm and Qpm the dual convolution relation is easily derived

from the inverse transform. Consider the componentwise product Γj = CjΛj of two vectors

where C = µPpm and Λ = λPpm :

γi =
n−1

∑
j=0

Γjqji mod p i = 0, 1, ..., n − 1

=
n−1

∑
j=0

(CjΛj)qji mod p

=
n−1

∑
j=0

Cj(
n−1

∑
k=0

λk pkj)qji mod p

=
n−1

∑
k=0

λk(
n−1

∑
j=0

Cj pkjqji) mod p

≡
n−1

∑
k=0

λksi,k mod p i = 0, 1, ..., n − 1

(26)
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where n = pm. Similar to Equation (18), one can also show that

si = (si,0 si,1 ... si,n−1)

= C∆iP
T
pm

(27)

which can also be written as

si = µPpm ∆iP
T
pm (28)

where ∆i is a diagonal matrix with elements (q0i q1i ... q(n−1)i) along its diagonal.

Furthermore, if we define

Bi ≡ Ppm ∆iP
T
pm (29)

then results similar to Observations 5.1 and 5.2 can also be demonstrated. However, in

proving the dual of Observation 5.2 there is one difference be aware of. Since qji = (−1)i−j(i
j),

the Kronecker product in the dual of Equation (24) will contain extra factors of (−1)i−j. To

achieve the equality ∆j = ∆̂jm−1
⊗ ... ⊗ ∆̂j1 ⊗ ∆̂j0 where j = j0 p0 + j1 p1 + ... + jm−1 pm−1 the

following identity will be required:

(−1)k = (−1)k0 p0+k1 p1+...+km−1 pm−1

= (−1)k0 ((−1)p)k1 ((−1)p2
)k2 ...((−1)pm−1

)km−1

= (−1)∑
m−1
l=0 kl

for any 0 ≤ k ≤ pm − 1 where we have applied ap = a for any a ∈ GF(p). Then, following

the proof of Observation 5.2, it is straightforward to show that for any 0 ≤ j ≤ pm − 1 where

j = j0 p0 + j1 p1 + ... + jm−1 pm−1,

Bj = B̂jm−1
⊗ ... ⊗ B̂j1 ⊗ B̂j0 (30)

where

B̂jk = Pp∆̂jk PT
p .

In Section 4, we explained that the form of message vectors when applying Ppm as the

transformation where the message vector µ = (µ0, ..., µpm−1) should have all components

µj = 0 if wp(j) > r (see Examples 4.9 and 4.10). To see how this formulation can lead to a

decoding scheme, let us examine the case where p = 2, m = 2 and r = 1 (i.e. - a 1st order

binary Reed-Muller code of length 4). Consider first using Equations (26) and (27) to calculate

Pascal convolution of the vectors µ = (µ0, µ1, µ2, µ3) and λ = (λ0, λ1, λ2, λ3):

00 : γ0 = λ0C0 + λ1(0) + λ2(0) + λ3(0)

01 : γ1 = λ0(C0 + C1) + λ1C1 + λ2(0) + λ3(0)

10 : γ2 = λ0(C0 + C2) + λ1(0) + λ2C2 + λ3(0)

11 : γ3 = λ0(∑
3
i=0 Ci) + λ1(C1 + C3) + λ2(C2 + C3) + λ3C3

. (31)
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where the binary expansion of the γ index has been explicitly written out at the beginning of

each row. Next, consider Equations (26) and (28) to calculate the same convolution:

00 : γ0 = λ0µ0 + λ1(0) + λ2(0) + λ3(0)

01 : γ1 = λ0µ1 + λ1(µ0 + µ1) + λ2(0) + λ3(0)

10 : γ2 = λ0µ2 + λ1(0) + λ2(µ0 + µ2) + λ3(0)

11 : γ3 = λ0µ3 + λ1(µ2 + µ3) + λ2(µ1 + µ3) + λ3(∑
3
i=0 µi)

.

Since, for P2(1, 2), µ = (µ0, µ1, µ2, 0), this set of equations can be simplified as

00 : γ0 = λ0µ0 + λ1(0) + λ2(0) + λ3(0)

01 : γ1 = λ0µ1 + λ1(µ0 + µ1) + λ2(0) + λ3(0)

10 : γ2 = λ0µ2 + λ1(0) + λ2(µ0 + µ2) + λ3(0)

11 : γ3 = λ0(0) + λ1µ2 + λ2µ1 + λ3(µ0 + µ1 + µ2)

. (32)

Equations (31) and (32) must hold for any vector λ. Therefore, for a specific γj, we can equate

the coefficients of the λi in Equation (31) with those in Equation (32). So, for example, we end

with the result that

µ2 = C0 + C2

µ2 = C1 + C3

and

µ1 = C0 + C1

µ1 = C2 + C3.

For this first order r = 1 code, we can generate a set of checksums using a simple algorithm.

Start at an index i of γ such that w2(i) = 1 and equate Equations (31) and (32) along a diagonal

path in order to ’collect’ all checksum equations associated associated with µi. For example,

the bold symbols in Equation (32) generate the checksums for µ1. It turns out that these

diagonal equations actually generate what are known as the ’incidence vectors’ of the MLD

strategy (Blahut (2003); MacWilliams & Sloane (1977); Wicker (1994)).

We now provide an algorithm for GF(p) to show how the Pascal convolution approach is

equivalent to a typical MLD using finite Euclidean geometry ((Wicker, 1994, p.155-165)).

The interesting aspect of this algorithm is that the Pascal convolution generates the correct

checksums for any GF(p). Consider a Pp(r, m) code where C = µPpm such that µj = 0 if

wp(j) > r:

(0) Let j = r.

(1) Let Sj be the set of indices i such that wp(i) = j.

(2) Apply Equation (27) to calculate γ.

(3) Apply Equation (28) to calculate γ (these equations will simplify based upon which of

the µi are zero).

244 Fourier Transform Applications

www.intechopen.com



The Fourier Convolution Theorem over Finite Fields:Extensions of its Application to Error Control Codin 15

(4) For each i ∈ Sj, start at λ0 associated with γi and construct checksum equations by

equating the result in Step (2) with that of Step (3) along a diagonal path (i.e. - starting at

k=0, choose the coefficient of λk associated with γi+k).

(5) For i ∈ Sj, create estimates µ̄i by a majority logic decision on the checksums.

(6) j = j − 1. If j < 0, stop.

(7) Remove the estimated components as:

C̄ = µ̄Ppm

Ĉ ≡ C − C̄ (= (µ − µ̄)Ppm ).

(8) Adjust µ to reflect the change in step (7) as follows. Construct a new vector µ̃ where

µ̃i = µi if i ∈ Sj and µ̃i = 0 otherwise. Then let

µ̂ ≡ µ − µ̃.

(9) Let C = Ĉ and µ = µ̂ and go to Step (1).

As with typical MLD schemes, this algorithm starts with the highest order r to obtain estimates

of the code vector components and then successively estimates the lower order components.

Example 6.1. Let p = 3, m = 2 and r = 2. Consider decoding a P3(2, 2) code. From Example 4.10,

µ = (µ0, µ1, µ2, µ3, µ4, 0, µ6, 0, 0).

Also, we know that P3(2, 2) has dmin = 3 implying that we can correct a single error. Therefore, we

expect that the MLD equations should have at least three checksums.

(0) Start with j = 2.

(1) Let S2 = {2, 4, 6} (i.e. - i = i0 + i1 p such that w3(i) = 2).

(2,3,4) Rather than write out the equations for γi, we summarize by equating the results of step (2)

and step (3):

i = 2 :

µ2 = c0 + c1 + c2

µ2 = c3 + c4 + c5

µ2 = c6 + c7 + c8

i = 4 :

µ4 = c0 + 2c1 + 2c3 + c4

2µ4 = 2c1 + c2 + c4 + 2c5

2µ4 = 2c3 + c4 + c6 + 2c7

µ4 = c4 + 2c5 + 2c7 + c8

i = 6 :

µ6 = c0 + c3 + c6

µ6 = c1 + c4 + c7

µ6 = c2 + c5 + c8
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After estimating the message components dictated by S2 (step (5)), remove the code estimates from

C (step (7)) and begin work on S1 where now (step(8)) µi = 0 if wp(i) > 1. For S1, we have the

checksums:

i = 1 :

µ1 = 2c0 + c1

2µ1 = c1 + 2c2

µ1 = 2c3 + c4

2µ1 = c4 + 2c5

µ1 = 2c6 + c7

2µ1 = c7 + 2c8

i = 3 :

µ3 = 2c0 + c3

µ3 = 2c1 + c4

µ3 = 2c2 + c5

2µ3 = c3 + 2c6

2µ3 = c4 + 2c7

2µ3 = c5 + 2c8

After estimating the message components dictated by S1, once again, remove the code estimates from

C and begin work on S0 where now µi = 0 if wp(i) > 0. At this stage, with all other components of

µ = 0 except µ0, we are left with µ = C (i.e. - nine estimate of the check on µ0).

7. Conclusions

When considering the design of error control codes, it is interesting to look for guiding

principles that can account for whole classes of codes. In this presentation, we have shown

how the GFFT convolution approach to Reed-Solomon codes can be extended to other classes

of codes such as generalized Reed-Muller codes.

Code Convolution Principle Decoding Strategy

Reed-Solomon GFFT-based iterative

GRM generalized iterative

Table 1. Comparison of Fourier and generalized convolution techniques.

Instead of applying a Fourier matrix to encode the message, we have applied a Pascal matrix

and extended the convolution theorem over finite fields. In doing so, we have observed

that this formulation leads to the well-known majority logic decoding algorithm. Additional

investigations have also considered codes in the context of the wavelet transform (Sakk

& Wicker (2003)). The block codes addressed in this chapter have been shown to lend

themselves to graph-based iterative decoding strategies (see Table 1). The results derived

above suggest that the generalized convolution approach is useful for understanding the

systematic introduction of redundancy for the sake of error control.
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