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1. Introduction

Currently, the full extent of the role Fourier analysis plays in biological vision is unclear.
Although we have examples of sensory organs that perform Fourier transforms, e.g. the lens
of the eye and the cochlear, to date there is no direct empirical evidence for its implementation
in cortical architecture. However, there does exist intriguing theoretical evidence that suggests
a role for the Fourier transform in a primate’s primary visual cortex (area V1) which emerges
from recent developments in our knowledge of contextual modulation. This paper proposes a
new Fourier transform and a specification of how this transform has a natural implementation
in cortical architecture. The significance of this new Fourier transform and its specification
in neural circuitry is that it provides a plausible explanation for previously unexplained
observable properties of the primate vision system.

1.0.0.1

The spatial response properties, such as orientation tuning and spatial frequency tuning,
of neurons in area V1 have been known for some time (Schiller et al., 1976). For a
while, it was generally accepted that these tuning functions of receptive fields are largely
context-independent (De Valois et al., 1979). However, later research has demonstrated
contextual influences from the region close to the receptive field (Sceniak et al., 2001);
(Cavanaugh et al., 2002); (Bair & Movshen, 2004). Moreover, it has been found that this near
surround region of a receptive field can modify receptive field responses through suppression
(Blakemore & Tobin, 1972) and by cross-orientation facilitation effects (Sillito & Jones, 1996);
(Cavanaugh et al., 2002); (Kimura & Ohzawa, 2009). It has also been demonstrated that
long-range contextual modulation is as robust a feature of neural function in area V1 as the
extensively studied receptive field properties of this area (Lamme, 1995). Since that time, the
evidence for long-range contextual modulation continues to grow, e.g. (Zipser et al., 1996);
(Lamme et al., 1998); (Lee et al., 1998).

1.0.0.2

Concurrent with this research establishing the empirical evidence for contextual modulation
has been research aimed at developing functional models of V1 that are consistent with
the empirical evidence. In the early 1980’s the concept of convolution was employed by
David Marr (Marr & Hildreth, 1980) as a model that accounted for considerable observable
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properties of the human vision system. Since that time further theoretical and empirical
evidence has been mounting that supports such a model. In particular, it has been shown
that response properties of neurons in area V1 are modeled by convolution of the input image
with a family of Gabor functions (Sanger, 1988). Further research has demonstrated that the
upper layers of area V1 are modeled well by a bank of Gabor filters (Grigorescu et al., 2003);
(Huang et al., 2008); (Lee & Choe, 2003); (Ursine et al., 2004); (Tang et al., 2007). A related, but
alternative, approach to the Gabor response functions to model simple and complex cells of
V1 is the use of Gaussian derivatives (Huang et al., 2009). The common denominator of these
contextual modulation models is long-range convolution. However, the issue of accepting
these state of the art computational models of contextual modulation as plausible functional
models of Layer 2/3 of V1 thus becomes one of addressing the cortical convolution conundrum,
more specifically: how are the large scale convolutions required by such models accounted
for in cortical architecture?

1.0.0.3

This paper’s goal is to address the cortical convolution conundrum. In the process, we will
propose a new fast Fourier transform, named Generalised Overarching SHIA Fast Fourier
Transform (GOSH-FFT) and argue:

• GOSH-FFT has a natural implementation in the cortical architecture of visual area V1, and

• Its implementation provides a plausible cortical mechanism to account for the
convolutions implied by long-range contextual modulation.

The rest of this paper is organised as follows: Section 2 provides a description of key
neurophysiological and mathematical concepts underpinning the main thrust of this paper.
Section 3 describes the Generalised Overarching SHIA Fast Fourier Transform (GOSH-FFT).
Section 4 proposes a new interpretation of the physiology of long-range intrinsic connections
and reinterprets previously introduced physiological concepts to propose a plausible cortical
implementation of GOSH-FFT. Section 5 discusses various implications of the novel material
of this paper. Section 6 summarises and concludes the paper. Section 7 is an appendix that
contains a MatLab-like pseudo-code description of GOSH-FFT and a mathematical proof of
GOSH-FFT.

2. Background

This section reviews neurophysiological and mathematical concepts pertinent to the
understanding of GOSH-FFT and its cortical implementation.

2.1 Physiological background

The primary visual cortex (V1) has a distinctive layer structure. Inputs from the lateral
geniculate nucleus (LGN) of the thalamus arrive chiefly to layer 4 in the monkey (Fitzpatrick
et al., 1985). Layers 2/3 of monkey V1 contain the first neurons in the feedforward hierarchy
that are strongly responsive to orientated stimuli (Schiller et al., 1976); (De Valois et al.,
1979); (Parker & Hawken, 1988); (Leventhal et al., 1995). Central to understanding response
properties of neurons in V1 is the notion of the receptive field (Hubel & Wiesel, 1962). The
receptive field of a neuron is that region of its visual field to which it responds most strongly.
Neurons within layers 2/3 V1 have receptive fields that are oriented. That is, they prefer
stimuli that are lines of a certain orientation, or oriented texture elements (Hubel & Wiesel,
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1974). The spatial and temporal frequency tuning preferences of neurons in V1 can also
be measured. The neuron’s response properties measured via the receptive fields resemble
spatially localized filters with a preferred orientation and spatial frequency (Schiller et al.,
1976); (Foster et al., 1985); (Mikami et al., 1986); (Edwards et al., 1995) or spatio-temporal
energy (Basole et al., 2003); (Basole et al., 2006).

2.1.0.4

The orientation preference of neurons can be mapped using optical imaging techniques and
neurological studies, which show good agreement with single cell measurements (Blasdel,
1992); and groups of neurons which act as a single unit. It has been experimentally
shown that this single unit activity of large groups of single cells are composed of 104

(first order approximation) interconnected cells even in one local V1 column (Siegel, 1990).
The advantages of modeling large scale neuron activity which exhibit cohort macroscopic
organisation was shown by (Sirovitch et al., 1996). No model was presented but organising
principles for analyzing and viewing data were presented. These techniques have revealed
an intricate structure to the orientation preference map in layers 2/3. A critical feature of
these structures is the orientation pinwheel (local map), in which the orientation preference of
the neuronal population changes through the entire range of 180 degrees of orientations over
the 360 degrees of polar range of the circular pinwheel. At the centre of the pinwheel is the
singularity, which is the point at which lines of iso-orientation preference meet (Obermayer &
Blasdel, 1993).

2.1.0.5

The cortex is often called the iso-cortex because of the repeated structures of which it is
comprised (Douglas & Martin, 1991). The smallest scale of structure is the minicolumn which,
in the monkey, consists of 30 adjacent pyramidal cell shafts in layers 2/3 packed within a
diameter of 23 µm (Peters & Sethares, 1996). There are approximately 20 cell bodies within a
minicolumn in layers 2/3. The next largest physical scale in V1 at which repeated structures
occur is the cortical column (Lund et al., 2003). The cortical column is 200 µm in diameter and
is the scale at which long-range patchy connections terminate. A number of anatomical and
functional markers repeat at a larger scale of 400 µm. These include the distance between
CO blobs, the approximate periodicity of the orientation preference map, and the spatial
scale of a single ocular dominance band (Lund et al., 2003). Orientation pinwheels are also
of approximately this spatial scale. Each of these functional markers has been shown to be
closely related to the system of patchy connections, in which like response preference connects
to like, and the inter-patch distance in V1 has this same periodicity of 400 µm (Bartfeld &
Grinvald, 1992); (Malach et al., 1993); (Bosking et al., 1997). The largest spatial scale is V1 itself,
which is some 4 cm wide in the monkey. There are of the order of 10,000 CO blobs in layers
2/3 of V1 (Murphy et al., 1998), and ocular dominance bands of 120 in number (Horton &
Hocking, 1998), suggesting that the multiple response property maps with periodicity of 400
µm repeat around 10,000 times over layers 2/3 of V1. The input connections from the LGN
arborize at a range of scales within layer 4C of V1. These inputs are arranged in block-like
structures at the approximate scale of an ocular dominance band in layer 4C, but at a finer
scale of approximately one column in layer 4C (Fitzpatrick et al., 1985). Further fine scale
arborizations occur at approximately the scale of one minicolumn in layer 4A. At the global
scale of the cortex, inputs from the LGN are organized into a retinotopic mapping of the
visual field (Rolls and Cowey 1970; (Tootell et al., 1988). Connectivity into the layers 2/3
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of V1 occurs via a number of anatomical routes, apart from the well described feedforward
connections from layer 4 (Fitzpatrick et al., 1985). Other routes of information transfer include
extra-striate feedback (Rockland et al., 1994); (Rockland & Vanhoesen, 1994); (Angelucci et al.,
2002), long-range intrinsic fibres within V1 (Blasdel et al., 1985), as well as feedback from V1
to the lateral geniculate nucleus (Marrocco et al., 1982); (Briggs & Usrey, 2007), and diffusion
of visual signal in the retina (Kruger et al., 1975); (Berry et al., 1999).

2.1.0.6

The finest scale of axonal projections within V1 are the short-range intrinsic connections that
provide connectivity between neurons up to the range approximated by an ocular dominance
column width, or 400 µm. Within V1, long-range patchy connections extend for 3 mm
within the supra-granular layers (Stettler et al., 2002) and long-range connections within the
infra-granular layers extend for up to 6 mm (Rockland & Knutson, 2001). V1 also receives
feedback from at least nine extra-striate areas (Rockland & Vanhoesen, 1994). Extra-striate
feedback is considered by most researchers to be the primary source of long-range horizontal
interactions measured in V1 (Alexander & Wright, 2006). These feedback connections are fast
conducting myelinated cortico-cortical fibres, and while they traverse distances of up to 10 cm
in the monkey, the transmission delays are of the same order as intrinsic short and long-range
axons within V1 (Bringuier et al., 1999); (Girard et al., 2001). These feedback connections are
often in register with the intrinsic patchy system within V1, depending on the area of origin
(Angelucci et al., 2002); (Lund et al., 2003). The middle temporal (MT) visual area will serve
here as brief illustration of the role of extra-striate feedback in V1. Receptive field sizes in
MT are about 10 times larger than in V1 at all eccentricities (Albright & Desimone, 1987).
Small focal injections of tracer into V1 indicate that the sizes of the feedback fields from MT
to V1 are 21-fold larger than the aggregate receptive size of the V1 injection sites (Angelucci
et al., 2002). These feedback connections are an obvious substrate for the integration of global
signals into V1 (Bullier, 2001). The local-global map hypothesis (Alexander et al., 2004) of
V1 posits a non-local influence on the structure of local maps in V1. This hypothesis states
that the global visual map in V1 is remapped to the local map scale in V1 in the form of a
map of response properties, e.g. orientation, and in the case of the monkey, spatial frequency
preference and colour selectivity. These local maps tile the surface of V1 and each receive
inputs from a large extent of the visual field. So rather than the local map being simply a map
of primitive visual features that apply to a point in visual space, the local map is a map of primitive
visual features as they arise in the organisation of the visual field and become relevant to a location in
visual space. As the maximum range of contextual modulation in V1 approaches the size of the
visual field (Alexander & Wright, 2006), the local organisation of response properties can be
influenced by the functional properties of the global visual field.

2.2 Mathematical background

Fundamental to the Fourier transform proposed in this paper is the Spiral Honeycomb Image
Algebra (SHIA). This is a data structure that embodies important properties of the natural
visual constraints imposed by the primate eye (Sheridan et al., 2000). In particular, SHIA
has a discrete, finite and bounded domain which mimics the distribution of photo receptors
on the retinal field. The underlying geometry of the SHIA is a hexagonal or rectangular
lattice. In the former case, each hexagon has a designated positive integer address expressed
in base seven. The numbered hexagons form clusters of super-hexagons of size 7n. These
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self-similar super-hexagons tile the plane in a recursively modular manner. As an example, a
super-hexagon of size 72 = 49 and its concomitant addressing scheme is displayed in Fig. 1 (a).

(a) Hexagonal SHIA

(b) Rectangular SHIA

Fig. 1. Displays the two-level addressing scheme of SHIA: (a) Hexagonal and (b) Rectangular.

In the latter case, each rectangle has a designated positive integer address expressed in base
five. An example of this addressing scheme is displayed in Fig. 1 (b).

185Cortical Specification of a Fast Fourier
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2.2.0.7

The importance of the SHIA addressing scheme is that it facilitates primitive image
transformations of translation, rotation and scaling. One of these transformations that has
proven to be of particular relevance to the Fourier transform is one that provides rotation and
scaling. It is referred to as mapping M10 in the notation of SHIA. Fig. 2 (a) displays an image
represented in a four level SHIA, size is 74 = 2401. Fig. 2 (b) represents the effect of applying
M102 = M100 to this image.

The critical observation to make in regard to the effect of M10 is that it produces multiple
’near’ copies at reduced resolution of the input image. This transform will play a critical role
in the proposed FFT.

2.2.0.8

The origin of what is now called a Fourier transform dates back to 1807 when Jean Baptiste
Joseph Fourier defined the notion of representing a function as a trigonometric series. The
discrete version of a Fourier transform (DFT) for a one-dimensional signal is defined as:

F(u) =
1

N

N−1

∑
x=0

f (x)e−j2πux/N (1)

for u = 0, ...N − 1, where f (x) is a real valued function, N represents the number of elements
in the signal and j2 = −1.

The effect of this transform is to capture the spatial relationships inherent in the signal f(x)
and express these relationships as the sum of sinusoidal function (frequency components).
Similarly, the discrete version of an inverse Fourier transform (IDFT) for a one-dimensional
signal is defined as:

f (x) =
N−1

∑
u=0

F(x)ej2πux/N (2)

for x = 0, ...N − 1, where F(u) is the Fourier transform of the real valued function f (x), N
represents the number of elements in the signal and j2 = −1.

The effect of this inverse Fourier transform is to take a signal in frequency domain back to the
spatial domain.

2.2.0.9

Prior to the invention of the digital computer, the Fourier series was employed as a purely
analytic tool. However, since that time, the development of a class of computationally efficient
algorithms, known as fast Fourier transforms (FFT), has meant the notion has become a useful
computational tool (VanLoan, 1992). One of the most attractive computational properties of
the FFT is its ability to process signals at higher resolution with a minimal increase in cost to
complexity. Today, most of us benefit from fast Fourier transforms every day without even
knowing it as these algorithms power a vast range of electronic technology such as digital
cameras and cell phones.

2.2.0.10

The relevance of a fast Fourier transform to this paper is its relationship to the notion of
convolution. The convolution of two functions f (x) and g(x) is denoted by f (x) ∗ g(x) and
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(a) Four Level SHIA

(b) M10

Fig. 2. Displays (a) an image of a duck represented on a four-level SHIA; (b) the result of
applying SHIA transform M10 twice to the image displayed in (a). There are four observable
effects: 1) multiple near copies of the input image (a), 2) each copy is rotated by the same
angle, 3) each copy is scaled by the same amount, 4) applying M10 twice to the image
displayed in (b) results in the image displayed in (a).

its discrete definition is
f (x) ∗ g(x) = ∑

a∈g

f (x)g(x − a) (3)

187Cortical Specification of a Fast Fourier
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A well known result to researchers in the field of signal processing is the Convolution
Theorem, which relates convolution in the spatial domain to convolution in the frequency
domain. For two functions, f (x) and g(x), let F(x) and G(x) represent the Fourier transform
of f (x) and g(x) respectively. The Convolution Theorem states that,

f (x) ∗ g(x) ⇋ F(x)G(x) (4)

In other words, the convolution of two functions in the spatial domain can be achieved by the
multiplication of the functions in the frequency domain.

3. Generalised Overarching SHIA fast Fourier transform (GOSH-FFT)

In this section we propose a new fast Fourier transform that, as we will see later, possesses
the potential to be implemented in cortical architecture and thereby address the cortical
convolution conundrum. Associated with SHIA, as described in Section 2.2, is a Cooley-Tucky
type fast Fourier transform, named Generalised Overarching SHIA Fast Fourier Transform
(GOSH-FFT). This novel fast Fourier transform employs the transform M10, as described
in Section 2.2, as the critical mechanism that turns a Fourier transform into a fast Fourier
transform.

3.0.0.11

Suppose an image is represented on a SHIA of size 7n, where n ≥ 0. Let m ≥ 0 such that
nmodulom = 0. Let k = n ÷ m and M denote M10m, the composite of M10 ◦ M10 ◦ ... m times.
For(i:0:k)

1. Apply M to the input;

2. Perform a discrete Fourier transform over a sequence of sub images of size 7m;

3. Apply the inverse of Mi locally.

A special case of GOSH-FFT was initially described in (Sheridan, 2007), with m = 1. The
significance of the initial work was that it demonstrated the intrinsic connection between the
Fourier transform and primitive image transformations of translation, rotation and scaling. It
also turns out that another special case of GOSH-FFT, when n = 2m, will play a critical role in
the core hypothesis of this paper. This special case, named Particular SHIA FFT (PaSH-FFT),
is illustrated in Fig. 3.

A complete statement of Algorithm 3.0.0.11 is written in MatLab-like pseudo-code and can
be found in Section 7 along with a mathematical proof that GOSH-FFT delivers a Fourier
transform.

4. Cortical implementation of contextual modulation

In Section 1, we reviewed state of the art models of contextual modulation and concluded
that these models implied the cortical convolution conundrum. We further motivate this
conundrum by observing that as a consequence of Equation 3, a convolution of the entire
visual field requires every minicolumn in Layer 2/3 of area V1 to receive an input from every
other minicolumn of that layer. As there just are not enough connections to convolve the visual
field in one cortical step, the convolution problem reduces to one of determining, given the
known connectivity, what is the sequence of intermediate neurons an initial input must pass

188 Fourier Transform Applications
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(a) Intermediate step (b) Fourier transform

(c) Intermediate step (d) Inverse Fourier transform

Fig. 3. Displays the results of applying the special case of GOSH-FFT, that is PaSH-FFT, to
image of Fig. 2 (a), with n=4 and m=2. The four sub figures display intermediate results of
PaSH-FFT: (a) on completion of first iteration of PaSH-FFT to Fig. 2; (b) Fourier transform on
completion of second iteration; (c) on completion of first iteration of inverse PaSH-FFT; (d)
Inverse PaSH-FFT on completion of second iteration.

through before being output as a convolved value. With the cortical convolution conundrum
thus fully formulated, in this section we will establish a specification of a sufficient sequence of
steps to address the issue. This specification will unfold in three steps. First, we will discuss
how the SHIA transform M10 manifests in cortical architecture. We will then employ this
manifestation to demonstrate how neural circuitry accommodates PaSH-FFT. Lastly, we will
show how the cortical manifestation of PaSH-FFT supports long-range convolution.

4.1 Cortical manifestation of M10

A critical component of the fast Fourier transform, PaSH-FFT, is the transform M10.
Consequently, it is an imperative of our argument that the redistribution properties of M10 be
accounted for in the neural circuitry of the visual system. To this end we now argue that the
required effects of M10 are accounted for by the long-range properties of patchy connections

189Cortical Specification of a Fast Fourier
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between columns of Layer 2/3 and similarly patchy extra-striate feedback connections to area
V1.

4.1.0.12

It has been argued that the orientation pinwheel comprises a unitary organisational structure
or local map in layer 2/3 of area V1 (Hubel & Wiesel, 1974); (Bartfeld & Grinvald, 1992);
(Blasdel, 1992). When four pinwheels are reflected about their common borders, a saddle
point arises at the centre of the four pinwheels. See Fig. 4.

Fig. 4. Displays a schematic diagram of the pinwheel like structures of visual area V1,
extracted from Figure 10 page 43 of Bruce et al. (2003).

4.1.0.13

In the macaque, the preferred response properties of V1 neurons can be influenced by activity
from a wide extent of the visual field. A review of contextual modulation in the monkey
demonstrated contextual modulation in V1 from long-ranges in the visual field (Alexander
& Wright, 2006). The review was compiled from a number of experimental paradigms,
including visual stimulation with long lines while the neuron’s receptive field is occluded
(Fiorani et al., 1992), surround only textures (Rossi et al., 2001) and colour patches placed
distally to the neuron’s receptive field (Wachtler et al., 2003). It was shown that the maximum
range of contextual modulation measurable in V1 approaches a large extent of the visual
field relative to a neuron’s receptive field size or the local cortical magnification factor. Some
experimental paradigms, such as the curve tracing effect (Roelfsema & Lamme, 1998); (Khayat
et al., 2004), relative luminance (Kinoshita & Komatsu, 2001), and texture defined boundaries
(Lee et al., 1998) show excitatory contextual modulation with ’tuning curves’ that are flat out
to the maximum distance tested. The functional connectivity that underlies this long-range
contextual modulation in the monkey is likely to involve cortico-cortical feedback from higher
visual areas working in concert with long-range intrinsic patchy connectivity. In the monkey,
the feedback connections to V1 from higher visual areas incorporate inputs from a very large
extent of the visual field (Angelucci et al., 2002); (Lund et al., 2003).

4.1.0.14

In the analysis that follows, the combination of patchy intrinsic connections and patchy
feedback connections are therefore assumed to enable transfer of visual information at ranges
approaching the global scale of the visual field. Moreover, we assume that the quantity and
distribution of these connections are adequate to deliver the effects of transform M10 at the
scale of the visual field.
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4.2 Cortical manifestation of PaSH-FFT

The next step in accounting for global convolution in cortical circuitry is to explore how
PaSH-FFT manifests itself in cortical architecture. The raw data, at the lowest level of
PaSH-FFT, are complex numbers that must be multiplied and added. The first issue to
address is to justify our assumption that the operations being performed by a neuron
could be represented as complex arithmetical operations on complex numbers. Specifically,
PaSH-FFT requires that a neuron can be regarded as a mechanism capable of representing and
manipulating complex numbers in accordance with the arithmetical operations of addition
and multiplication. There are many ways in which to interpret neuronal function in terms of
complex addition and multiplication. The model presented by (MacLennan, 1999) is adequate
for the purposes of this paper, where it is shown how the representation of complex numbers
can be encoded as the rate and relative phase of axonal impulse. From this encoding, complex
multiplication is associated with the strength of a synaptic connection as the signal passes
through it and complex addition is associated with the summing of the neuronal inputs.
Thus at the lowest level of computation in our model, we assume that the operation being
performed by a neuron can be represented as complex addition and multiplication.

4.2.0.15

In area V1, each neuron makes use of information available to it in real time. There is evidence
that contextual information is projected to widespread regions in V1 in an anticipatory
manner. Since the spatial changes in the visual field tend to be predictable from previous
visual inputs, anticipatory contextual inputs can arrive in time to be integrated in an adaptive
manner with ongoing feedforward input. In order to express the properties of widespread
contextual integration in a more formal manner, however, we will use the mathematical
convenience of assuming that each of the distinct mathematical processes to be described
occurs in a step-wise fashion. This more constrained approach allows not only each distinct
part of the process to be formulated, but also formulates the inter-relationships between
the various sub-processes. Although it is claimed that this approach is appropriate for the
purposes of this paper, it must be acknowledged that the question of how such "contextual
integration" actually occurs in the neuronal system remains open.

4.2.0.16

At the finest scale of connectivity via short-range intrinsic connections, each neuron of a
local map is treated as if it were connected to every other neuron minicolumn of that local
map. While this is not literally true, considerations of poly-synaptic interactions at this local
scale, and the real-time, anticipatory nature of visual processing means that it is a reasonable
approximation of the functional connectivity. Consequently, we can assume that each neuron
in a local map can sum the outputs of all other neurons in that local map which have been
multiplied by unique complex numbers. We call such a collection of parallel computations a
local computation. See Fig. 5, which is a schematic diagram of a local computation.

4.2.0.17

This paper now needs to discuss three types of local computations, each of which is
determined by the interpretation of the input signal and the collection of synaptic strengths
which weight the input signal. If the input signal is the spatial domain and the weights are
associated with a set of primitive roots of unity, then the resulting local computation is a
Fourier transform, denoted F. (See Equation 1 for a definition of a Fourier transform.) If the
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Fig. 5. Displays a schematic diagram of a computational unit. The circles represent neurons
and the straight lines connecting the circles represent cortical connections. Each neuron
depicted at the top of the figure outputs a value xi. The neuron depicted at the bottom of the
figure inputs the sum of each xi multiplied by weight wi.

input signal is the frequency domain and the weights are associated with a set of inverse
primitive roots of unity, then the resulting local computation is an inverse Fourier transform,
denoted I. (See Equation 2 for a definition of an inverse Fourier transform.) If the input signal
is a frequency domain and the weights represent Fourier components, then the resulting local
computation is a convolution in the frequency domain, denoted C. (See Equations 3 and 4.)
Table 1 provides a summary of this notation.

Symbol Local Computation Input Signal Weights

F Fourier transform spatial domain primitive roots of unity

I Inverse Fourier frequency domain primitive roots of unity

C Convolution frequency domain Fourier components

Table 1. Summary of notation and definitions of local computations

4.2.0.18

At the next higher scale of connectivity each local map is assumed to have access to ongoing
activity of every other local map via long-range patchy connections and striate-extrastriate
interactions. These provide the means by which the results of local computation can be
transported to another local map as input for a further local computation. We denote such
a projection as P to represent the class of transformations (as described in Section 4.1).

4.2.0.19

All of the components of PaSH-FFT can be considered as being built of sequences of P
projections followed by a local computation. Likewise, when we employ the term local
computation in conjunction with the symbols F, I or C, it is implied that the signal within
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a local map has been sent to every other neuron in that local map through a synapse whose
strength is associated with the appropriate weight of F, I or C respectively.

4.2.0.20

Although it is commonly accepted that the cortex has a massively parallel architecture,
currently there exists no comprehensive model to describe these dynamics. The absence
of such a model means that in any particular cortical process, we cannot be sure which
aspects of the process are parallel and which are intrinsically sequential. We will employ the
following notation to show how the inherently sequential steps of PaSH-FFT can be mapped
into neural circuitry. Let the symbol ⊙ denote the composition of two local computations as
follows: given arbitrary local computations A and B to operate on a signal in sequence let
(s)A ⊙ B = ((s)A)B.

Note that the operator is to the right of the input signal it operates on, which is enclosed in
left and right parenthesis ().

4.2.0.21

With these concepts in hand, we can now identify the sequential steps of PaSH-FFT. In this
special case, the size of the input signal is the square of the size of the local computation
and represents two iterations of GOSH-FFT, as described in Section 3. The identification of
the sequential steps also suggests the sequence of connections that the input signal must
traverse. We now illustrate this with PaSH-FFT, given an input signal s, then the application
of PaSH-FFT would be expressed as follows:

(s)PaSH − FFT = (s)P ⊙ F ⊙ P ⊙ F ⊙ P (5)

Given the assumed neural parallelism, a count of the number of components on the right hand
side of the equals sign in Equation 5, reveals that a Fourier transform of the entire visual field
can be completed by the signal traversing a sequential path connecting five neurons. Likewise,
an inverse Fourier transform can be delivered in cortical circuitry as follows:

(s)inversePaSH − FFT = (s)P ⊙ I ⊙ P ⊙ I ⊙ P (6)

4.3 Cortical manifestation of convolution

We now progress to the issue of how convolution could be implemented in cortical
architecture. To this end, we describe the various computational constraints imposed by the
computational requirements of convolution and argue that the known cortical architecture
satisfies these constraints.

4.3.0.22

The key to the solution of the convolution problem in the neurological domain is provided by
the Convolution Theorem, the same one employed by numerous digital signal processing
applications. This theorem was discussed in Section 2.2. The importance of the theorem
is that the convolution of two functions in the spatial domain can be achieved by the
multiplication of the functions in the frequency domain. The implications of this theorem
to the cortical convolution conundrum are significant. In our model, the components of the
Fourier transform of the function the input signal is to be convolved with are represented
by connection weights. Then, once the input signal has been transformed to the frequency
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domain the required convolutions can be performed by mere multiplications. In cortical
terms, each component of the signal, in the frequency domain, must traverse a connection to
one more neuron to achieve the desired multiplication. However, the resulting convolution,
in the frequency domain, must be transformed back to the spatial domain to complete the
convolution. This is achieved with an inverse Fourier transform. Accordingly, the sequence
of connections along the path that terminates in the output of a convolved value in the spatial
domain is thus given by:

(s)Convolution = (s)P ⊙ F ⊙ P ⊙ F ⊙ C ⊙ P ⊙ I ⊙ P ⊙ I ⊙ P (7)

4.3.0.23

It is assumed that each component of the input signal traverses parallel paths along the
network. Thus, the net time cost to complete a convolution is equivalent to the time required
for a component of the input signal to traverse a path connecting 10 neurons. This path is
composed of five short-range intrinsic connections and five long-range connections.

4.4 Analysis

The plausibility of the cortical model of convolution proposed in this paper is fundamentally
predicated on the assumptions made in its formulation. Consequently, we summarise these
assumptions along with the arguments offered to justify them before we provide an analysis
of the model’s parameterisation:

1. The number of long-range patchy connections is adequate to achieve a redistribution of
the global signal via transform M10. This was argued in Section 4.1 and heavily relied on
a conclusion based on a review article reported in (Alexander & Wright, 2006).

2. A first order approximation of the number of minicolumns in a local map as 10,000. This
was discussed in Section 2.1 and relied on the work reported in (Siegel, 1990).

3. The number of short-range intrinsic connections is adequate to consider each local map as
being fully connected. This was discussed in Section 4.2 and relied on the work reported
in (Siegel, 1990).

4. A first order approximation of the number of minicolumns in the global map is 10, 0002 =
100 million. This was discussed in Section 2.1 and was based on the work reported in
(Murphy et al., 1998) and Assumption 2.

4.4.0.24

The first assumption is possibly the most critical as it establishes the fundamental architectural
relationship between the local and global maps and is essential to PaSH-FFT. The second
two assumptions implied that a Fourier transform of the portion of the signal represented
in a local map would be completed by each component of the signal traversing one cortical
connection and that on completion of the first iteration of PaSH-FFT, the global signal consists
of 10,000 local discrete Fourier transforms each of which is at the scale of a local map. Then,
on completion of the second iteration of PaSH-FFT, the 10,000 local Fourier transforms would
be transformed into a global Fourier transform of size 10, 0002 = 100 million, which by the
fourth assumption represents the size of the global signal. From this we are able to assert
that the input spatial signal would be transformed to frequency space at a cost of the signal
traversing a path connecting four neurons. With the signal in frequency space, we employed
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the Convolution Theorem to assert that with each component of the global signal traversing
one additional connection, the state of the signal would represent a convolved signal in
frequency space. This assertion was predicated on the assumption that the weight of each
of these last connections represented the Fourier weight of the appropriate gaussian. The final
step was to transform the convolved signal back from frequency space to the spatial domain.
This was achieved with the inverse PaSH-FFT, which would be completed at the additional
cost of the signal traversing a path connecting a further five neurons. Putting these three
steps together, we arrived at a total path length of 10 connections for the global input signal
to be transformed into a representation of global convolution of the visual field. We also note
that this analysis accounted for a single global convolution of the input signal. However,
there will be many global convolutions required, possibly up to one for every orientation
preference and spatial frequency preference represented in a local map. Although the input
spatial signal needs only to be transformed into the frequency domain once, each distinct
convolution would require a distinct set of parallel paths to transform the signal back into
the spatial domain. Consequently, the multiple convolutions would not necessarily result
in a longer path. Accordingly, we assert that the transform, PaSH-FFT, with appropriate
parameterisation, would deliver a global convolution of the visual field. Moreover, this output
signal is generated within the required time constraints imposed by observed contextual
modulation. Given our assumptions, the lowest number of iterations required to complete
a Fourier transform is two. Consequently, 10 represents the length of the shortest path (see
equation 7) possible to deliver a global convolution via PaSH-FFT.

5. Discussion

The signal processing literature describes many different types of fast Fourier transforms
(FFT). Although any one of them represents an alternative candidate to PaSH-FFT, the
problem to address is accounting for how they might be implemented within the known
constraints of cortical architecture. All fast Fourier transforms need to rearrange components
between their intermediate steps of multiply and add. PaSH-FFT derives its rearrangements
of components with the transform M10 that, as argued, is compatible with the distribution
and quantity of long-range cortical connections. If any other FFT could be substituted for
PaSH-FFT in the model, one would need to account for the rearrangement phase of that FFT
within the known connectivity of area V1.

5.0.0.25

Another issue worthy of some discussion pertains to the Fourier transform and the absence of
empirical evidence that would irrefutably demonstrate its cortical implementation. Part of the
explanation for this lack of evidence may be provided by the role the Fourier transform plays
in the vision process as suggested by this paper. That is, PaSH-FFT was shown to be a means
to an end (convolution), not the end itself. Consequently, the question of finding neurons
through empirical experimentation that measures response properties of neurons that closely
model the profile of a Fourier transform may remain unanswered for some time to come.

5.0.0.26

Underpinning the proposed implementation of PaSH-FFT in cortical architecture is a highly
simplistic model of the parallelism inherent in the cortex. The model employed did not
take into account at least two well accepted features of this parallel architecture. First, the
system itself somehow synchronises the flow of the signal. Second, the cortex does not
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need computation-like synchronisation or state update. Synchronisation can be provided by
considering "Small World" relationships. (Gao et al., 2001) have shown that a "Small World"
network needs only a small fraction of long-range couplings to obtain a great improvement in
both stochastic resonance and synchronisation in network connectivity of bistable oscillators.
We suggest that the known topology of the visual cortex (Zeki, 1993) if considered as a
"Small World" network can provide the foregoing benefits. They would be consistent with the
long-range and short-range connectivities of V1 to retinal neurons which have the required
bistable oscillator condition provided by on-centre or off-centre neurons responses to light
and dark and including those with colour opponency properties. The long and short-range
selectivity for connections can be dynamic based on the neuron threshold levels and spatial
frequency channels (Dudkin, 1992). The system updates a neuronal state only when new
information indicates a change in the input signal.

5.0.0.27

The cortical implementation of PaSH-FFT was discussed in Section 4.2 where it was argued
that the known connectivity of area V1 was sufficient to support its cortical implementation.
It was then argued that this implementation could deliver the required convolution in a
’small’ number of sequential steps. However, the argument did not rule out the possibility
of an alternative mechanism that would deliver the required convolution in fewer steps
than PaSH-FFT. It would appear that without a sufficiently developed model of the brain’s
parallelism, it is unlikely that a mathematical proof of a lower bound for the minimum number
of sequential steps could be produced. Currently, the only bound that we can be sure of is that
the required convolution could not be completed in one step. The question of determining the
minimum lower bound remains an open question.

5.0.0.28

The role of the frequency domain was at the heart of the solution to the cortical convolution
conundrum proposed in this paper. However, the possibility of performing the convolution
in the spatial domain without resorting to the frequency domain cannot be ruled out by any
argument presented in this paper. Although it is unclear how this could be accomplished
without resorting to a highly asymmetric model of the distribution of the connectivity of
long-range connections. In any case, the search for an explanation of how the dynamic
reconfiguration implied by the analysis of this paper is actually accomplished is likely to
provide many different conjectures along the way. One possible avenue in this endevour
might be provided by further tracer experiments such as those reported in (Angelucci et al.,
2002).

6. Summary and conclusion

This paper reviewed the evidence for long-range contextual modulation and concluded that
it implied cortical convolution at the scale of the visual field. This resulted in the need to
address the problem of how such long-range convolution could be accounted for with known
cortical connectivity and within known time constraints. The paper proposed a solution to
the problem that emerged from a mathematical analysis of cortical connectivity to account for
the implied constraints of long-range convolution. In particular, it was argued that the known
distribution of the long-range patchy connections and extrastriate connections is adequate
to provide the means by which the global visual signal can be transformed into frequency
space where the convolution can be performed. The main thrust of the argument was that
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these long-range connections facilitated the transformation of the signal into and out of
the frequency domain via a new fast Fourier transform named PaSH-FFT. A mathematical
proof of the most general form of this FFT, GOSH-FFT, was provided in the appendix along
with MatLab-like pseudo-code to facilitate the implementation of GOSH-FFT in computer
software.

6.0.0.29

It was shown that, to a first order approximation, a cortical implementation of PaSH-FFT could
account for the large scale convolution implied by known models of contextual modulation.
The significance of PaSH-FFT is that it:

• represents a plausible cortical mechanism to account for long-range contextual
modulation;

• suggests a theoretical explanation of how the brain might be wired to achieve large scale
Fourier analysis;

• opens up the possibility of explaining other cortical processes via frequency space
computations.

It is the conclusion of this paper that the processing of the visual signal in the frequency
domain via a fast Fourier transform plays a fundamental role in primate vision.

7. Appendix

In this appendix, we present the pseudo-code for GOSH-FFT and a mathematical proof of
GOSH-FFT.

7.1 Appendix A

This section presents a formal statement of GOSH-FFT in MatLab-like pseudo-code.

Notation:

x = Complex array specifying the input signal
base = 7α, where α is an integer greater than zero
n = 7β, where β/α , is an integer greater than zero.
⊗ denotes scalar multiplication in SHIA

01 function y = GOSH − FFT(x, n, base, α)
02 y ← x
03 f orlevel = 1 : logbase(n
04 f ← m10(y, α)
05 r ← rootsO f Unity(baselevel)
06 w ← m10(r, α)
07 F ← localDFFT( f , w, level, n, base)
08 y ← localM10Inverse(F, level, n, base, α)
09 r ← w
10 end
11 end
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01 function T = m10(t, α)
02 f ori = 0 : n − 1
03 a ← convertToSHIA(i)
04 b ← 10α ⊗ a
05 c ← convertFromSHIA(b)
06 T(c) ← t(i)
07 end
08 end

01 function F = localDFT( f, w, level, n, base )
02 subSignalSize ← baselevel

03 numSubSignals ← n/subSignalSize
04 f ors = 0 : numSubSignals − 1
05 tab ← s × subSignalSize
06 f ors = 0 : subSignalSize − 1
07 wLB ← i × base
08 lB ← i × base + tab
09 uB ← lB + base − 1
10 f oru = lB : uB

11 F(u) ← ∑
base−1
x=0 f (x + lB)× w(x + wLB)

12 end
13 end
14 end
15 end

01 function T = localM10Inverse( t, level, n, base )
02 subSignalSize ← baselevel

03 numSubSignals ← n/subSignalSize
04 for s = 0: numSubSignals-1
05 for i =0: subSignalSize-1
06 a ← convertToSHIA(i)
07 b ← 10−α ⊗ a
08 c ← convertFromSHIA(b)
09 T(c) ← t(i)
10 end
11 end
12 end

7.2 Appendix B

This section presents the mathematical proof of GOSH-FFT.

Notation: The symbol % will be employed to mean modular arithmetic. Let B = 7m, where m
is a positive integer. N = Bp, where p is a positive integer.

Let M denote the compound transform M10m from SHIA.
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Let 1, e, e2, e3, ..., eN−1 represent N roots of unity, where multiplication of two arbitrary roots

of unity denoted ei and ej is defined as: eiej = e(i+j)%N .

e(u) = e(u%B)+(u/B)n = 1, e1, ..., eB−1, ..., e(B−1)n, ..., e(B−1)n+(B−1), for p > 1 and =
1, e1, ..., eB−1, for p = 1.

F(u) = Fu%B
u/B = F0

0 , ..., FB−1
0 , ..., F0

n−1, ...FB−1
n−1 , denote a sequance of N Fourier components.

f (x) = f x%B
x/B = f 0

0 , ... f B−1
0 , ..., f 0

n−1, ..., f B−1
n−1 , denote a sequence of N points in the input signal.

The proof is by induction on p. When p=1, GOSH-FFT is simply a DFT. Assume the
GOSH-FFT computes a Fourier transform for all levels less than p.

M−1( f x%B
x/B ) = f 0

0 , . . . , f 0
n−1, . . . , f B−1

0 , . . . , f B−1
n−1 .

We now have B sub-signals, each of which is composed of n points. Then, by the induction
hypothesis, we can apply GOSH-FFT to obtain B individual transforms of the B sub-signals;
which yields:

Let

f̂ = F̂0
0 , . . . , F̂0

n−1, . . . , F̂B−1
0 , . . . , F̂B−1

n−1 .

M( f̂ ) = F̂0
0 , . . . , F̂B−1

0 , . . . , F̂0
n−1, . . . , F̂B−1

n−1

M(e(u)) = e((u/B) + (u%B)n)

= 1, en, . . . , e(B−1)n, e1, en+1, . . . , e(B−1)n+1, . . . , en−1, e2n−1, . . . , eBn−1

Perform a local DFT on each of the n groups of B points. The general term is:

B−1

∑
q=0

F̂
q
u/Beq((u/B)+((u%B)n))%N (8)

=
B−1

∑
q=0

[

n−1

∑
r=0

f
q
r eBr(u/B)%N

]

eq(u/B)+((u%B)n))%N (9)

=
B−1

∑
q=0

[

n−1

∑
r=0

f
q
r eBn(u/B)%Ne(u%B)rBn%N

]

eq((u/B)+((u%B))n))%N (10)

=
B−1

∑
q=0

[

n−1

∑
r=0

f
q
r eBr((u/B)+((u%B)n))%N

]

eq((u/B)+((u%B)n))%N (11)

=
B−1

∑
q=0

[

n−1

∑
r=0

f
q
r e(Br+q)((u/B)+((u%B)n))%N

]

(12)

=
N−1

∑
s=0

f s%B
s/B es((u/B+((u%B)n))%N (13)

= F((u/B) + (u%B)n)) (14)

= F(u)
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Although this proof is for signals of size 7n represented on a hexagonal lattice, it applies to the
case of a signal of size 5n on a rectangular lattice with a few modifications, i.e. all appearances
of the number 7 needs to be replaced with the number 5.
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