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1. Introduction 

1.1 Robust beamforming overview 

Beamforming is a ubiquitous task in array signal processing with applications, among others, 
in radar, sonar, acoustics, astronomy, seismology, communications, and medical imaging. 
Without loss of generality, we consider herein beamforming in array processing applications. 
The introduction to beamforming can be found in [1]-[9] and the references herein. 

The traditional approach to the design of adaptive beamformers assumes that the desired 
signal components are not present in training data, and the robustness of beamformer is 
known to depend essentially on the availability of signal-free training data. However, in 
many important applications such as mobile communications, passive location, microphone 
array speech processing, medical imaging, and radio astronomy, the signal-free training 
data cells are unavailable. In such scenarios, the desired signal is always present in the 
training snapshots, and the adaptive beamforming methods become very sensitive to any 
violation of underlying assumptions on the environment, sources, or sensor array. In fact, 
the performances of the existing adaptive array algorithms are known to degrade 
substantially in the presence of even slight mismatches between the actual and presumed 
array responses to the desired signal [10]-[12]. Similar types of degradation can take place 
when the array response is known precisely but the training sample size is small, namely 
the mismatch between the actual and the estimated covariance matrix [13]-[15]. Therefore, 
robust approaches to adaptive beamforming appear to be of primary importance in these 
cases [16][17]. 

Many approaches have been proposed to improve the robustness of the adaptive 
beamformer during the past three decades. Indeed, the literatures on the robust adaptive 
beamformer are quite extensive. We provide a brief review as fellows. For more recent 
detailed critical reviews, see [18] and [19]-[25]. 

1.1.1 Robust approaches for signal direction mismatch 

For the specific case of the signal direction mismatch, there are several efficient methods 
have been developed. Representative examples of such techniques are the linearly 
constrained minimum variance (LCMV) beamformer [26], which is also denoted as the 
linearly constrained minimum power (LCMP) beamformer in other references [27] and this 
chapter, signal blocking-based algorithms [10][28], and Bayesian beamformer [29]. Although 
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all these methods provide excellent robustness against the signal direction mismatch, they 
are not robust against other types of mismatches caused by poor array calibration, unknown 
sensor mutual coupling, near-far wavefront mismodeling, signal wavefront distortions, 
source spreading, and coherent/incoherent local scattering, as well as other effects [17]. 

Chun-Yang Chen and P.P.Vaidyanathan consider a simplified uncertainty set which 
contains only the steering vectors with a desired uncertainty range of direction of arrival 
(DOA) [25], although the closed-form solution is given, and the diagonal loading level can 
be computed by the iteration method systematically, but how to determine the DOA 
uncertainty range is the critical problem. 

1.1.2 Robust approaches for general mismatch 

Several other approaches are known to provide the improved robustness against more 
general types of mismatches, for example, the algorithms that use the diagonal loading of 
the sample covariance matrix [14][16], the eigenspace-based beamformer [11][30][31], and 
the covariance matrix taper (CMT) approach [32]-[34]. For the diagonal loading method, a 
serious drawback is that there is no reliable way to choose the diagonal loading level, 
F.Vincent and O.Besson propose the method to select the optimal loading level with a view 
to maximizing the signal-to-noise ratio (SNR) in the presence of steering vector errors and it 
is shown that the loading is negative, but they can’t give the exact solution, instead of the 
approximate solution, moreover, they can’t give the expression of steering vector errors [35]. 
The eigenspace-based approach is essentially restricted in its performance at low SNR and 
when the dimension of the signal-plus-interference subspace is high, and the dimension 
must be known in the latter technique [31]. The CMT approach is known to provide an 
excellent robustness in scenarios with nonstationary interferers, however, its robustness 
against mismatches of the desired signal array response may be unsatisfactory, furthermore, 
it can also be explained as the diagonal loading [33]. 

1.1.3 Uncertainty set constraint approaches for general mismatch 

Very recently, many approaches have been proposed for improving the robustness of the 
standard minimum variance distortionless response (MVDR) beamformer. Their main ideas 
are based on the definition of the uncertainty set and the worst-case performance 
optimization, but these algorithms are all classified to the diagonal loading technique. 

Jian Li et al propose the robust Capon beamformer under the constraint of steering vector 
uncertainty set [20], then the constraint of steering vector norm is imposed and the doubly 
constraint robust Capon beamformer is proposed [22]. For the two beamformers, although 
they give the exact weight vectors, and the methods of finding the optimal loading level, but 
their performance improvements are not obvious. Actually, the constraint of uncertainty set 
is the essence of the two robust beamformers, and the two beamfomer have the same 
robustness characteristic. F.Vincent and O.Besson also analyze the performance of the 
beamformer under the uncertainty set constraint approximatively, but they can’t give the 
exact loading level [36]. 

S. A. Vorobyov et al propose a robust beamformer in the presence of an arbitrary unknown 
signal steering vector mismatch [19], although they prove the proposed approach equivalent 
to the loading sample matrix inversion (LSMI) algorithm, but they can’t give the direct 
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method to compute the optimal weight vector, and the second-order cone (SOC) 
programming-based approach is used to solve the original problem. Ayman Elnashar et al 
make use of the diagonal loading technique to implement the robust beamformer [24], but 
the optimal value of diagonal loading level is not solved exactly, alternatively, the diagonal 
loading technique is integrated into the adaptive update schemes by means of optimum 
variable loading technique. R. G. Lorenz and S. P. Boyd also solve the similar beamformer 
by the Lagrange multiplier techniques [23], but they express the weight vector and the array 
manifold as the direct sum of the corresponding real and imaginary components. Almir 
Mutapcic et al show that worst-case robust beamforming with multiplicative uncertainty in 
the weights can be cast as a tractable convex optimization problem [37], but they can’t give 
the solving method, In fact, the proposed robust beamformer with uncertain weights can be 
converted to that in [19] equivalently. 

S. Shahbazpanahi et al consider the general-rank signal model, and the robust beamformer 
is proposed for the distributed sources [21], therein, an elegant closed-form solution is 
given, but its performance improvement depends on the constraint parameter severely, and 
is not up to optimal. 

1.1.4 Weight norm constraint approaches for general mismatch 

Jian Li et al propose a Capon beamforming approach with the norm inequality constraint 
(NIC) to improve the robustness against array steering vector errors and noise [22], although 
the exact solution is given, and optimal loading level can be computed via the proposed 
method, but by analysis and simulation, its efficiency is not as good as expectation. Since the 
constraint parameter determines its robustness, but how to select the constraint parameter is 
not discussed. 

Quadratic inequality constraints (QIC) on the weight vector of LCMP beamformer can 
improve robustness to pointing errors and random perturbations in sensor parameter [27]. 
The weights that minimize the output power subject to linear constraints and an inequality 
constraint on the norm of the weight vector have the same form as that of the optimum 
LCMP beamformer with diagonal loading of the data covariance matrix. But the optimal 
loading level cannot be directly expressed as a function of the constraint in a closed form, 
and cannot be solved exactly. Hence, its application is restricted by the optimal weight 
vector finding. So that some numerically algorithms are proposed to implement the 
QICLCMP, such as Least Mean Squares (LMS) or Recursive Least Squares (RLS) [27], but the 
application effect isn’t good as the expectation. 

This chapter is organized as follows [38]. First, the norm inequality constraint Capon 
beamformer (NICCB) is introduced and analyzed particularly. Second, the choice of the 
norm constraint parameter and the selecting bound is discussed. Third, the norm equality 
constraint Capon beamformer (NECCB) is proposed and is solved effectively. Finally, the 
simulation analyses and the conclusion are given. 

1.2 Capon beamformer under norm inequality constraint (NICCB) 

The Capon beamformer can experience significant performance degradation when there is a 
mismatch between the presumed and actual characteristics of the source or array. The goal 
of NICCB is to impose an additional inequality constraint on the Euclidean norm of w  for 
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the purpose of improving the robustness to pointing errors and random perturbations in 
sensor parameters, here w  denotes the array weight vector. This requires incorporating a 
norm inequality constraint on w  of the form: 

 
2 ς≤w  (1.1) 

where ς  is the norm constraint parameter. Consequently, the NICCB problem is formulated 
as follows: 

 

2

min

. . 1

H

Hs t

ς

⎧
⎪⎪
⎨ =
⎪
⎪ ≤⎩

w
w Rw

w s

w

 (1.2) 

where R  is the data covariance matrix, s  is the presumed signal steering vector, and ( )H⋅  
denotes the conjugate transposition, ⋅  denotes the vector 2l  norm. For the convenience of 
analysis, and analyzing the choice of the norm constraint parameter, the solution to NICCB 
[22] is introduced as follows. 

1.2.1 Solution to NICCB 

Let S  be the set defined by the constraints in above optimization problem, namely: 

 { }2
1,HS ς= = ≤w w s w  (1.3) 

Define a function: 

 ( ) ( ) ( )2
1 , , 2H H Hf λ μ λ ς μ= + − + − − +w w Rw w w s s w  (1.4) 

where λ  is the real-valued Lagrange multiplier, and 0λ ≥  satisfying 0λ+ >R I  so that 

( )1 , ,f λ μw  can be minimized with respect to w . μ  is the arbitrary Lagrange multiplier. 
Then: 

 ( )1 , , ,Hf Sλ μ ≤ ∈w w Rw w  (1.5) 

with equality on the boundary of S . 

For the standard Capon beamformer 

 
min

. . 1

H

Hs t

⎧⎪
⎨
⎪ =⎩

w
w Rw

w s
 (1.6) 

The optimal solution is: 

 
1

1H

−

−=
R s

w
s R s

 (1.7) 
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where 1−R  is the inversion of R , namely ( ) 1−⋅  denotes the matrix inversion. Here, we can 
have: 

 

( )
1 1 2

2

1 1 2
1

H H
H

H H
H

− − −

− − −

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠

R s R s s R s
w w w

s R s s R s s R s
 (1.8) 

where ( )22 1 1 1− − − −= = ⋅R R R R , the above result using the Hermitian property of R . 

Consider the condition: 

 

( )
2

2
1

H

H
ς

−

−
≤

s R s

s R s
 (1.9) 

when the above condition is satisfied, the standard Capon beamformer solution (1.7) 
satisfies the norm constraint of NICCB, hence, is also the solution to NICCB. For this case, 

0λ =  and the norm constraint in NICCB is inactive. 

Otherwise, we have the condition: 

 

( )
2

2
1

H

H
ς

−

−
<

s R s

s R s
 (1.10) 

which is an upper bound on ς  so that NICCB is different from the standard Capon 
beamformer. To deal with this case, we can rewrite the ( )1 , ,f λ μw  as follows: 

 
( ) ( ) ( ) ( )

( )

1 1
1

12

, ,

2

H

H

f λ μ μ λ λ μ λ

μ λ λς μ

− −

−

⎡ ⎤ ⎡ ⎤= − + + − + −⎣ ⎦ ⎣ ⎦

− + − +

w w R I s R I w R I s

s R I s

 (1.11) 

Hence, the unconstrained minimizer of ( )1 , ,f λ μw , for fixed λ  and μ , is given by: 

 ( ) 1
,

ˆ λ μ μ λ −= +w R I s  (1.12) 

Clearly, we have: 

 ( ) ( ) ( ) 12
2 1 ,

ˆ, , , 2 ,H Hf f S
Δ

λ μλ μ λ μ μ λ λς μ−= = − + − + ≤ ∈w s R I s w Rw w  (1.13) 

The maximization of ( )2 ,f λ μ  with respect to μ . Hence, μ  is given by: 

 
( ) 1

1
ˆ

H
μ

λ −=
+s R I s

 (1.14) 

Insert μ̂  into ( )2 ,f λ μ , and let: 

 ( ) ( )
( )3 2 1

1
ˆ,

H
f f

Δ
λ λ μ λς

λ −= = − +
+s R I s

 (1.15) 
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The maximization of the above function ( )3f λ  with respect to λ  gives: 

 
( )

( )

2

21

H

H

λ
ς

λ

−

−

+
=

⎡ ⎤+⎣ ⎦

s R I s

s R I s

 (1.16) 

Hence, the optimal Lagrange multiplier λ̂  can be obtained efficiently via, for example, a 
Newton’s method from the above equation of λ . 

Note that using μ̂  in ,
ˆ λ μw  yields: 

 
( )
( )

1

1
ˆ

H

λ

λ

−

−

+
=

+

R I s
w

s R I s
 (1.17) 

which satisfies the constraints of NICCB, namely: 

 ˆ 1H =w s  (1.18) 

and  

 
2ˆ ς=w  (1.19) 

Hence, ŵ  belongs to the boundary of S . Therefore, ŵ  is our sought solution to the NICCB 
optimization problem, which has the same form as the Capon beamformer with a diagonal 
loading term λI  added to R , namely, NICCB also belongs to the class of diagonal loading 
approaches. 

From the above analysis, we can see that if the Lagrange multiplier λ  is obtained, the 
optimal weight vector for NICCB will be solved. In order to obtain the Lagrange multiplier 
λ , we must solve the following equation via Newton’s method, and let: 

 ( ) ( )

( )

2

21

H

H
h

λ
λ

λ

−

−

+
=
⎡ ⎤+⎣ ⎦

s R I s

s R I s

 (1.20) 

Hence, the key problem of NICCB is finding the optimal Lagrange multiplier by above 
equation (1.20). In this chapter, we will give the complete investigation on NICCB, and the 
existence of its solution is analyzed as follows. 

1.2.2 Solution to the optimal Lagrange multiplier 

In order to solve the equation (1.20), we perform an eigenvalue decomposition (EVD) of the 
sample covariance matrix as follows: 

 
1

M
H H

i i i
i

λ
=

= ⋅ ⋅ =∑R U ポ U u u  (1.21) 

where ( )1 2, , , Mdiag λ λ λ=ポ A  is diagonal matrix, ( )1 2, , , M=U u u uA  is an Hermitian 
matrix, iλ  ( 1,2i M= A ) and iu  ( 1,2i M= A ) are the eigenvalues and eigenvectors of R , 
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respectively, M is the total number of degrees-of-freedom. For the convenience of analysis, 
we assume that the eigenvalues / eigenvectors of R  are sorted in descending order, i.e. ,  

 1 2 Mλ λ λ≥ ≥ ≥A  (1.22) 

We can have: 

 ( ) ( ) ( )

2

2 2
1 1

2 22

1
1

HH HM M
ii i

i ii i

H HM HMi i i

ii
ii

h
λ λ λ λ

λ

λ λ λ λ

= =

=
=

+ +
= =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥+

⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

s us u u s

s u u s s u

 (1.23) 

Therefore, ( )h λ  is monotonically increasing function of 0λ ≥  [22] , then: 

 ( ) ( ) ( )

2 2

22 2
1 1 1

2 2 22 2

1

11 1

1

H HM M
i i

i ii M
M

HMH HM M ii i
i

ii i

h
λ λ λ λ λ λλ

λ λ

λ λ λ λ

= =

=
= =

+ + ⎛ ⎞+
= ≤ = ⎜ ⎟

+⎡ ⎤ ⎡ ⎤ ⎝ ⎠
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑
∑ ∑

s u s u

s us u s u

 (1.24) 

and 

 ( ) ( ) ( )

2 2

22 2
1 1 1

2 2 22 2 1

1

1 1

1

H HM M
i i

i ii M
M

HH HM M ii i
i

i Mi i

h
λ λ λ λ λ λ

λ
λ λ

λ λ λ λ

= =

=
= =

+ + ⎛ ⎞+
= ≥ = ⎜ ⎟

+⎡ ⎤ ⎡ ⎤ ⎝ ⎠
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑
∑ ∑

s u s u

s us u s u

 (1.25) 

and let: 

 
2

1

M
H

i
i

γ
=

=∑ s u  (1.26) 

Alternately, the above inequality relationship can be expressed as: 

 1

M

λ λγς
λ λ

+
≤

+
 (1.27) 

and 

 
1

Mλ λγς
λ λ

+
≥

+
 (1.28) 
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Next, we analyze the bound of the Lagrange multiplier λ  and its existence. 

1. If 1γς > , using (1.27) and (1.28), we can have: 

 
( )
( )

1

1

1 1

1

1

M

M

M M

λ γςλ
λ

γς λ λ λ λ γς

γς λ λ λ λ λ γςλ
λ

γς

⎧ −
≤⎪⎧ + ≤ + −⎪ ⎪⇒⎨ ⎨

+ ≥ + −⎪ ⎪⎩ ≥⎪ −⎩

 (1.29) 

Since 1γς > , but 1 0Mλ γςλ− < , and 0λ ≥ , so that 1 10M Mλ γςλ γς λ λ− > ⇔ < . 

Therefore, the bound of the Lagrange multiplier λ  under 11 Mγς λ λ< <  is given as 

follows: 

 ( ) ( )1 11
maxmin 0

1
M

Δ Δλ γςλ
λ λ λ

γς
−

= ≤ ≤ =
−

 (1.30) 

Then, we have: 

 ( )( ) ( )
2

1
min 21

0
H

H
h hλ ς

−

−
= = >

⎡ ⎤
⎣ ⎦

s R s

s R s
 (1.31) 

and 

 ( )( ) ( ) ( )

( )

1
max

1
max

2
1 1

max

1

M

h h
λ

λ

λ λλ λ ς
λ λ γ

⎛ ⎞+
= ≤ =⎜ ⎟

+⎝ ⎠
 (1.32) 

Hence, when 11 Mγς λ λ< < , there is unique solution ( ) ( )1 1
maxmin ,λ λ λ⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 satisfies ( )h λ ς= . 

2. If 1γς < , using (1.27) and (1.28), we can have: 

 
( )
( )

1

1

1 1

1

1

M

M

M M

γς λ λ
λ

γς λ λ λ λ γς

γς λ λ λ λ γςλ λ
λ

γς

⎧ −
≥⎪⎧ + ≤ + −⎪ ⎪⇒⎨ ⎨

+ ≥ + −⎪ ⎪⎩ ≤⎪ −⎩

 (1.33) 

Since 1γς < , but 1 0Mγς λ λ− < , and 0λ ≥ , so that 1 10M Mγς λ λ γς λ λ− > ⇔ > . 

Therefore, the bound of the Lagrange multiplier λ  under 1 1Mλ λ γς< <  is given as 

follows: 

 ( ) ( )2 21
maxmin 0

1
M

Δ Δγς λ λ
λ λ λ

γς
−

= ≤ ≤ =
−

 (1.34) 

Then, we have: 
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 ( )( ) ( )
2

2
min 21

0
H

H
h hλ ς

−

−
= = >

⎡ ⎤
⎣ ⎦

s R s

s R s

 (1.35) 

and 

 ( )( ) ( ) ( )

( )

2
max

2
max

2
2

max
1

1Mh h
λ

λ

λ λ
λ λ ς

λ λ γ
⎛ ⎞+

= ≥ =⎜ ⎟
+⎝ ⎠

 (1.36) 

Hence, when 1 1Mλ λ γς< < , there isn’t a solution (2) (2)
maxmin ,λ λ λ⎡ ⎤∈ ⎣ ⎦  satisfies ( )h λ ς= . 

In a word, we can conclude that when 11 Mγς λ λ< < , there is a unique solution 
(1) (1)

maxmin ,λ λ λ⎡ ⎤∈ ⎣ ⎦  satisfies ( )h λ ς= . 

1.3 Norm inequality constraint parameter selection 

From above analysis, we can see that it is important to select the norm inequality constraint 
parameter ς  for NICCB. If the norm inequality constraint parameter ς  is large, it is 
inactive. On the contrary, if the norm inequality constraint parameter ς  is small, there isn’t 
a solution to satisfy NICCB. 

We have analyzed that when 11 Mγς λ λ< < , there is a unique solution (1) (1)
maxmin ,λ λ λ⎡ ⎤∈ ⎣ ⎦  

satisfies ( )h λ ς= . Hence, we can have the selecting bound of the norm inequality constraint 

parameter ς  as follows: 

 11
M

λγς
λ

< <  (1.37) 

Namely: 

 
2

11 1

M

λς
γ γ λ

⎛ ⎞
< < ⋅ ⎜ ⎟

⎝ ⎠
 (1.38) 

Add the condition of 

( )
2

02
1

H

H

Δ
ς ς

−

−
< =

s R s

s R s

, we can obtain: 

 
2

1
min 0 max

1 1
min ,

M

Δ Δλς ς ς ς
γ γ λ

⎧ ⎫⎛ ⎞⎪ ⎪= < < =⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭

 (1.39) 

If the norm inequality constraint parameter ς  is out of the above bound, there is no solution 
to NICCB. Hence, the norm inequality constraint parameter ς  should be chosen in the 
interval defined by the above inequalities. 

1.4 Capon beamformer under norm equality constraint (NECCB) 

From above analyses, we can see that the norm inequality constraint can enhance the 
robustness of NICCB. Since the inequality relationship has a wide range, the norm of the 
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weight vector will vary in the relevant wide range. If the fluctuation of weight vector norm 
is acutely, the performance improvement will be weakened greatly. Because the norm 
equality constraint (NEC) is stronger than the norm inequality constraint (QIC), NECCB will 
have more ascendant robust performance than NICCB. Hence, NECCB is proposed and is 
solved effectively in this chapter. 

NECCB is to impose an additional equality constraint on the Euclidean norm of w . The 
NECCB problem is formulated as follows: 

 

2

min

. . 1

H

Hs t

ς

⎧
⎪⎪
⎨ =
⎪
⎪ =⎩

w
w Rw

w s

w

 (1.40) 

Compare NECCB with NICCB, we can educe the conclusion as follows: (1) The solution to 
NICCB is obtained on the boundary of its constraint, similarly, for NECCB, the solution is 
also obtained on its constraint boundary. (2) The solving methods of the two beamformers 
(or the optimization problem) is different, such as the forenamed solution to NICCB, the 
Lagrange multiplier of NICCB is taken as positive real-value only, but for NECCB, the 
Lagrange multiplier is taken as arbitrary real-value, namely, it will be not only the positive 
real-value, but also the negative real-value. Hence, if we analyze from the point of view of 
the solving optimization problem, NECCB has two solutions to the optimal Lagrange 
multiplier, one is positive, and another is negative. Actually, the positive one is the solution 
to NICCB. For the sake of distinguishing the otherness, the negative solution is interested to 
NECCB. In order to solve NECCB, we must make use of the discussed results of NICCB, 
since the manipulation of some inequality, such as the inequality lessening and enlarging is 
only right for the positive real-value when we solve NICCB. 

Similar to NICCB, the solution to NECCB can also be solved by the Lagrange multiplier 
methodology. And the optimal weight vector of NECCB has the same form as NICCB. The 
difference between NECCB and NICCB is only the Lagrange multiplier λ

%
, for NICCB, 

0λ ≥ , here λ
%

 is arbitrary real-value. 

Although the solution to NECCB has the same form as NICCB, but the bound of the 
Lagrange multiplier is different. In order to use the analyzed results of NICCB for NECCB, 
replace the Lagrange multiplier by its absolute value, namely the bound of the Lagrange 
multiplier λ

%
 for NECCB is given by: 

 
1

M

λ λ
γς

λ λ

+
≤

+

%

%  (1.41) 

and 

 
1

Mλ λ
γς

λ λ

+
≥

+

%

%  (1.42) 

1. If 1γς > , then: 
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 1 1

1 1
M Mλ γς λ λ γς λ

λ
γς γς
− −

≤ ≤
− −

%
 (1.43) 

If 1 0Mλ γς λ− > , then 1 Mγς λ λ< , since 1 0Mλ γς λ− < , but 0λ >
%

. Therefore, if 

11 Mγς λ λ< < , we can have: 

 ( ) ( )1 11 1
maxmin

1 1
M M

Δ Δλ γς λ λ γς λ
λ λ λ

γς γς
− −

=− ≤ ≤ =
− −

% % %
 (1.44) 

Since (1)
max 0λ >
%

, and (1) (1)
maxmin 0λ λ= − <

% %
. Hence, when 11 Mγς λ λ< < , the solution to NECCB 

in the bound of ( )1
max0, λ⎡ ⎤

⎣ ⎦
%

 is the same as NICCB, but the solution in the bound of 

( )1
min , 0λ⎡ ⎤

⎢ ⎥⎣ ⎦
%

 is the true solution to NECCB. 

2. If 1γς < , then: 

 1 1

1 1
M Mγς λ λ γς λ λ

λ
γς γς
− −

≤ ≤
− −

%
 (1.45) 

If 1 0Mγς λ λ− > , then 1Mγς λ λ> , since 1 0Mγς λ λ− < , but 0λ >
%

. Therefore, if 

1 1Mλ λ γς< < , we can have: 

 ( ) ( )2 21 1
maxmin

1 1
M M

Δ Δγς λ λ γς λ λ
λ λ λ

γς γς
− −

=− ≤ ≤ =
− −

%
 (1.46) 

Since ( )2
max 0λ >
%

, and ( ) ( )2 2
maxmin 0λ λ= − <

% %
, with the above analysis of NICCB, we can obtain that 

when 1 1Mλ λ γς< <  there isn’t a solution in the bound of ( )2
max0, λ⎡ ⎤

⎣ ⎦
%

 to NECCB, but the 

solution in the bound of ( )2
min , 0λ⎡ ⎤

⎢ ⎥⎣ ⎦
%

 is the true solution to NECCB. 

From above analysis, we can conclude as follows: 

1. When 11 Mγς λ λ< < , the solution in the bound of ( )1
min , 0λ⎡ ⎤

⎢ ⎥⎣ ⎦
%

 is the true solution to 

NECCN, and the norm equality constraint parameter ς  should be chosen in the 

interval defined by ( ){ }2
1 01 min ,Mγ ς λ λ γ ς< < . 

2. When 1 1Mλ λ γς< < , the solution in the bound of ( )2
min , 0λ⎡ ⎤

⎢ ⎥⎣ ⎦
%

 is the true solution to 

NECCB, and the norm equality constraint parameter ς  should be chosen in the bound 

of ( ) { }2
1 0min 1 ,Mλ λ γ ς γ ς< < . 

3. NECCB has the form of diagonal loading with negative loading level, but NICCB has 
the form of diagonal loading with positive loading level. 
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1.5 Simulation analysis 

In order to validate the correctness and the efficiency of the proposed algorithms, we 

analyze as follows. In our simulations, we assume a uniform linear array with N=10 

omnidirectional sensors spaced half a wavelength apart. Through all examples, we assume 

that there is one desired source, namely, there is a signal from direction 0º, the Signal Noise 

Ratio (SNR) is -5dB. Therein, the presumed signal direction is equal to 5º (i.e., there is a 5º 

direction mismatch). 

For the comparison, the benchmark standard Capon beamforming algorithm that 

corresponds to the ideal case when the covariance matrix is estimated by the maximun 

likelihood estimator (MLE) and the actual steering vector is used, this algorithm does not 

correspond to any real situation but is included in our simulations for the sake of 

comparison only, and is denoted by Ideal-SCB in the figure. The other algorithms include: 

standard Capon beamformer (SCB), NICCB, NECCB. For NICCB and NECCB, the constraint 

parameter is selected as the median of the allowable bound. 

1.5.1 Effectivity analyzing 

In order to show the effectivity of the proposed algorithms, we first compare the pattern of 

the mentioned Capon beamforming algorithms. The Capon beamformer pattern is given in 

Fig. 1. Since the signal direction mismatch, the mainlobe of SCB departs from the signal 

direction. The performance of NICCB is slightly better than SCB, and NECCB is the best of 

all, the direction mismatch is overcame commendably and NECCB also has lower sidelobe 

level. Here, NICCB uses the positive optimal loading level, NECCB uses the negative 

optimal loading level. From the comparison, we can see that NECCB has the better 

performance than NICCB. 
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Fig. 1. Capon beamformer pattern comparison 
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The variation of the beamformer SNR versus samples number is given in Fig. 2. We can see 
that with the change of the samples number, the SNRs varies accordingly. The SNR of 
NICCB is almost closed to the SNR of SCB, and is lower than the SNR of Ideal-SCB, but 
NECCB is the best of all, especially for the small number, it has preferable performance. 
Hence, the norm constraint can improve the SNR, and NECCB has the highest SNR among 
the listed algorithms. 
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Fig. 2. Output SNR versus samples number 
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Fig. 3. Output SNR versus angle mismatch 
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The variation of the Capon beamformer output signal-to-noise-ratio (SNR) versus signal 

direction mismatch is given in Fig. 3. We can see that with the change of the signal direction 

mismatch, the SNR varies accordingly, when the angle error is in the range of [-7º, 7º], 

NECCB will has higher SNR than SCB, NICCB. The NECCB has the higher SNR can be 

explained by the Fig. 1 of the beam pattern comparison, NECCB not only has the good 

pointing performance, but also has the lower sidelobe level. Namely, for the same desired 

signal output, the output noise of NECCB is lower. The simulation results can also be 

explained as follows, for the used scene, the Signal Noise Ratio is -5dB, and for NECCB, the 

optimal Lagrange is negative, namely the optimal loading level is negative, but for others, 

the loading level is zero or positive. Therefore, for the NECCB beamformer, the output noise 

power is decreased, but for other beamformers, the output noise power is increased. Hence, 

the NECCB has higher output SNR than others. For the sake of saving space, the 

corresponding beam pattern comparison isn’t given, but in the simulation, NECCB pattern 

also points to the actual signal direction exactly. Hence, NECCB has the better robustness in 

the signal direction mismatch case. 

From above analysis, we can see that NECCB has the best robustness against the signal 

direction mismatch. 

1.5.2 Correctness analyzing 

Since NICCB and NECCB have the same form as that of SCB with diagonal loading. But 

their key problems are how to find their own optimal loading level or Lagrange multiplier, 

In order to show the impact of loading level on the Capon beamformer under norm 

constraint (NCCB) and attest the correctness of the proposed algorithms, the simulation 

results are given as follows. 

The variation of the output SNR versus diagonal loading level is given in Fig. 4. We can see 

that with the change of the loading level in the bound of ( ) ( )1 1
maxmin ,λ λ⎡ ⎤

⎢ ⎥⎣ ⎦
% %

, the SNR of NCCB 

varies accordingly. When the loading level is positive, NCCB is NICCB, whereas, when the 

loading level is negative, NCCB is NECCB. By comparison, we can see that NECCB has 

higher SNR than NICCB, but for the optimal loading, namely when the loading level is 

equal to -6.09, NECCB has the best pointing performance, and its SNR is the highest one, 

where the optimal loading level -6.09 is calculated using the equation ( )h λ ς=  with 

11 Mγς λ λ< <  in the bound of ( )1
min , 0λ⎡ ⎤

⎢ ⎥⎣ ⎦
%

. Hence, the loading level has a great impact on 

the SNR of the Capon beamformer, and determines the performance improvement. 

The variation of the weight vector norm versus diagonal loading level is given in Fig. 5. We 

can see that with the change of the loading level in the bound of ( ) ( )1 1
maxmin ,λ λ⎡ ⎤

⎢ ⎥⎣ ⎦
% %

, the weight 

vector norm of NCCB varies accordingly. For most loading levels, the weight vector norm 

varies slightly, but when the loading level is small in negative domain, the weight vector 

norm is a little high, and the highest point is corresponding to the lowest point in Fig. 4. 

Therefore, the loading level has a great impact on the weight vector norm, especially for the 

negative loading. 
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Fig. 4. Output SNR versus loading level 
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Fig. 5. Weight vector norm versus loading level 

From the above simulation results, we can see that the loading level has a great impact on 
the performance of the Capon beamformer, and NECCB has the best pointing performance, 
namely, the optimal negative loading is the best. This is also consistent to the theory 
analysis, for the robust beamformer with diagonal loading, the improvement is determined 
by the optimal loading level, when the loading level is optimal, the performance 
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improvement will be the optimal, but for other values, the improvement will be little, or 
even worse. 

1.5.3 Constraint parameter selection analyzing 

For NCCB, there are two key problems, one is how to find the optimal loading level, and the 

other is how to select the norm constraint parameter. Although we have solved the two 

problems in theory, but there is another key problem, namely, how to select the optimal 

norm constraint parameter. Therefore, the impact of norm constraint parameter on NCCB is 

analyzed here particularly. 

The variation of the output SNR versus norm constraint parameter is given in Fig. 6. We can 

see that with the change of the norm constraint parameter in the allowable bound of 

( )min max,ς ς , the SNR of the Capon beamformer varies accordingly. NICCB has a little 

higher SNR than that of SCB, NECCB has the highest SNR. And with the norm constraint 

parameter increasing, the SNR of NECCB increases correspondingly, but the SNR of NICCB 

is inclined to the SNR of SCB. When the norm constraint parameter is equal to the 

maximum, the constraint is inactive, and the three SNRs tend to the same value. Hence, the 

SNR is determined by the choice of the norm constraint parameter, especially for NECCB. 
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Fig. 6. Output SNR versus constraint parameter 

The variation of the weight vector norm versus norm constraint parameter is given in Fig. 7. 

When the norm constraint parameter is selected in the allowable bound of ( )min max,ς ς , 

the weight vector norms of NICCB and NECCB vary adaptively, and are equal to the square 

root of the constraint parameter approximatively, this is consistent with the theory, namely 

the solution is obtained on the constraint boundary. The slight difference is caused by the 

approximative computation. 
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From above simulation results, we can see that if the norm constraint parameter is selected 
in the allowable bound, the norm constraint parameter has a great impact on the 
performance of NICCB and NECCB, especially for NECCB. But NECCB with the larger 
constraint parameter has the better pointing performance, namely, when the constraint 
parameter is selected as more larger in its allowable bound, the optimal negative loading 
has the optimal improvement. 

1.6 Conclusion 

From the above analysis, we can conclude as follows. (I) The proposed algorithm is correct 
and effective. (II) The norm constraint can improve the robustness of the Capon 
beamformer. Especially, the equality constraint has the preferable improvement to 
overcome the steering vector mismatch, and also has good robustness for the samples 
number. (III) When the norm constraint parameter is selected in the allowable bound, 
NECCB has the best performance, namely the optimal negative loading has the optimal 
improvement, this is because that the norm equality constraint is stronger than the norm 
inequality constraint. 

2. Improved pattern synthesis method with linearly constraint minimum 
variance criterion 

Antenna pattern synthesis becomes the fundamental research contents with the wide 
application of the array antenna in communication, radar and other areas, and catches the 
attentions widely. The array antenna pattern synthesis is the task which solves the weight 
values of the every element to force the antenna pattern inclining to the anticipant shape. 
Dolph has first given the method of getting the weight function for uniform linear array to 
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achieve the Chebychev pattern [39], therefore the optimal solution can be achieved in the 
sense of giving the mainlobe width and the maximum lowest sidelobe level. However, how 
to implement the pattern synthesis for the arbitrary array antenna efficiently is a challenging 
research task in array signal processing society. 

Currently, the methods of pattern synthesis can be classified as the two types, one is the 
traditional vector weight methods [40-42], the other one is the matrix weight methods [43], 
therein, the intelligent computer methods are used to improve the calculating efficiency of 
the optimal weight vector, such as the genetic evolution algorithms [44] and the particle 
swarm optimization algorithms [45]. However, for any pattern synthesis method, the 
iterative operation can’t be avoided, and the iterative number determines the operation load 
directly, the operation load, or titled as the compute efficiency is the key metric to evaluate 
the validity of the pattern synthesis. 

Guo Q et al propose the pattern synthesis method for the arbitrary array antenna with the 
linearly constraint minimun variance criterion (LCMV-PS) [45], compared with the 
traditional vector weight methods, this algorithm has the small iterative number and the 
preferable convergence. However, by analysis and simulation, it is found that the iterative 
coefficient determines its performance, namely, the iterative coefficient not only determines 
the pattern shape, but also determines the iterative number, or titled as the compute load. 
Therefore, how to select the iterative formula and its iterative coefficient is the key problem 
to reduce the compute load and enhanced the applicability.  

In this chapter, for the LCMV-PS method proposed in [45], by analyzing its implementation 
and jammer power iterative formula, the improved fast robust LCMV-PS method is 
proposed [46]. This algorithm takes into account the effect of the relative amplitude between 
synthesis pattern and its reference upon the pattern synthesis adequately, via adding a 
proportion constant to the iterative formula, the effect of their relative amplitude upon the 
changing ratio of the jammer power is strengthened, not only the iterative efficiency of the 
jammer power is improved, namely the iterative number is reduced, and the pattern 
synthesis efficiency is improved, but also the selecting bound of the iterative coefficient is 
extended, namely the effect of the iterative coefficient upon the pattern synthesis is 
weakened, and the application area and applicability of the pattern synthesis method is 
enhanced greatly. The last simulation attests its correctness and effectiveness. 

2.1 Pattern synthesis method with LCMV criterion 

The problem of array pattern synthesis can be simplified as follows, namely for the given 

element number M and element position { } 1

M
i i=x , solving the complex weight vector w, and 

force the array pattern ( )P θ  with the definite width and maximum value in the desired 

direction, at the same time, make the sidelobe level according to the requirement. 

The target of the pattern synthesis method for arbitrary arrays based on LCMV criterion 
(LCMV-PS) is making all the sidelobe peak level equal to the minimum that the array can 
achieve as possible. Furthermore, this method constructs many illusive jammers in the 
sidelobe region, and the jammer power will be justed by the synthesis pattern amplitude in 
its relative direction, namely, if the synthesis pattern amplitude is high in this direction, the 
illusive jammer power will be increased. Therefore, the LCMV-PS method can be simple 
described as follows: 
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1. Specify the mainlobe region [ ]1 2,ML MLθ θ  and sidelobe envelope ( )iD θ . 

Set the initial value of jammer power ( )0 if θ , if iθ  is in the sidelobe region, ( )0 1if θ = , 

otherwise if in the mainlobe region, ( )0 0if θ = , 1,i N= A , where N is the number of the 

uniformly distributed jammers with one degree spacing, namely, 1 2, , , Nθ θ θA  are the 

degree values with the one degree spacing in the array pattern overlay region. And 

( )iD θ  is the given reference sidelobe envelope of the synthesis pattern. 

2. Calculate jammer powers for the k-th iteration ( ) ( ) ( )1 2, , ,k k k Nf f fθ θ θA . 

If k=0, then the jammer powers are the initial values ( ) ( ) ( )0 1 0 2 0, , , Nf f fθ θ θA . 

If k≥1, there is the iterative formula as follows: 

 ( )
[ ]

( ) ( ) ( ) [ ]

1 2

1
1 1 1 2

0 ,

max , 0 ,

ML ML

k k k 1
k k ML ML

k 1

f P Pr
f Kf

Pr

θ θ θ
θ θ

θ θ θ θ θ− −
− −

−

⎧ ∈
⎪

= ⎧ ⎫−⎨ ⎪ ⎪+ ∉⎨ ⎬⎪ ⎪ ⎪⎩ ⎭⎩

 (2.1) 

where ( )1kf θ−  is the jammer powers of the k-1-th iteration, K is the iterative coefficient. 

( ) ( )1
H

kP θ θ− = w a  is the pattern of the k-1-th iteration, therein w is the relative weight 

vector, ( )⋅a  is the steering vector, and ( )H⋅  denotes the conjugate transposition. k 1Pr −  is the 

sidelobe reference amplitude, if the arbitrary sidelobe shape is required in the pattern 

synthesis, it is only to substitute ( ) ( )k 1 k 1Pr θ Pr D θ− −= ⋅  for k 1Pr −  in the above formula, and 

( )D θ  is the given sidelobe envelope. 

3. Calculate the data covariance matrix xR , namely: 

 ( ) ( ) ( )1 2, , , H
x k k k Ndiag f f fθ θ θ σ⎡ ⎤= ⋅ ⋅ +⎣ ⎦R A A IA  (2.2) 

where ( ) ( ) ( )1 2, , , Nθ θ θ⎡ ⎤= ⎣ ⎦A a a aA  is the array manifold matrix. σ  is a given small 

quantity, and I  is the identity matrix, σ I  is added to prevent the covariance matrix from 

being ill-conditioned. 

4. Calculate the weight vector w according with the following LCMV beamforming 

algorithm, then synthesize the pattern. If it is satisfactory, stop; otherwise, go to step (2) 

and continue. Therein, w is solved by the below LCMV optimization problem, namely: 

 
min

. .  

H

Hs t

⎧⎪
⎨
⎪ =⎩

x
w

w R w

C w f
 (2.3) 

where C is the M×m constraint matrix, and f is the m×1 constraint value vector. Its optimal 

solution is: 

 ( ) 11 1H −− −= x xw R C C R C f  (2.4) 

In the constraint condition of the optimization problem, the constraint of the mainlobe can 

be imposed, the constraint of the sidelobe can also be added, in other words, the constraint 

condition and parameter can be selected according to the pattern synthesis requirement. 
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2.2 Improvement of the jammer power iteration formula 

From the step of the LCMV-PS method, we can see that the key is the jammer power 
iteration in step (2), since it not only determines the synthesis pattern shape, but also 
determines the final iterative number. 

By the particular analysis of the LCMV-PS implementing steps, it is not difficulty to find 

that although the relative difference of the synthesis pattern and the reference pattern 

( )( )k 1 k 1 k 1P θ Pr Pr− − −−  is used as the ratio factor for the gain change, and to control the 

change direction and quality of the jammer powers, actually, the expression of the iterative 

formula ( ) ( ) ( )( )( )1 1 1k k k k 1 k 1f Kf P Pr Prθ θ θ− − − − −+ −  can be transformed as: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1k k 1 k

k k k
k 1 k 1

P Pr P
f Kf f K K

Pr Pr

θ θ
θ θ θ− − −

− − −
− −

⎛ ⎞−
+ = ⋅ + −⎜ ⎟

⎝ ⎠
 (2.5) 

This expression indicates that the jammer powers between the adjacent iterations are 

different by a proportional factor, when the iterative coefficient K is given, the jammer 

power ratio of the adjacent iterations is determined by the relative amplitude of the 

synthesis pattern and the reference pattern ( )k 1 k 1P θ Pr− − . Therefore, for the given K, the 

change of the jammer powers in the iteration process is determined by ( )k 1 k 1P θ Pr− − , and 

the relationship is a linear function. 

From the pattern synthesis process of the LCMV-PS method, when the synthesis pattern is 

higher than the reference pattern, the jammer powers should increase, and is in direct 

proportion to the difference of the two patterns. When the synthesis pattern is more higher 

than the reference pattern, the jammer powers should increase more larger. But when the 

synthesis pattern is close to the reference pattern, the change of the jammer power should be 

small, namely the adjustment should be precise at this time. Although the original iterative 

formula is consistent to the analyzing idea, and the change ratio of the iterative jammer 

powers is ( )( ) ( )1k 1 k 1K P θ Pr K− −⋅ + − , namely is in direct proportion to ( )k 1 k 1P θ Pr− − . 

Therefore, for the original method, K is the main parameter to determine the iterative effect 

and efficiency, and by the simulation, it is found that the synthesis pattern will be good 

when the parameter K is selected in a small region, such as the reference value K=0.1 in [42]. 

Actually, for the difference element number or array parameter, the optimal value of K will 

vary correspondingly. Hence, for the original method, how to select the optimal parameter 

K is the key matter, it not only determines the effect of the synthesis pattern, but also 

determines the efficiency of the jammer power iteration, namely the iterative number. 

Since in the iterative process, it is the factor ( )( ) ( )1k 1 k 1K P θ Pr K− −⋅ + −  determining the 
change quantity and direction of the jammer powers iteration, for the given K, the second 
item is constant, but the first item is the linear function of ( )k 1 k 1P θ Pr− − , and its 
proportional coefficient is K, namely the slope K determines the change quantity of the 
jammer power with ( )k 1 k 1P θ Pr− − . With the slope of the linear function increasing, namely 
for the given parameter Kp>1, the change ratio of ( )( ) ( )1p k 1 k 1K K P θ Pr K− −⋅ ⋅ + −  with 

( )k 1 k 1P θ Pr− −  will be larger, namely the efficiency of the jammer power iteration will be 
improved. At the same time, for the given parameter Kp, when the effect of the jammer 
power iteration is better, the selection of K will be loosened, namely K can be selected in a 
wider region. Therefore, if the constant factor Kp (Kp>1) can be added as this method, the 
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efficiency of the jammer power iteration will be improved, and the bound for selecting the 
iterative coefficient K will be enlarged, namely the selection of K will be simplified greatly. 

Hence, in order to improve the iterative efficiency of the LCMV-PS method and simplify the 
selection of the iterative coefficient K, the iterative formula of the jammer power can be 
improved as follows, namely 

 ( )
[ ]

( ) ( )
( ) [ ]

1 2

1 1 1 2

0 ,

max , 0 ,

ML ML

p k 1 k 1k
k k ML ML

k 1

K P θ Prf
f K f

Pr

θ θ θ

θ
θ θ θ θ θ− −

− −
−

⎧ ∈
⎪

⎧ ⋅ − ⎫= ⎨ ⎪ ⎪+ ⋅ ⋅ ∉⎨ ⎬⎪
⎪ ⎪⎩ ⎭⎩

 (2.6) 

where Kp is used to adjust the effect of the relative amplitude ( )k 1 k 1P θ Pr− − of the synthesis 
pattern and reference pattern upon the change ratio of the jammer power, namely is used to 
adjust the iterative efficiency of the pattern synthesis method, and other parameters have 
the same sense as forenamed. If Kp>1, the iterative efficiency will be advanced, whereas the 
iterative efficiency will be reduced. It is important that the effect of the iterative coefficient K 
upon the pattern synthesis is reduced greatly by adding the parameter Kp, therefore, the 
selection of parameter K will be simplified greatly. 

Compared with the LCMV-PS method proposed in [42], the iterative formula of the jammer 
power is added by a constant Kp to adjust the iterative efficiency in this chapter, if Kp>>1, the 
efficiency of the proposed method will be improved greatly, therefore, the iterative number 
will be reduced, so that the operation load will be reduced greatly by the proposed method. 
At the same time, the bound for selecting K will also be enlarged greatly, and the application 
area and applicability of the pattern synthesis method is enhanced.  

2.3 Simulations 

Since the proposed method has the higher iterative efficiency and stronger applicability as 
compared with the LCMV-PS method proposed in [42], the simulation keystone is to 
compare the iterative efficiency of the two methods, and the effect of the iterative coefficient 
upon the two methods. The simulations are as follows.  

2.3.1 Efficiency analyzing 

In order to validate the efficiency of the proposed method, the single beam and multi-beam 
pattern synthesis examples of the uniform and non-uniform linear array are given 
respectively, and the single beam pattern synthesis examples of uniform and non-uniform 
planar array are also given respectively. For the convenience of comparison, the proposed 
improved LCMV-PS method is denoted as I-LCMV-PS, the LCMV-PS in [42] is denoted as 
LCMV-PS, the reference pattern is denoted as Reference. 

The single beam synthesis pattern of the uniform linear array is given in Fig. 8. Therein, the 

element number is 32, the elements inter-space is half wavelength (λ/2), the mainlobe is 
point to 0º, the mainlobe width is 22º, the iterative parameter of jammer power K=0.5, and 
Kp=100. When the optimal weight vector is solved under the LCMV criterion, the mainlobe 
direction constraint is used only. Therein the iterative number of I-LCMV-PS is 5, but the 
iterative number of LCMV-PS is 20.  
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Fig. 8. Single beam synthesis pattern of uniform linear array 

The single beam synthesis pattern of the non-uniform linear array is given in Fig. 9. Therein, 

the element number is 32, the element space vector is (λ/2)×[0.29595, 1.5655, 2.7845, 3.9334, 
4.999, 5.9753, 6.8645, 7.6764, 8.428, 9.1413, 9.842, 10.557, 11.311, 12.127, 13.021, 14.002, 15.073, 
16.226, 17.449, 18.72, 20.017, 21.312, 22.579, 23.795, 24.939, 26, 26.971, 27.856, 28.664, 29.413, 
30.125, 30.825], the mainlobe is also point to 0º, the mainlobe width is also 22º, and K=0.5, 
Kp=100. When the optimal weight vector is solved under the LCMV criterion, the mainlobe 
direction constraint is used only. The iterative number of the two methods are 5 and 20, 
respectively. 
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Fig. 9. Single beam synthesis pattern of non-uniform linear array 
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In order to attest the applicability of the improved algorithm to the planar array, and its 
effectivity of multi-beam synthesis, namely the arbitrary array and arbitrary pattern 
synthesis, the particular simulation examples are given as Fig. 11.~Fig. 16. 

The multi-beam synthesis patterns of the uniform and non-uniform linear array are given in 
Fig. 11. and Fig. 12. The parameters are same as Fig. 8. and Fig. 9., the two beams point to 
45º and -45º respectively. Therein the iterative number of I-LCMV-PS is 6, but the iterative 
number of LCMV-PS is 25. 
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Fig. 10. Element position of the non-uniform planar array 
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Fig. 11. Multi-beam synthesis pattern of uniform linear array 
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Fig. 12. Multi-beam synthesis pattern of non-uniform linear array 

The single beam synthesis patterns of the uniform and non-uniform planar array with  

I-LCMV-PS are given in Fig. 13.~ Fig. 16. Therein, they have the same element number 36, 

the uniform planar array is phalanx, and element space is half wavelength, but the element 

position of the non-uniform planar array is given as Fig. 10. The mainlobe of the two array 

point to (0º,0º), and the beam-widths in the azimuth and elevation direction are all 30º. In 

the simulation, the iterative number of I-LCMV-PS is 8, and the Fig. 14. and Fig. 16. is the 

side view figure of Fig. 13. and Fig. 15. respectively.  
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Fig. 13. Single beam synthesis pattern of uniform planar array (1) 
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Fig. 14. Single beam synthesis pattern of uniform planar array (2) 
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Fig. 15. Single beam synthesis pattern of non-uniform planar array (1) 

From the above simulations, we can see that the two methods have the preferable synthesis 
pattern, but I-LCMV-PS has small iterative number, namely it has the higher pattern 
synthesis efficiency.  
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Fig. 16. Single beam synthesis pattern of non-uniform planar array (2) 

2.3.2 Convergence analyzing 

In order to compare the convergence characteristic, limit by the chapter length, here the 
example of the uniform linear array is given, about the examples of the non-uniform linear 
array and the planar array are similar to the uniform linear array. 
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Fig. 17. Synthesis pattern versus iterative number of I-LCMV-PS 
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Fig. 10. and Fig. 11. give the convergence of the synthesis pattern for the uniform linear array 
with I-LCMV-PS and LCMV-PS respectively. Therein, the parameters are as same as 2.3.1. 
From Fig. 10., we can see that when the iterative number is larger than 4, I-LCMV-PS can 
achieve the preferable pattern synthesis effect, but for LCMV-PS, the iterative number must 
be larger than 20, because I-LCMV-PS has the higher efficiency of the jammer power iteration.  
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Fig. 18. Synthesis pattern versus iterative number of LCMV-PS 
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Fig. 19. Pattern synthesis error versus iteration number 
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In order to attest the convergence and synthesis precision of the improved algorithm, Fig. 

19. gives the pattern synthesis error versus the iterative number. Therein, the pattern 

synthesis error is calculated as follows: 

 ( ) ( )
1

N

sum k i i
i

E P θ Pr θ
=

= −∑  (2.7) 

where ( )Pr θ  is the reference pattern, ( )kP θ  is the synthesis pattern after k-th iteration. 

From the error curve, we can see that the improved algorithm has the fast convergence 

performance, and fall rapidly from beginning, at last, the two curves converge at the same 

value, namely the convergence is consistent with the Fig. 17. and Fig. 18. Therefore, the 

proposed algorithm has the good convergence and synthesis precision. 

In order to analyze the effect of the iterative coefficient upon the pattern synthesis, Fig. 20. 

and Fig. 21. give the synthesis pattern versus iterative coefficient for the uniform linear array 

with I-LCMV-PS and LCMV-PS respectively. Therein, the parameters are as same as 2.3.1. 

From Fig. 20., we can see that when Kp=100, the selection of iterative coefficient K has very 

little effect upon the pattern synthesis, in simulation, when 0.005<K<2000, the preferable 

performance can be achieved, the 2000 is the upper bound in simulation, if the parameter is 

larger than this value, the good performance can also be achieved. Actually, if Kp larger, the 

selecting bound for K wll be wider, it is consistent with the theory analysis. But from Fig. 

21., we can also see that the efficiency of the pattern synthesis is determined by K, in the 

simulation, we find that when 0.1<K<1.6, the preferable effect is achieved. By the 

comparison, we can see that the improved LCMV-PS method has the lower dependence 

upon the iterative coefficient, and enables the selecting bound for the iterative coefficient K 

enlarged greatly, and enhanced its application area and applicability. 
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Fig. 20. Synthesis pattern versus iterative coefficient of I-LCMV-PS 
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Fig. 21. Synthesis pattern versus iterative coefficient of LCMV-PS 

2.4 Conclusion 

From the above analysis and simulation, we can conclude as follows: (I) The proposed 
jammer power iterative formula is correct and effective. (II) By the improvement for the 
iterative formula of the original method, the iterative efficiency is increased greatly, and the 
iterative number is reduced greatly, therefore the operation load of the pattern synthesis is 
reduced efficiently. (III)The improved jammer power iterative formula enlarges the selecting 
bound for the iterative coefficient, and reduces the effect of the parameter upon the pattern 
synthesis, and enhances the application area and applicability of the proposed pattern 
synthesis method. 

3. Unitary Root-MUSIC 

The problem of estimating the direction-of-arrival (DOA) of narrowband sources from 
sensor array data has received considerable attention. The eigen-based methods for DOA 
estimation represent a class techniques that offer a much better resolution performance than 
that of conventional beamformers. In eigen-based methods, signal and noise subspaces are 

identified first via a M M×  generalized EVD (GEVD) of the array data/noise correlation 

matrix pencil, where M  equals the number of array elements. A search is then conducted 

over a null spectrum associated with the noise subspace, to locate the minima, from which 
the source DOA’s can be determined. In the case where a uniform linear array (ULA) is 
employed, the null-spectrum searching can be converted into a polynomial rooting problem. 
Two well known examples are the Root-MUSIC[47] and Root-Minimum-Norm[48] method. 
They belong to the so-called weighted root-form eigen-based methods. Compared to their 
spectrum-searching or spectral-form counterparts, root-form methods exhibit a higher 
resolution capability in dealing with closely spaced sources.Rao and Hari[49] argue that a  
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zero of the null spectrum, having a large radial error, will cause the corresponding spectral 
minima to be less defined,but does not affect the DOA estimates. As for the mean-squared 
errors of the DOA estimates,Li and Vaccaro[50] show that both spectral and root-form 
methods yield the same expression. It should be borne in mind, however, that the result 
holds only when each of the sources has a minimum corresponding to it in the null 
spectrum. 

A major issue regarding eigen-based methods is the heavy computational load associated 
with the GEVD. This is more significant when M is large. To remedy this the concept of 
beamspace transformation was proposed[51] as a means of reducing the dimension of the 
array data. Ta.S.L proposed a novel iterative implementation of beamspace root-form 
methods without the need for large-order polynomial rooting[52]. Marius.P, Alex.B.G and 
Martin.H proposed the unitary root MUSIC algorithm reduces the computational 
complexity because it exploits the eigendecomposition of a real-valued covariance matrix[53]. 

In this chapter [54], combining the algorithms of Root-MUSIC and Unitary-root MUSIC, the 
Root-MUSIC algorithm with real-valued eigendecomposition is given. 

3.1 Array signal model 

Assume a uniform linear array (ULA) is composed of M  sensors, and let it receive q  
( q M< ) narrowband signals impinging with unknown directions of arrival ((DOA) 

1θ , 2θ ,… , qθ . Assume that there are N  snapshots ( )1x , ( )2x ,… , ( )Nx  available. The tth 
measured snapshot of the array is generally modeled as: 

 ( ) ( ) ( )t t t= +x As n  (3.1) 

where ( ) ( )1 , , qθ θ⎡ ⎤= ⎣ ⎦A a aA  is the M q×  composite steering matrix, the columns of 

which represent a basis for the signal subspace, ( )θa represents the array’s 1M × complex 

manifold: 

 ( ) ( ) ( ) ( )2 sin 2 1 sin
1, , ,

T
j d j d M

e e
π λ θ π λ θθ −⎡ ⎤= ⎢ ⎥⎣ ⎦

a A  (3.2) 

In addition 

( )ts  denotes the 1q×  vector of source waveforms; 

( )tn  denotes the 1M ×  vector of white sensor noise; 
λ  is the wavelength; 
d  is the interelement space; 

( )T⋅  denotes transpose. 

It is generally assumed that signals are uncorrelated with the noise ( )tn . The sensor noise is 
assumed to be a zero-mean spatially and temporally uncorrelated Gaussian process with the 
uunknown diagonal covariance matrix given by  

 ( ) ( ){ } { }2 2 2 2, , , ,
H

n E t t diag σ σ σ σ= = =R n n IA  (3.3) 

where {}E ⋅  is the expectation operator,and ( )H⋅  stands for the Hermitian transpose, I  is the 
identity matrix, 2σ is the noise variance. 
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Data model (1) allows us to write the covariance matrix of the array measurements as: 

 ( ) ( ){ } 2H HE t t σ= = +R x x ASA I  (3.4) 

where ( ) ( ){ }H
E t t=S s s  is the q q×  source waveform covariance matrix. 

3.2 Root-MUSIC 

Root-MUSIC is the polynomial rooting form of MUSIC, namely, the spectrum peak 
searching is replaced by polynomial rooting in MUSIC implementation. 

In Root-MUSIC, the polynomial should be defined as follows 

 ( ) ( ) 1, ,H
i if z z i q M= = +u a A  (3.5) 

where, iu  is the eigenvector corresponding to the M-q minimum eigen-value of the data 
covariance matrix, and 

 ( ) 11 ,
TMz z z −⎡ ⎤= ⎣ ⎦a A  (3.6) 

From the above definition, we can include that the polynomial roots lie on the unit circle 

properly when exp( )z jω= , and ( )je ωa  is the steering vector of space frequency ω. From the 

eigen-space algorithms, ( )mj
me ω =a a  is the signal steering vector, and it is orthogonal to the 

space of the noise. Therefore, the polynomial definition can be modified as the following 
form 

 ( ) ( ) ( )H H
N Nf z z z= a U U a  (3.7) 

where NU  is the noise space, namely, let the eigendecomposition of the matrix R  be 
defined in a standard way 

 2H H H
S S S N Nσ= = +R U Λ U U Λ U U U  (3.8) 

where  

1S q
⎡ ⎤= ⎣ ⎦U u uA , 1 ,N q M+⎡ ⎤= ⎣ ⎦U u uA , { }1diag , ,S qλ λ=Λ A  

and the subscripts S  and N  stand for signal- and noise-subspace, respectively. 

Therefore, the source DOA information can be obtained when the above roots are solved. At 
the same time, we found the item of z∗  in the polynomial, and the solving process will 
become complex and difficult. In order to simplify problem, the above polynomial can be 
modified as 

 ( ) ( ) ( )1 1M T H
N Nf z z z z− −= a U U a  (3.9) 

Here, the polynomial order is 2(M-1), and has (M-1) pairs roots, the every pair roots have 
the mutual conjugate relationship. In the (M-1) pairs roots, there are q roots 1 , , qz zA  are 
distributed on the unit circle, and  
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 ( )exp , 1i iz j i qω= ≤ ≤  (3.10) 

For the ULA, the corresponding DOA of signal can be calculated as 

 ( )arcsin arg , 1, ,
2

i iz i q
d

λθ
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

A  (3.11) 

where λ  is the signal wavelength, d is the array space. 

A simple alternative method is proposed in Ref.[55]. From above analysis, we can see that 
the signal space is orthogonal to the noise space, therefore  

 exp 2 sin , 1, ,i i

d
z j i qπ θ

λ
⎛ ⎞= =⎜ ⎟
⎝ ⎠

A  (3.12) 

should be q roots of all M-q polynomials in Eq. (3.9), namely 

 ( ) 0, 1, , , 1, ,i jf z j q i q M= = = +A A  (3.13) 

Eq.(3.9) represents M-q polynomials of M-1 order. From Eq.( 3-13), they should have a q-
order maximum common factor, which can be denoted as ( )f z . The DOAs of all the 
sources can be obtained by rooting ( )f z . From the eigenvectors of the noise space, ( )f z  
can be obtained as follows 

There exists a vector 1

T

M qb b −⎡ ⎤= ⎣ ⎦b A  which satisfies 

 
1

1
1

2

1 0 0
H

TNH
N qH M

N

c c
×

⎡ ⎤
⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

U
U b b

U
A A  (3.14) 

where 1NU  is q×(M-q) sub-matrix and 2NU  is (M-q)×(M-q) sub-matrix of NU . This can be 
understood by noticing that the product of NU  and b  represents a linear combination of 
noise vectors represented in the M-q dimensional noise space. The product 2NU  and b  
defines a system of M-q equations with M-q unknowns. b  can be fixed to be the solution 
that results in a product [ ]1 0

TA . The product of 1NU  and b  is then a set of coefficients 
that are determined. 

Adopting this approach b  is obtained by 

 [ ] ( )
1
2 1

1 0 0
T

N M q

−
× −

=b U A  (3.15) 

And 1 qc c⎡ ⎤= ⎣ ⎦c A  is determined easily as  

 [ ] ( )
1

1 1 2 1
1 0 0

T
N N N M q

−
× −

= =c U b U U A  (3.16) 

Now that c  has been determined, the polynomial ( )f z  is formed by 

 ( )
1

1
1

1

, 1
q

i
i M

i

f z c z c
+

−
+

=
= =∑  (3.17) 
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Eq.(3.17) has q roots which are correspond to the DOAs of q sources. After obtaining q roots 
of Eq.(3.13), { }

1

q
i i

z
=

, the DOAs of the sources are obtained by Eq.(3.12). 

From the well known conventional Root-MUSIC polynomial of Eq.(3.7), we can conclude 
that it is a function of z, namely 

 ( ) ( ) ( ) ( ){ } ( )1 1
Root MUSIC 1 1 1M T H M T H

N N S Sf z z z z z z z− −
− = = −a U U a a U U a  (3.18) 

Here the orthogonal property of the signal and noise subspace is used. 

3.3 Root-MUSIC with real-valued eigendecomposition 

The matrix R  is the centro-Hermitian if  

 ∗=R JR J  (3.19) 

where J  is the exchange matrix with ones on its antidiagonal and zeros elsewhere, and 

( )∗⋅ stands for complex conjugate. The matrix (3.3)is known to be centro-Hermitian if and 
only if S  is a diagonal matrix, i.e., when the signal source are uncorrelated. However, to 
‘double’ the number of snapshots and decorrelate possibly correlated source pairs in the 
case of an arbitrary matrix S , the centro-Hermitian property is sometimes forced by means 
of the so-called forward-backward (FB) averaging: 

 ( )
~

21

2
H

FB σ∗= + = +R R JR J ASA I  (3.20) 

where  

 ( )
~ 1

2
∗= +S S DS D  (3.21) 

 ( ) ( ) ( ) ( ){ }1 2 1 sin2 1 sin
, , ,qj d Mj d M

diag e e
π λ θπ λ θ − −− −=D A  (3.22) 

Let us define the matrix as: 

 = H
FBC Q R Q  (3.23) 

therefore, the C  is a real-valued covariance matrix, where Q  is any unitary,column 
conjugate symmetric M M×  matrix. Any matrix Q  is column conjugate symmetric if 

 ∗ =JQ Q  (3.24) 

For example, the following sparse matrices 

 
2

1

2
n

j

j

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I I
Q

J J
 (3.25) 

 
2 1

1
2

2

T T
n

j

j
+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

I 0 I

Q 0 0

J 0 J

 (3.26) 
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can be chosen for arrays with an even and odd number of sensors,respectively, where the 

vector ( )0, 0, , 0
T=0 A  

From (3.23), and insert (3.20) to it, it follows that 

 ( ) ( )1 1

2 2
∗ ∗⎡ ⎤ ⎡ ⎤= = + = +⎢ ⎥ ⎣ ⎦⎣ ⎦

H H H H
FBC Q R Q Q R JR J Q Q RQ Q JR J Q  (3.27) 

using ∗ =JQ Q , ∗ =Q JQ  and H =J J , we obtain that 

 

( ) ( )

( ) ( ) ( )

1 1

2 2
1 1

2 2

Re

∗ ∗

∗∗ ∗ ∗

⎡ ⎤⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦

HH H H

H
H H H

H

C Q RQ Q JR JQ Q RQ JQ R JQ

Q RQ Q R Q Q RQ Q RQ

Q RQ

 (3.28) 

therefore, we prove that C  is a real-valued covariance matrix. 

Let the eigendecompositions of the matrices R , FBR  and C  be defined in a standard way 

 2H H H
S S S N Nσ= = +R VΠ V V Π V V V  (3.29) 

 2H H H
FB S S S N Nσ= = +R U Λ U U Λ U U U  (3.30) 

 2H H H
S S S N NC σ= = +E ポ E E ポ E E E  (3.31) 

where  

1 , ,S q
⎡ ⎤= ⎣ ⎦V v vA , 1 , ,N q M+⎡ ⎤= ⎣ ⎦V v vA , { }1 , ,S qdiag π π=Π A  

1 , ,S q
⎡ ⎤= ⎣ ⎦U u uA , 1 , ,N q M+⎡ ⎤= ⎣ ⎦U u uA , { }1 , ,S qdiag λ λ=Λ A  

1 , ,S q
⎡ ⎤= ⎣ ⎦E e eA , 1 , ,N q M+⎡ ⎤= ⎣ ⎦E e eA , { }1 , ,S qdiag γ γ=ポ A  

and the subscripts S  and N  stand for signal- and noise-subspace,respectively. 

Assume the Characteristic equation for the matrix FBR  as 

 λ⋅ = ⋅FBR u u  (3.32) 

we can obtain that 

 H H Hλ λ⋅ = ⋅ = ⋅FBQ R u Q u Q u  (3.33) 

with the use of equation: =HQQ I  and the definition of C ,we obtain that 

 H H Hλ⋅ = ⋅ ⋅ ⋅ = ⋅ = ⋅H H
FB FBQ R u Q R QQ u C Q u Q u  (3.34) 

Equation Hλ⋅ = ⋅HC Q u Q u  can be identified as the characteristic one for the real-valued 

covariance matrix C . 
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Hence, using (3.30), (3.31), (3.32) and (3.34), the eigenvectors and eigenvalues of the matrices 

FBR  and C  are related as 

 H=E Q U  (3.35) 

 =ポ Λ  (3.36) 

It is well known that the conventional Root-MUSIC polynomial is given by 

 ( ) ( ) ( )1T H
MUSIC N Nf z z z= a V V a  (3.37) 

                           ( ){ } ( )1 1T H
S Sz z= −a V V a  (3.38) 

where 

 ( ) 11, , ,
TMz z z −⎡ ⎤= ⎣ ⎦a A  (3.39) 

jz e ω= , and ( )2 sindω π λ θ= . Similarly to(3.37) and (3.38), the FB root-MUSIC polynomial 

can be used: 

 ( ) ( ) ( )1 1M T H
FB MUSIC N Nf z z z z−

− = a U U a  (3.40) 

                                ( ){ } ( )1 1 1M T H
S Sz z z−= −a U U a  (3.41) 

A simple manipulation with the use of (3.35) and =HQQ I , we can obtain that: 

 ( ) ( ) ( )1 1M T H
FB MUSIC N Nf z z z z−

− = ⋅ ⋅ ⋅ ⋅H Ha QQ U U QQ a  (3.42) 

                                   ( ) ( ) ( ) ( )1 1M T
N Nz z z−= ⋅ ⋅ ⋅ ⋅

H
H H Ha Q Q U Q U Q a  (3.43) 

               ( ) ( )1 1M T H
N Nz z z−= ⋅ ⋅ ⋅ ⋅ ⋅Ha Q E E Q a  (3.44) 

  ( ) ( )
~ ~

1 1
T

M H
N Nz z z−= ⋅ ⋅ ⋅a E E a  (3.45) 

                                                     ( )C MUSICf z−=  (3.46) 

where the manifold  

 ( ) ( )
~

z z= ⋅Ha Q a  (3.47) 

should be exploited for the polynomial rooting in (3.45). The relationship between the 

former and the new manifolds follows from the expression for the real-valued covariance 

matrix (3.23). From (3.23)and (3.20), we have 
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~ ~
2 2

~ ~ ~
2

H H

H

σ σ

σ

⎛ ⎞
= = + = +⎜ ⎟

⎝ ⎠

= +

H H H H
FB

H

C Q R Q Q ASA I Q Q ASA Q Q Q

ASA Q Q

 

(3.48)

(3.49)

 

where  

 
~

H=A A Q  (3.50) 

Let us term the polynomial (3.46) as the polynomial of Root-MUSIC with real-valued 

eigendecomposition (RVED-Root-MUSIC), since it exploits the eigendecomposition of the 

real-valued matrix (3.24) instead of that of the complex matrices (3.18) or (3.20). But from 

(3.42) to (3.44), it is clear that the FB and RVED-Root-MUSIC polynomials are identical. 

Hence, the performance of RVED-ROOT-MUSIC does not depend on a particular choice of 

the unitary column conjugate symmetric matrix Q . 

3.4 Polynomial coefficient finding 

From (3.44) and (3.45), we obtain the polynomial of RVED-Root-MUSIC, which is a function 

of z . The next thing is finding the coefficient of the polynomial[56].. 

Using (3.44), we have: 

 
( ) ( ) ( )

( ) ( )

1

1

1

1

M T H
C MUSIC N N

M T

f z z z z

z z z

−
−

−

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅

Ha Q E E Q a

a G a
 (3.51) 

where  

 ( ),
H

N N i j
M M

g
×

= ⋅ ⋅ ⋅ =HG Q E E Q  (3.52) 

Inserting (3.39) into (3.52), and with simple manipulation, we obtain that 

( ) ( ) ( )

( )

( )

1 11 1 1

1,1 1,
11 2 1

,1 ,

1

,1 ,2 ,
1 1 1

1

, 1

1, , , 1, , ,

, , , 1 1, , ,

1

, , ,

1

T
M MM

C MUSIC

M T
MM M

M M M

M M M
M i M i M i

i i i M
i i i

M

M
i

f z z z z z z

g g

z z z z

g g

z
g z g z g z

z

g z

− − −− −
−

−− −

− − −

= = =
−

−

⎡ ⎤ ⎡ ⎤= ⋅ ⋅
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤= ⋅ ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

= ⋅

∑ ∑ ∑

GA A

A
A B A B A

A

A
B

( )11
,2 ,

1 1 1

M M M
Mi M i M i

i i M
i i i

z g z z g z
−− −

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ ⋅ + + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑A
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the polynomial of RVED-Root-MUSIC is given by 

( ) ( )
( )
( )

( ) ( )

( )
( ) ( )

( )

2 2 0
1,

2 2 1
2, 2, 1

2 2 2
3, 2, 1 1, 2

2 2 1
, 1, 1 2,2 1,1

2 2
, 1 1, 2 3,2 2,1

2 2 1
, 1 1, 2 3,2 2,1

2
,2 1,1

M
C MUSIC M

M
M M

M
M M M

M M
M M M M

M M
M M M M

M M
M M M M

M
M M

f z g z

g g z

g g g z

g g g g z

g g g g z

g g g g z

g g z

− −
−

− −
−

− −
− −

− − −
− −

− −
− − −

− − +
− − −

−
−

= ⋅

+ + ⋅

+ + + ⋅

+

+ + + + + ⋅

+ + + + + ⋅

+ + + + + ⋅

+

+ + ⋅

A

A

A

A
A

( )

( ) ( )

2 3

2 2 2
,1

M M

M M M
Mg z

− + −

− − + −+ ⋅

 

So the number of coefficient of the polynomial is 2 1M − , and the computation of the 
coefficient is given as follows 

 

( )

,
1

2 1 1

,
1

1, 2, ,

1, 2, , 2 1

k

i M k i
i

k

M k

k M i i
i

g k L

a

g k L L L

− +
=

− − +

− +
=

⎧
⎪ =
⎪
⎪= ⎨
⎪
⎪ = + + −⎪
⎩

∑

∑

A

A

 (3.53) 

where ka  denotes the kth coefficient of the polynomial. 

Based upon our analysis, using (3.4), (3.20), (3.23), (3.35), (3.26), (3.31), (3.35), (3.44), (3.51), 
(3.52) and (3.53), the fast algorithm for RVED-Root-MUSIC can be formulated as the 
following seven-step procedure: 

Step 1. Compute R  and FBR  with the use of (3.4) and (3.6).and the estimate is given by 

( ) ( )
1

1 N
H

k

k k
N

∧

=
= ∑R x x  then 

1

2
FB

∗∧ ∧ ∧⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎝ ⎠

R R JR J . 

Step 2. Compute C , and the Q  is dependent on the number of array sensors. The estimate 

of the real-valued covariance matrix is given by 
∧ ∧
= H

FBC Q R Q  

Step 3. Obtain NE  from the eigendecomposition of C .and the estimate of NE , 
∧
E  is given 

by the eigendecomposition of 
∧
C  

Step 4. Compute G  with the use of (3.52). And the estimate of G , 
∧
G  is given by 

H

N N

∧ ∧
= ⋅ ⋅ ⋅ HG Q E E Q  
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Step 5. Compute the coefficient of the polynomial by (3.53). 

Step 6. Find the root of the polynomial (3.51), and select the q  roots that are nearest to the 

unit circle as being the roots corresponding to the DOA estimates. 
Step 7. DOA estimate, using: 

( )arcsin arg 1, ,
2

k kz k q
d

λθ
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

A  

where kz  represents one of the q  roots selected for DOA estimation. 

From the above analysis, we can conclude that the RVED-Root-MUSIC has a lower 

computational complexity than the conventional root-MUSIC technique thanks to the 

eigendecomposition of the real-valued matrix instead of that of the complex matrices, and 

the asymptotic performance of it is better than of conventional root-MUSIC due to the FB 

averaging effect.. 

3.5 Simulations 

In this section, we present some simulation results to illustrate the performance of RVED-

Root-MUSIC. We consider a ULA with M=8 elements and the inter-element space is equal 

to a half of wavelength. There are three signals with SNRs of 30 dB impinges on the array 

from 1 80θ = − , 2 20θ = − , 3 40θ = . The detailed simulation results are shown as Fig. 22. ~  

Fig. 25. 
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Fig. 22. DOA departure vs dnapshot number. Signal DOA=[-80 -20 40], SNR=5dB 
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Fig. 23. DOA departure vs snapshot number. Signal DOA=[-80 -20 40], SNR=5dB 
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Fig. 24. DOA departure vs SNR. Signal DOA=[-80 -20 40], Snapshot number =1000 
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Fig. 25. DOA departure vs SNR. Signal DOA=[-80 -20 40], Snapshot number =1000 

Fig. 22. and Fig. 23. depict DOA departure versus snapshot number results of  

RVED-Root-MUSIC and Root-MUSIC respectively, where the SNR=5dB. In figure 22. and 

23., the x-axis denotes the snapshot number, and y-axis denotes the departure of signal  

DOA. 

Fig. 24. and Fig. 25. depict DOA departure versus SNR results of RVED-Root-MUSIC and 

Root-MUSIC respectively, where the snapshot number =1000. In figure 24. and 25., the  

x-axis denotes the SNR, and y-axis denotes the departure of signal DOA . 

From the detecting results and the comparison between RVED-Root-MUSIC and Root-

MUSIC, we can conclude that RVED-Root-MUSIC can detect DOA of signal quickly and 

effectively. At the same time, the results validate the correctness and effective of this 

algorithm. 

3.6 Conclusion 

An improved version of the Root-MUSIC algorithm, called Root-MUSIC with real-valued 

eigendecomposition (RVED-Root-MUSIC), has been presented in this chapter. The 

computational complexity is reduced significantly by exploiting the one-to-one 

correspondence between centro-Hermitian and real matrices, allowing a transformation to 

real matrices, which can be maintained for all steps of the algorithm. Due to the inherent 

forward-backward averaging effect, RVED-Root-MUSIC can separate two completely 

coherent sources and provide improved estimates for correlated signals.  
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4. Real-value space ESPRIT algorithm and its implement 

The recovery of signal parameters from noisy observations is a fundamental problem in 

(real-time) array signal processing. Due to their simplicity and high-resolution capability,the 

subspace estimation schemes have been attracting considerable attention. Among them the 

most representative are MUSIC and ESPRIT methods. MUSIC utilizes the orthogonal 

characteristic of noisy subspace of data covariance matrix,but ESPRIT exploits the rotational 

invariance structure of the signal subspace[57,58]. The virtue of ESPRIT is the low 

computational burden,and not requiring spectrum peak searching by contrast with MUSIC. 

Comparing with Root-MUSIC, ESPRIT obtains the information of signal direction of 

arriving (DOA) via exploiting the rotational invariance of every subarray (every subarray ‘s 

signal subspace), but Root-MUSIC estimates the signal DOA by solving the polynomial, 

which is constructed by using the orthogonal between the steering vector and noise 

subspace. 

Unitary ESPRIT achieves even more accurate results than previous ESPRIT techniques by 

taking advantage of the unit magnitude property of the phase factors that represent the 

phase delays between the two subarrays [59]. It has been shown in [63] that constraining the 

phase factors to the unit circle can also give some improvement for correlated sources. For 

centro-symmetric sensor arrays with a translational invariance structure, Unitary ESPRIT 

provides a very simple and efficient solution to this task. 

Although Unitary ESPRIT effectively doubles the number of data samples, the computational 

complexity is reduced by transforming the required rank-revealing factorizations of 

complex matrices into decompositions of real-valued matrices of the same size. Thus, we 

obtain increased estimation accuracy with a reduced computational load. This reduction can 

be achieved by constructing invertible transformations that map centro-Hermitian matrices 

to real matrices. 

The real-value ESPRIT algorithm is proposed by [62] and [63], which is on the foundation of 

the Unitary ESPRIT, by constructing a transformation matrix, transforms the complex data 

of original array into real-value data. Thus lowered the computational burden. Moreover 

this algorithm is also applicable to centro-symmetric sensor arrays. 

This chapter bases on the foundation of the algorithm that above references proposes and 

reference [64], analyzes the rotational invariance principle of RVS-ESPRIT algorithm, and 

the relationship of RVS-ESPRIT and complex space ESPRIT(CS-ESPRIT), definitely give: 

1. The rotational invariance relationship of the real-value space array steering, 

2. The rotational invariance relationship of the real-value space signal subspace, 

3. The rotational invariance relationship between the array steering and the signal 

subspace of the real-value space, 

4. The rotational invariance relationship between the real-value space signal subspace and 

the complex value space signal space, 

5. The rotational invariance relationship between the real-value space array steering and 

the complex value space array steering. 

And give the implementing algorithm of REV-ESPRIT. At last compares its performance 

with other algorithm by simulation. 
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This chapter is organized as follows[65]. It starts with a review of the signal model and the 

rotational invariance subspace principle. Next the RVS-ESPRIT algorithm is analyzed, 

among which includes the transformation from the complex space to real-value space, the 

rotational invariance principle of real-value space, and its implementing algorithm. Finally, 

the computer simulations with the comparison the performance of RVS-ESPRIT and the 

well-known LS- ESPRIT algorithm are given. 

4.1 Signal model 

Assume that there are two completely same subarray, their space Δ  is already known, and 

every subarray consists of m  elements. Consider N ( )N m<  narrowband plane waves 

from far-field of the array, these plane waves are assumed to be impinging on the array 

from directions 1 2, , , Nθ θ θA , among them, iθ , 1, 2, ,i N= A  is angle between the 

array normal and the direction of the ith signal of the N narrowband planes waves imping. 

Because the structure of two arrays is completely same, therefore, for a signal, the difference 

of the two subarray outputs is only one phase difference iϕ , 1, 2, ,i N= A . Suppose 

the first subarray receives the data for 1X , the second receives the data for 2X , then: 

 ( ) ( )1 1 1 1Nθ θ⎡ ⎤= + = ⋅ +⎣ ⎦X a a S N A S NA  (4.1) 

 ( ) ( )1
2 1 2 2

Nj j
Ne eϕ ϕθ θ⎡ ⎤= + = ⋅ +⎣ ⎦X a a S N AΦ S NA  (4.2) 

Where, the direction matrix of subarray 1 is ( ) ( )1 1 Nθ θ⎡ ⎤= = ⎣ ⎦A A a aA , the direction 

matrix of subarray 2 is 2 =A AΦ , S  is the space signal vector, 1N  and 2N  are the noise 

vectors of the subarray 1 and 2, respectively,and are assumed to be white Gaussian, and 

among the formula: 

 1 Nj jdiag e eϕ ϕ⎡ ⎤= ⎣ ⎦Φ A  (4.3) 

4.2 The rotational invariance subspace principle  

From the above mathematics model, we can know that the signal direction information is 
included in A  and Φ , because Φ  is a diagonal matrix, so that we can obtain the DOA of 
signal through solving Φ , that is: 

 
2 sin k

k

π Δ θ
ϕ

λ
⋅

=  (4.4) 

where λ  is the center wave-length of Arriving the wave. So if we obtain the rotational 
invariance relationship Φ  of the two subarray, we can get the signal DOA information. 
First uniting the two subarray models, namely: 

 1 1

2 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = + = ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

X A N
X S A S N

X A Φ N
 (4.5) 

Under the ideal condition, the covariance matrix is estimated as fellows: 
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 { } HH
S NE= ⋅ = ⋅ ⋅ +R X X A R A R  (4.6) 

where { }H
S E= ⋅R S S , { }H

N E= ⋅R N N . 

Let the eigendecompositions of the covariance matrix, there is: 

 
2

1

m
H H H

i i i S S S N N N
i

e eλ
=

= = ⋅ ⋅ + ⋅ ⋅∑R U Σ U U Σ U  (4.7) 

Very obviously, the eigenvalue that gets from the top have the relationship as follows: 

1 1 2N N mλ λ λ λ+≥ ≥ > = =A A . where SU  is signal subspace that spanned by eigenvectors 
which are corresponding to large eigenvalues, NU  is noise subspace that spanned by 
eigenvectors which are corresponding to small eigenvalues. 

We know that the signal subspace is spanned by large eigenvector is equal to that is 
spanned by array direction matrix in the above eigendecomposition, that is: 

 { } ( ){ }Sspan span θ=U A  (4.8) 

At this time, existing a nonsingular matrix T , which can make: 

 ( )S θ= ⋅U A T  (4.9) 

Obviously above-mentioned structure is coming into existence to the two subarrays, so 
have: 

 1

2

S
S

S

⋅⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦

U A T
U

U AΦ T
 (4.10) 

Very obvious, the subspace spanned by array direction matrix A  is equal to 1SU  and 2SU  
which are spanned by the large eigenvectors of subarray 1 and 2 respectively. 

 { } ( ){ } { }1 2S Sspan span spanθ= =U A U  (4.11) 

Moreover, from the relationship of the two subarrays with regard to signal direction matrix, 
we can know: 

 2 1=A A Φ  (4.12) 

Again from (4.10),we can know: 

 
1

1 1

1
2 2 1

S S

S S S

−

−

⎧= ⋅ = ⋅⎧ ⎪⇒⎨ ⎨= ⋅ = ⋅ = ⋅ ⋅ ⋅⎩ ⎪⎩

U A T A U T

U AΦ T U AΦ T U T Φ T
 (4.13) 

 1
2 1 1S S S

−= ⋅ ⋅ ⋅ = ⋅U U T Φ T U Ψ  (4.14) 

where 1−= ⋅ ⋅Ψ T Φ T . (4.12) reflects the rotational invariance characteristic of the signal 
direction matrix of the two subarrays, but (4.14) reflects the rotational invariance 
characteristic of the received signal data subspace of the two subarrays.  
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If the signal direction matrix A  is full rank, we can obtain form (4.14) as fellows: 

 1−= ⋅ ⋅Φ T Ψ T  (4.15) 

So that,the diagonal matrix which is consisted of the eigenvalues of Ψ  certainly be equal to 
Φ , but the every column of T  is the eigenvectors of Ψ . Therefore, once we get the 
rotational invariance matrix Ψ , we can obtain the signal DOA from (4.4) directly.  

4.3 Real-value space ESPRIT algorithm 

4.3.1 The transformation from complex space into realvalue space 

We know that the uniform linear array is centro-symmetric, and its signal direction matrix 
satisfy the nether formula: 

 M
∗⋅ = ⋅J A A ｠  (4.16) 

where, MJ  is the M M× exchange matrix with ones on its antidiagonal and zeros elsewhere, 
and the signal direction matrix makes reference to the first element of the array, the diagonal 
matrix ( )1M− −=｠ Φ , and the Φ  is expressed as (4.3). If the reference point is selected as the 
central point of the array, so we have: 

 ( ) ( )1 2
1C C C Nβ β⎡ ⎤= ⋅ = ⎣ ⎦A A ｠ a aA  (4.17) 

where 

 ( ) ( ) ( )
1 1

12 21
i i

ii

M M
j jT

j Mj
C i ie e e e

β ββββ β
− −⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟− −−⎝ ⎠ ⎝ ⎠⎡ ⎤= =

⎣ ⎦
a aA  (4.18) 

If matrix Q  satisfying: 

 M
∗⋅ =J Q Q  (4.19) 

we call it as the left real transformation matrix. 

For example, Q  can be chosen for arrays with an even and odd number of sensors 
respectively as the following sparse matrices:  

 
2

1

2

n n
n

n n

j

j

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I I
Q

J J
 (4.20) 

 
2 1

1
2

2

n n

T T
n

n n

j

j
+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

I 0 I

Q 0 0

J 0 J

 (4.21)  

Moreover, from the bidirectional averaging algorithm, we can process the array data by 
once bidirectional averaging, and insert (4.16) into it, we can obtain: 

 ( )1

2
FB M M

∗= + ⋅ ⋅R R J R J  (4.22) 
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Insert H
S N= ⋅ ⋅ +R A R A R  into(4.13), we can obtain: 

 
( )

( )

1

2

1

2

H H
FB S N M S N M

H T
S N M S M M N M

∗

∗ ∗ ∗

⎛ ⎞= ⋅ ⋅ + + ⋅ ⋅ ⋅ + ⋅⎜ ⎟
⎝ ⎠

= ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

R A R A R J A R A R J

A R A R J A R A J J R J

 (4.23) 

because of ( ) ( )
H H T H H

M M M
∗ ∗⋅ = ⋅ ⇒ ⋅ = ⋅ ⇒ ⋅ = ⋅J A A ｠ J A A ｠ A J ｠ A , and insert it into  

(4.23), get the result: 

 

( ) ( )
( ) '

1 1

2 2
1

2
1

2

H H
FB S S N M N M

H H
S S N

H

L

∗ ∗

∗

= ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅

= ⋅ + ⋅ ⋅ ⋅ +

= ⋅

R A R ｠ R ｠ A R J R J

A R ｠ R ｠ A R

Z Z

 ( )

( )

4.24

4.25

 

where 

 M L
∗⎡ ⎤= ⋅ ⋅⎣ ⎦Z X J X J  (4.26) 

Since: 

 

( )
( )

( )

( ) ( )

1 1

2 2
1

2
1

2
1

2

1 1 1

2

HH
M L M L

H H T H
M L L M

H T H
M M

H H H
M M

H H H
M M

L L

L

L

L

L L

∗ ∗

∗

∗

∗

∗

⎡ ⎤ ⎡ ⎤⋅ = ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦

= + ⋅ ⋅ ⋅ ⋅ ⋅

= + ⋅ ⋅ ⋅

⎛ ⎞= + ⋅ ⋅⎜ ⎟
⎝ ⎠
⎡ ⎤⎛ ⎞= ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

Z Z X J X J X J X J

XX J X J J X J

XX J X X J

XX J XX J

X X J X X J

 (4.27) 

Because ( )1 H

L

∧
= ⋅R X X  is the estimating formula of R . Thus (4.25) is established. When the 

row number of data vector X  is odd, we can definite: 

 

1

2

T

M L×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

X

X x

X

 (4.28) 

If we process Z  which is defined by (4.26) By means of matrix Q  which is defined by (4.20) 
or (4.21) as fellows: 

( ) 2
H
M L= ⋅ ⋅T X Q Z Q  
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( )

{ } { }
{ } { }

{ } { }

2

1 2 1 2

1 2 1 2

Re Im

2 Re 2 Im

Im Re

H
M L

T T

∗ ∗

∗ ∗

= ⋅ ⋅

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

T X Q Z Q

X JX X JX

x x

X JX X JX

 (4.29) 

If the row dimension of the data vector is even, the transformation matrix is: 

 

( )

{ } { }
{ } { }

2

1 2 1 2

1 2 1 2

Re Im

Im Re

H
M L

∗ ∗

∗ ∗

= ⋅ ⋅

⎡ ⎤+ − −
⎢ ⎥= ⎢ ⎥+ −⎢ ⎥⎣ ⎦

T X Q Z Q

X JX X JX

X JX X JX

 (4.30) 

What to need to be noticed here is, the matrix Q  which defined by (4.20) and (4.21) satisfies  

 H⋅ =Q Q I  (4.31) 

From the transformation relationship of (4.28) and (4.29), we can see that ( )T X  transforms 
complex data into real data, so that the computational burden is lowered greatly, and we 
can obtain:  

 

( ) ( )

( )
( )

2 2 2 2

1

2
1 1

2 2

1 1

2 2

H
T

H
H H H H H
M L M L M L L M

H H H H
M M M M

H
M FB M

L

L L

L L

= ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅

⎡ ⎤= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦
= ⋅ ⋅

R T X T X

Q Z Q Q Z Q Q Z Q Q Z Q

Q Z Z Q Q Z Z Q

Q R Q

 (4.32) 

If the eigendecompositions of FBR  as follows: 

 [ ]
H
S

FB S N H
N

⎡ ⎤
= ⋅ ⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦

U
R U U Σ

U
 (4.33) 

Insert (4.33) into (4.32), we can obtain: 

 [ ]
H
SH

T M S N MH
N

⎡ ⎤
= ⋅ ⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦

U
R Q U U Σ Q

U
 (4.34) 

(4.34) shows that the signal subspace of the transformation matrix TR  is: 

 H
S M S= ⋅E Q U  (4.35) 

Insert (4.24) into (4.32), we can obtain: 
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( )

( )
( ) ( ) ( )

( )

'

'

'

'

1

2

1

2
1

2
1

2

H H H H
T M FB M M S S N M

H H H H
M S S M M N M

HH H H H
M S S M M N M

H H H
T S S T M N M

∗

∗

∗

∗

⎡ ⎤= ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅⎢ ⎥⎣ ⎦

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅

R Q R Q Q A R ｠ R ｠ A R Q

Q A R ｠ R ｠ A Q Q R Q

Q A R ｠ R ｠ Q A Q R Q

A R ｠ R ｠ A Q R Q

 (4.36) 

Therefore, the relationship between the real-value transformed signal direction matrix TA  
and the original complex signal direction matrix A  is given by:  

 H
T M= ⋅A Q A  (4.37) 

4.3.2 The real-value space rotational invariance principle  

We analyze the signal subspace relationship of the two subarray data in the rotational 
invariance subspace algorithm theory, which is given by (4.14) 2 1S S= ⋅U U Ψ . If the array is 
uniform linear array, and the overlap element of the two subarrays is maximum, namely, 

1m M= − , so the signal subspace rotational invariance of the two subarray data can be 
expressed as:  

 2 1S S⋅ = ⋅ ⋅K U K U Ψ  (4.38) 

where SU  is the signal subspace of the received data of the whole uniform linear array, and: 

 [ ]( )1 1 1
0M M M− − ×

=K I  (4.39) 

 [ ]( )2 1 1
0 M M M− − ×

=K I  (4.40) 

In the same way, the rotational invariance of the two subarray signal direction matrix can be 
given as follows:  

 2 1⋅ = ⋅ ⋅K A K A Φ  (4.41) 

where A  is the signal direction matrix of the whole array.  

From the definition of (4.39) and (4.40), we can see that 1K  and 2K  satisfies: 

 1 2m M= ⋅ ⋅K J K J  (4.42) 

Utilize the relationship of the definition (4.19): M M
∗ ∗⋅ = ⇒ ⋅ =J Q Q J Q Q  again, we can 

obtain: 

 

( ) ( )

( ) ( ) ( ) ( )
( )

2 2 2

1 1 1

1

H
H H H
m M m m m M M M m m m M M M

HH H
m m M M m M m M

H
m M

∗∗ ∗ ∗

∗

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅

Q K Q Q J J K J J Q J Q J K J J Q

J Q K J Q Q K Q Q K Q

Q K Q

 (4.43) 
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therefore, define: 

 ( ) { }1 1 2 1 2 22ReH H H H
m M m M m M m M

Δ
= ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ = ⋅ ⋅H Q K Q Q K Q Q K K Q Q K Q  (4.44a) 

( ) { }2 1 1 1 2 22ImH H H H
m M m M m M m Mj j j

Δ
= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ = ⋅ ⋅H Q K Q Q K Q Q K K Q Q K Q  (4.44b) 

so that: 

 ( )1 1 2

1

2
H
m M j⋅ ⋅ = −Q K Q H H  (4.45a) 

 ( )2 1 2

1

2
H
m M j⋅ ⋅ = +Q K Q H H  (4.45b) 

From the result given by (4.37): H
T M M T= ⋅ ⇒ = ⋅A Q A A Q A , and insert it into the formula 

defined by (4.41): 2 1⋅ = ⋅ ⋅K A K A Φ ,we can obtain the results as follows: 

 2 1M T M T⋅ ⋅ = ⋅ ⋅ ⋅K Q A K Q A Φ  (4.46) 

The both side of the upper formula multiplies by the H
mQ  together, we can obtain: 

 2 1
H H
m M T m M T⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅Q K Q A Q K Q A Φ  (4.47) 

Using (4.45), and removing the constant factor 1 2 , we can obtain that: 

 ( ) ( )1 2 1 2T Tj j+ ⋅ = − ⋅ ⋅H H A H H A Φ  (4.48) 

Via moving item, combination and so on simplifications, we will have: 

 ( ) ( )1 2T T j⋅ ⋅ − = ⋅ ⋅ ⋅ +H A Φ I H A Φ I  (4.49) 

From the definition of (4.3) 1 Nj jdiag e eϕ ϕ⎡ ⎤= ⎣ ⎦Φ A  again, (4.49) can be simplified as： 

 ( ) ( ) 1
2 1 1

1
T T T T

j

−⋅ = ⋅ ⋅ − ⋅ + = ⋅ ⋅H A H A Φ I Φ I H A Φ  (4.50) 

where 

 

( ) ( )

{ }1

1

1

1

1

1

1

1 1 1
1 1

1 1

1 1 1

1 1

tan tan
2 2

N

N

N

N

T

j j
j j

j j

j j

N

j

diag e e diag
j e e

e e
diag

j e e

diag

ϕ ϕ
ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕϕ

−= − ⋅ +

⎧ ⎫= ⋅ − − ⋅ ⎨ ⎬
+ +⎩ ⎭

⎧ ⎫− −⎪ ⎪= ⋅ ⎨ ⎬
+ +⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎛ ⎞= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

Φ Φ I Φ I

A A

A

A

 

( )

( )

4.51

4.52
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So that, (4.50) reflects the rotational invariance relationship of the real-value space array 
steering, but (4.51) reflects the rotational invariance relationship between the real-value 
space array steering and the complex value space array steering.  

Resembling the derivation of (4.50), from H
S M S S M S= ⋅ ⇒ = ⋅E Q U U Q E , and insert it into the 

formula given by (4.38): 2 1S S⋅ = ⋅ ⋅K U K U Ψ , we can obtain: 

 2 1M S M S⋅ ⋅ = ⋅ ⋅ ⋅K Q E K Q E Ψ  (4.53) 

The both side of the upper formula multiplies by the H
mQ  together, we can obtain: 

 2 1
H H
M M S M M S⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅Q K Q E Q K Q E Ψ  (4.54) 

Using (4.45), and removing the constant factor 1 2 , we can obtain that: 

 ( ) ( )1 2 1 2S Sj j+ ⋅ = − ⋅ ⋅H H E H H E Ψ  (4.55) 

Via moving item, combination and so on simplifications, we will have: 

 ( ) ( )2 1S Sj⋅ ⋅ + = ⋅ ⋅ −H E Ψ I H E Ψ I  (4.56) 

 ( ) ( ) 1
2 1 1S S S Tj

−⋅ = ⋅ ⋅ − ⋅ + = ⋅ ⋅H E H E Ψ I Ψ I H E Ψ  (4.57) 

where 

 ( ) ( ) 1
T j

−= − ⋅ +Ψ Ψ I Ψ I  (4.58) 

So that, (4.57) reflects the rotational invariance relationship of the real-value space signal 
subspace, but (4.58) reflects the rotational invariance relationship between the real-value 
space signal subspace and the complex value space signal space. 

Utilizing the character that the space spanned by array direction matrix is equal to which is 
spanned by the signal subspace, so a nonsingular matrix TT  exists, and satisfying 

T S T= ⋅A E T , thus using (4.50): 2 1T T T⋅ = ⋅ ⋅H A H A Φ , we can obtain that: 

 1
2 1 2 1S T S T T S S T T T

−⋅ ⋅ = ⋅ ⋅ ⋅ ⇒ ⋅ = ⋅ ⋅ ⋅ ⋅H E T H E T Φ H E H E T Φ T  (4.59) 

Comparing with (4.57), we can obtain that: 

 1
T T T T

−= ⋅ ⋅Ψ T Φ T  (4.60) 

This formula reflects the rotational invariance relationship between the array steering and 
the signal subspace of the real-value space.  

4.3.3 The real-value space ESPRIT algorithm  

The observational data of M  elements are given as:  

( ) ( )1 , , Mx t x tA , 1,t L= A  
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Step 1. Construct the M L×  observational data matrix ( ) ( )1 , , L= ⎡ ⎤⎣ ⎦X x xA , where 

( ) ( ) ( )1 , ,
T

Mt x t x t= ⎡ ⎤⎣ ⎦x A  is the observational data vector which is consists of 

M  elements observational signals. 

Step 2. Get the estimating formula of R  by ( )1 H

L

∧
= ⋅R X X , and transform the received 

array data into real-value space T

∧
R  via (4.32). 

Step 3. Compute the eigendecompositions of the real-value space T

∧
R , and get the signal 

subspace S

∧
E , and the source number N

∧
. 

Step 4. Solve the rotational invariance of (4.57) by least square method (or total least square 

method), and gain T

∧
Ψ . 

Step 5. Compute the eigendecompositions of T

∧
Ψ , where 

1

T T T T

−∧ ∧ ∧ ∧
= ⋅ ⋅Ψ T Φ T , get 

{ }1 , ,T
N

diag Ω Ω ∧

∧
=Φ A . 

Step 6. If T

∧
Φ  is the real diagonal matrix, according as (4.3) and (4.52), compute the DOA of 

imping signal as fellows: 

 

( )2 arctan

1, ,
arcsin

2

k k

k k

k N

ϕ Ω

λθ ϕ
π Δ

∧
⎧ = ⋅
⎪ ⎛ ⎞

⎛ ⎞ =⎨ ⎜ ⎟= ⋅⎜ ⎟ ⎝ ⎠⎪ ⎜ ⎟⋅⎝ ⎠⎩

A  (4.61) 

If kΩ 1, ,k N
∧⎛ ⎞

=⎜ ⎟
⎝ ⎠

A  is complex, compute the DOA by (4.61) with the real part of kΩ . 

4.4 Simulations 

In order to validating the correctness and the effective of the proposed algorithm, we 
present some simulation results to illustrate the performance of RVS-ESPRIT. We consider a 
ULA with M=8 element and the interelement space is equal to a half of wavelength. There 
are three signals impinge on the array from 1 80θ = − , 2 20θ = − , 3 40θ = . The detailed 
simulation results are shown as Fig. 26. ~ Fig. 29. 

Fig. 26. and Fig. 27. depicts DOA departure versus snapshot number results of RVS-ESPRIT 

and TLS-ESPRIT respectively, where the SNR=5dB. In figure 26. and 27., the x-axis denotes 

the snapshot number, and y-axis denotes the departure of signal DOA. 

Fig. 28. and Fig. 29. depicts DOA departure versus SNR results of RVS-ESPRIT and TLS-

ESPRIT respectively, where the snapshot number =1000. In figure 28. and 29., the x-axis 

denotes the SNR, and y-axis denotes the departure of signal DOA. 

From the detecting results and comparison between RVS-ESPRIT and TLS-ESPRIT, we can 

conclude that RVS-ESPRIT can detect DOA of signal quickly and effectively. At the same 

time, the results validate the correctness and effective of this algorithm. 
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Fig. 26. DOA departure vs snapshot number. Signal DOA=[-80 -20 40], SNR=5dB 
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Fig. 27. DOA departure vs snapshot number. Signal DOA=[-80 -20 40], SNR=5dB 
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Fig. 28. DOA departure versus SNR. Signal DOA=[-80 -20 40], Snapshot number =1000 
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Fig. 29. DOA departure versus SNR. Signal DOA=[-80 -20 40], Snapshot number =1000 
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4.5 Conclusion 

This chapter carrys on the detailed theories analysis of RVS-ESPRIT based on the theory of 
CS-ESPRIT, and gives the concrete implementing algorithm. Because the eigendecompositions 
of RVS-ESPRIT is in real domain, so the calculation speed is raised consumedly, then the 
speed of DOA estimating is improved largely also. Due to the inherent forward-backward 
averaging effect, RVS-ESPRIT can separate two completely coherent sources and provides 
improved estimates for correlated signals. 
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