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1. Introduction 

Imagine a simple clinical test that can not only diagnose a disease, but that can also identify 
the exact, personal therapeutic regime to cure it. Not only that, imagine tests that can 
accurately predict the potential of developing a disease and provide an individualized 
roadmap on how it will progress. Now imagine that all you had to do was to spit in a vial, 
or have a few hairs plucked for the analysis. While the promise of “personalized medicine” 
is technologically a reality, it relies on the development of disease and progression 
biomarkers.  

The ideal biomarker should have a number of characteristics, including: having an analyte 
that is accessible using noninvasive protocols, inexpensive to quantify, specific to the disease 
of interest, translatable from model systems to humans, and the ability to provide a reliable 
early indication of disease before clinical symptoms appear. Biomarkers that can be used to 
stratify disease and assess response to therapeutics are also medically valuable.  

Although most current biomarkers utilize protein or metabolic analytes, it can be difficult to 
develop new protein-based biomarkers. This is due to the inherent complexity of the protein 
composition of biological samples, the assorted posttranslational modifications of proteins, 
and the low abundance of many proteins of interest in most biological samples (especially 
blood). Similarly, the detection of metabolic analytes is difficult due to the complex 
biological matrix from which they are measured. 

Detecting specific nucleic acids, while not trivial, is generally much easier. Synthetic 
complimentary oligonucleotides can deliver sufficient detection specificity in most cases, 
and PCR or other DNA amplification methods can be used to improve the detection limit. 
There are numerous examples of genomic biomarkers that have become powerful tools for 
molecular diagnostics and outcome prediction (Cronin et al., 2007; Guttmacher & Collins, 
2002; Hamburg & Collins, 2010; Klein et al., 2009; Tainsky, 2009; L. J. van ’t Veer et al., 2002). 
RNA and DNA biomarkers are used routinely for screening patients to diagnose and 
subtype disease, as well as to monitor therapy and predict progression. Discovery of 
microRNAs, and lately lncRNAs (long non–coding RNAs), further increased their 
importance and broadened their clinical application (Gibb, Brown, & Lam, 2011; Laterza et 
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al., 2009). Low complexity, no known post-processing modifications, simple detection and 
amplification methods, tissue-specific expression profiles, and sequence conservation 
between humans and model organisms make extracellular miRNAs ideal candidates for 
genomic biomarkers to reflect and study various physiopathological conditions of the body. 

Ideally, the most clinically powerful information would come directly from the tissue of 

interest. To understand cancer, one must look at malignant cells, much as one must analyze 

brain tissue to understand the complexities of neuroscience. However, many of these tissues 

are difficult to access or impossible to reach without potential injury to the patient. 

Alternative, or “surrogate”, tissues can provide a means of assessing the genomic changes in 

the tissue of interest, without fear of harming the donor. For example, surrogate tissues may 

contact the tissue of interest and retain sloughed cells, secreted molecules or the contents of 

dying cells. While these molecular signals may not exactly mirror the tissue of origin, in 

many cases they are reproducible and can clearly point to underlying biology. Clinical 

material suitable for biomarker testing can be divided into 2 different types. The first are 

those that require minimally invasive procedures to obtain. This type includes blood, 

cerebrospinal fluid, tissue biopsies and so on. Type 2 tissues are those that can be obtained 

without any invasive means: hair, saliva, tears, epidermal cells, urine, etc. In some cases, 

acquisition of the material may not be passive. Examples of Type 1 and Type 2 samples are 

listed in Table 1. 

Type 1 Samples Type 2 Samples 

Whole Blood Hair 
Serum Tears 
Plasma Breast Milk 
Cerebral Spinal Fluid Vaginal Secretions 
Nasal Scrape Semen 

Sputum (Lavage) Saliva 
Bone Marrow Urine 
Skin Punch Feces 
Buccal Swab Sweat 
Ductal Lavage Nipple Aspirate Fluid 
Dental Plaque  

Vascular Plaque  

Table 1. Example sample types for the development of genomic biomarkers. 

The easier it is to provide a sample for biomarker testing, the greater will be the utilization 

and utility. There is emerging data that many tissues and fluids that have been largely 

ignored, hold numerous important analytes that can be exploited for biomarker 

development. Relative ease of acquisition and rich genomic information, make these 

surrogate tissues ideally suited for the development of new biomarkers. By casting a wider 

net over the potential sources of biomarkers, we can increase the odds of finding clinically 

important ones that will make predictive, personalized healthcare a reality (Hood & Friend, 

2011). In this review we will provide examples of various surrogate tissues that are being 

utilized for the development of genomic biomarkers, and highlight important concepts for 

successful collection and handling of them. 
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2. Clinically important tissues 

2.1 Blood 

2.1.1 Whole blood 

Peripheral blood remains the most commonly studied tissue due to the minimally invasive 

nature of sample collection and the vascularization of most tissues. Peripheral whole blood 

is a rich source of validated and potential biomarkers, whether they are protein, genomic, or 

metabolic in nature. While the methods for extraction and profiling of blood DNA are well 

established, the isolation of RNA and microRNA from whole blood, and studies on their 

transcript abundance (commonly called gene expression studies), still pose many technical 

challenges. These include transcriptomic changes induced by ex vivo handling and the 

interference of highly abundant globin mRNA.  

Pre-analytical variables such as the degradation of RNA by endogenous RNases and 
unintentional expression of individual genes after drawing blood could lead to false 
assessment of potential markers. The introduction of blood collection systems containing 
stabilizing additives has significantly improved the RNA quantity and quality of blood 
samples (Rainen et al., 2002; Thach, 2003). RNA stabilization systems have the advantage of 
storing the collected samples at more accessible temperatures before shipment to the 
laboratory for analysis, resulting in reduced pre-analytical variability. A well-described 
method for RNA stabilization in human blood is the PAXgeneTM system (Chai et al., 2005; 
Rainen et al., 2002). The Tempus™ Whole Blood RNA isolation system offers an alternative 
approach to peripheral blood RNA isolation suitable for gene expression profiling as well 
(Asare et al., 2008). Recently RNAlaterTM, a common stabilization reagent for RNA in cells 
and tissues, has been successfully used for RNA stabilization in human peripheral blood 
(Weber et al., 2010). The downside of the latter method is that pre-filled RNAlaterTM blood 
collection tubes are not currently available commercially. 

All the described methods are able to stabilize transcription and isolate total RNA with good 
quality and in appropriate quantities. However, RNA stabilization/isolation methods can 
critically impact differential expression results. For example, the failure of PAXgeneTM to 
stabilize specific transcripts was reported in several studies (Asare et al., 2008; Kågedal et al., 
2005). Until more broad studies are done, it is recommended that a researcher should pre-
validate the whole blood stabilization/isolation conditions with the transcripts of interest. 
We find that strict adherence to the manufacturer’s protocol for collection and storage, 
including how the reagent is mixed with the blood at the time of collection, is critical to 
successful expression profiling. 

The discovery of microRNAs has opened new opportunities for markers in the diagnosis of 

cancer (Wang et al., 2009). MicroRNAs are small (typically ~22 nt in size) regulatory RNA 

molecules that function to modulate the activity of specific mRNA targets and play 

important roles in a wide range of physiologic and pathologic processes (Mattick & 

Makunin, 2005). MicroRNAs are an ideal class of blood-based biomarkers for disease 

detection because: (i) miRNA expression is frequently dysregulated in disease, (ii) 

expression patterns of miRNAs are tissue-specific, and (iii) miRNAs have unusually high 

stability in most tissues and can be recovered from formalin-fixed, paraffin embedded 

samples. 
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Several studies have reported optimized isolation protocols to enhance the recovery of 
microRNAs in the stabilized samples. For example it was shown that microRNAs could be 
isolated from PAXgene-stabilized blood of sufficient quantity and quality that is suitable for 
downstream applications (Kruhøffer et al., 2007). 

Another problem hampering the analysis of microarray gene expression data in whole 
blood is the presence of globin. Globin mRNA in red blood cells accounts for over 70% of all 
mRNA in whole blood and interferes with the accurate assessment of other genes (Field et 
al., 2007; Wright et al., 2008). Several approaches have been developed to mitigate this effect 
and tested in microarray experiments (Liu et al., 2006; Vartanian et al., 2009; Wright et al., 
2008). Globin reduction techniques based on biotinylated DNA capture oligos (Ambion 
GLOBINclear processing protocol) produced sensitive results but was least reproducible 
among all the methods tested (Vartanian et al., 2009). An alternative protocol with globin 
PNAs (peptide nucleic acid inhibitory oligos) proved to be the best in sensitivity and 
reproducibility, but was the most time-consuming and required the highest amount of total 
RNA input (Liu et al., 2006; Vartanian et al., 2009). An alternative approach was suggested 
by Eklund and colleagues (Eklund et al., 2006). NuGEN’s Ovation WB sample preparation 
protocol, based on single primer isothermal amplification (SPIA), generates cDNA target. 
The hybridization kinetics of the cDNA target are less affected than cRNA targets by the 
abundant globin RNA present in whole blood extract. The high specificity and sensitivity of 
cDNA targets, and the highly reproducible SPIA protocol have been shown to be as good or 
better for mitigating the interference of globin transcripts compared to other protocols 
(Fricano et al., 2011; Li et al., 2008; Parrish et al., 2010). The strong performance of this 
technique, and the relatively low input requirements (50ng of total RNA) have made the 
NuGEN Ovation WB protocol the method of choice for gene expression profiling in the 
microarray community. 

2.1.2 Serum and plasma 

Both plasma and serum are widely used specimen types for molecular diagnostics. Nucleic 
acids that can be found in small amounts in cell-free preparations of whole blood are 
frequently called “circulating nucleic acids”. To date, a number of studies show that plasma 
and serum nucleic acids can serve as both tumor- and fetal-specific markers for cancer 
detection and prenatal diagnosis, respectively. For example, several studies reported 
increased concentrations of DNA in the plasma or serum of cancer patients sharing some 
characteristics with DNA of tumor cells (Leon et al., 1977; Stroun et al., 1989). Interestingly, 
DNA levels decreased by up to 90% after radiotherapy, while persistently high or increasing 
DNA concentrations were associated with a lack of response to treatment (Anker et al., 
2001). RNA has also been found circulating in the plasma or serum of normal subjects and 
cancer patients (Feng et al., 2008; Tsui et al., 2002, 2006). The recent discovery that serum 
and plasma contain a large amount of stable miRNAs derived from various tissues/organs 
has lead to multiple studies on circulating miRNA expression as well (Mitchell et al., 2008; 
Chen et al., 2008; Zhu et al., 2009).  

Analysis of circulating nucleic acids, however, requires modified extraction methods to 
utilize plasma or serum as the source material. First, plasma and serum are biospecimens 
that have a very high concentration of protein that can interfere with sample preparation 
and detection techniques. Second, the yield of circulating nucleic acids from small volume 
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plasma or serum samples (< 1 mL) usually falls below the limit of accurate quantification by 
spectrometry and calls for an alternative way to assess the efficiency of nucleic acids 
recovery. Several serum/plasma extraction kits are now available commercially through 
Qiagen, Norgen and other companies. These kits successfully address the problems 
mentioned above, employing column-based purification methods and various carriers. We 
suggest the use of carefully selected extraction spike-ins to allow researchers to evaluate the 
efficiency of the circulating nucleic acids isolation. 

2.1.3 Circulating tumor cells 

Circulating tumor cells (CTCs) are cells that have been sloughed off of primary tumors and 
circulate in the bloodstream. Their numbers can be very small (1-10 cells per mL of whole 
blood) and these cells are not easily detected. Even though CTCs were first observed by 
Thomas Ashworth back in 1869, the technology with the requisite sensitivity and 
reproducibility to detect CTC in patients with metastatic disease was developed only 
recently (Sleijfer et al., 2007). While the presence of circulating tumor cells themselves can 
serve as a marker of poor clinical outcome, there is an opportunity to develop new 
biomarkers by studying the gene or protein expression in these cells. Changes in the 
phenotype of tumor cells can occur after the original diagnosis and resistance to a treatment 
can only be inferred after the treatment has failed. CTCs offer a tool to understand the 
complex biology of tumor cells, without the need of invasive biopsies. 

Recently, CTCs have been the target of multiple molecular profiling studies (Bosma et al., 
2002; Punnoose et al., 2010; Smirnov et al., 2005; Tewes et al., 2009). mRNA expression and 
DNA mutations can be measured from captured CTCs. RT-PCR using a multi-marker panel 
of cancer-associated genes was found to be the most sensitive technique for the detection of 
CTC in blood of breast cancer patients (Bosma et al., 2002; Tewes et al., 2009). Another 
approach involves the analysis of CTC-enriched samples by microarray gene expression 
profiling, where numerous genes like S100A14 and S100A16 have been detected (Smirnov et 
al., 2005).  

2.1.4 Dried blood spots 

The method of collecting capillary blood on filter paper was introduced in Scotland by 
Robert Guthrie in 1963 and since then has become a mainstream approach for blood sample 
collection from newborns in more than 20 countries (Consultant Paediatricians and Medical 
Officers of Health of the SE Scotland Hospital Region, 1968; Scriver, 1998). These samples 
were found invaluable for screening for congenital metabolic disorders. Dried blood spots 
(DBS) are easily acquired through a simple needle stick and transfer to paper cards that are 
stored and handled at room temperature in ambient atmospheric conditions. This approach 
eliminates many costly, time-consuming, and unpleasant aspects of sample collection, and 
can also significantly reduce the cost for shipping samples. The collection of DBS samples 
requires very little infrastructure and can be done in resource-limiting locations. Vidal-
Taboada and colleagues even showed that both patients and investigators prefer this as a 
method of DNA collection and storage (Vidal-Taboada et al., 2006). 

The limitation of small sample volume has restricted the usage of dried blood spots for the 

development of molecular diagnostics until recently. Advances in technology have 
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overcome many of the problems with reduced sensitivity and specificity. For example, the 

development of whole genome amplification (WGA) protocols allow researchers to perform 

reliable genome-wide scans using archived residual blood samples from newborn screening 

programs, which are standard practice in several countries (Hollegaard et al., 2009). Several 

studies have shown that despite being considered too vulnerable to degradation by 

ribonucleases, RNA could be recovered from DBS samples that had been stored for 15-20 

years, and be successfully amplified by reverse transcription-PCR (Karlsson et al., 2003; 

Zubakov et al., 2008). Also, dried blood spots recently become the sample type of choice for 

HIV screening in low-resource settings (Sherman et al., 2005; Uttayamakul et al., 2005). 

2.2 Cerebrospinal fluid 

Cerebrospinal fluid (CSF) is a cell-free, colorless liquid that occupies the subarachnoid space 
and the ventricular system around and inside the brain and spinal cord. It is usually 
obtained through lumbar puncture. CSF has been rediscovered in the post-genomic era, as a 
great source of potential protein biomarkers for various diseases as it bathes the brain and 
other neurological tissues. Analysis of CSF allows rapid screening, low sample 
consumption, and accurate protein identification by proteomic technology (Guerreiro et al., 
2006; Zheng et al., 2003). Brain proteins in CSF are also important for diagnosis of non-
inflammatory CNS diseases. Examples of conditions in which these proteins are 
diagnostically relevant include degenerative diseases (Otto et al., 1997; Ranganathan et al., 
2005), tumors (Zheng et al., 2003), hypoxias and brain infarction (Schaarschmidt et al., 1994). 

Advancements in nucleic acid (NA) amplification techniques have transformed the 
diagnosis of bacterial and viral infections of the central nervous system. Because of their 
enhanced sensitivity, these methods enable detection of very low amounts of pathogenic 
genomes in cerebrospinal fluid. Diagnosis of several viral CNS infections, such as herpes 
encephalitis, enterovirus meningitis and other viral infections occurring in human 
immunodeficiency virus-infected persons are currently performed using cerebrospinal fluid 
(Cinque, Bossolasco, & Lundkvist, 2003). MicroRNAs are also becoming an important 
analyte in CSF for the identification of neurological disease (Baraniskin et al., 2011; Cogswell 
et al., 2008; De Smaele et al., 2010). For example, miRNAs isolated from the frozen 
cerebrospinal fluid of Alzheimer disease-affected (AD) and non-affected patients showed 
distinctly different expression profiles (Cogswell et al., 2008). Notably miRNAs linked to 
immune cell functions including innate immunity and T cell activation and differentiation 
were up-regulated in AD.  

Combining mRNA studies with protein expression analysis may provide a more global 
picture of the biological processes associated with CNS disorders. Information gathered 
could lead to the development of select biological indices (biomarkers) for guiding CNS 
diagnosis and therapy. 

2.3 Saliva 

Saliva is an easily obtainable tissue that has been used in forensics for decades (Sweet et al., 
1997). However, new molecular profiling kits for voluntary saliva collection have made 
saliva an increasingly useful clinical biomarker tissue. The collection process is non-
invasive, and can even be collected at home or in isolated locations using some of the newer 
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collection kits (Oragene or Norgen products). This ease of collection results in higher 
compliance by the patients. As is often the case in biological samples, the difference in yield 
is usually a donor dependent value (van Schie & Wilson, 1997). It is possible that saliva 
samples could replace blood samples for DNA studies. A study in Australia and New 
Zealand compared 10 matched pairs of blood and saliva, as well as nearly 2000 samples of 
either blood (Australia) or saliva (New Zealand; Oragene collection system) for genotyping. 
This study was larger than the van Schie & Wilson study, but corroborated that there is a 
donor dependency to DNA yield. Because of the larger sample number, they saw more 
sample variance. However, they also concluded that variance had more to do with 
collection, processing and donor variability than variance due to tissue type (Bahlo et al., 
2010). The collection and processing methods can all eventually be controlled. In most cases 
there was enough mass from 1 ml of saliva sample to yield at least 4ug of DNA, which is 
enough DNA for most molecular biology assays. 

2.4 Skin 

2.4.1 Skin tissue 

Readily-accessible and as well-tolerated as punch biopsies (Camidge et al., 2005), skin is 

comprised of various layers of cells, making it useful for phenotypic and histological 

studies. Moreover, as a constantly dividing tissue with cells at various stages of 

development, skin provides insight into important signaling networks such as EGF, Wnt, 

Notch and cell proliferation (Phillips & Sachs, 2005).  

Wee1 inhibitors have been examined as a way to bypass the G2 checkpoint, sensitizing p53 

negative cells to DNA-damaging agents (Wang et al., 2001). In research conducted by 

Mizuarai et al., p53 negative rat skin xenograft tumors, p53 positive and negative cultured 

cancer cells, and p53 positive rat skin tissues were subjected to gemcitabine alone or in 

combination with the Wee-1 inhibitor MK-1775 (Mizuarai et al., 2009). Gene expression data 

identified five genes as potential biomarkers present in both tumor and skin. 

Because of its strong potential as a surrogate tissue, it is important to address storage and 

handling challenges faced when using skin. Due to its protective nature, skin is shielded by 

nucleases and difficult to homogenize. We have found immediate preservation in RNAlater 

following the manufacturer’s protocol (rather than flash-freezing) and thorough 

pulverization are paramount to extracting sufficient quantities of high-quality nucleic acid 

(data not shown). 

2.4.2 Skin tissue alternatives 

Synthetic skin is a relatively new surrogate tissue that lends itself to investigation of a wide 

variety of processes while reducing the need for volunteer recruitment or laboratory animal 

testing (Poumay & Coquette, 2007). For extracting nucleic acids, we have found that 

synthetic skin is less susceptible to nucleic acid degradation and more easily homogenized 

than real human skin (data not shown). Synthetic skin has recently been used to study 

processes such as wound healing (Koria et al., 2003), epithelial development (Taylor et al., 

2009), effects of cosmetics on skin (Faller et al., 2002), and even differential gene expression 

in skin disorders.  
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Yao et al. identified the overexpression of type I IFN-inducible genes in psoriatic biopsies by 
comparing biopsies of normal, healthy donor skin and non-lesional skin to psoriatic donor 
skin (Yao et al., 2008). To better understand the degree of type I IFN-inducible gene 
overexpression in psoriasis, blood from healthy donors and normal keratinocyctes 
(EpiDerm, MatTek, Inc.) were stimulated with various members of the type I IFN family. Ex 
vivo blood and in-vitro keratinocyte data showed overall agreement in up-regulated type I 
IFN-inducible genes. While only 1% of upregulated probes from the stimulation study were 
overexpressed in non-lesional compared to normal skin, 11.7% of the upregulated probes 
were overexpressed in lesional compared to non-lesional skin, suggesting type I IFNs may 
be a prospective target for psoriatic treatment.  

2.5 Hair follicles 

Hair follicles are different from skin and blood, in that they are made up of stem cells, which 
control the growth and cycling of hair. The stem cells are contained within the follicle and 
are often called the bulge. It is this fact which makes hair follicle gene expression 
particularly intriguing: “stem cells in the epidermis and hair follicle serve as the ultimate 
source of cells for both of these tissues, understanding the control of their proliferation and 
differentiation is key to understanding disorders related to disruption in these processes,” 
(Cotsarelis, 2006).  

Advances in hair follicle extraction, isolation, and amplification techniques along with the 

relative ease of collection of the tissue, and the abundance on most, hair follicle collection is 

being increasingly examined as a good investigatory and clinical biomarker tissue. To date 

most research has been in diseases involving skin conditions (Ohyama et al., 2006). 

However, hair follicles are also being examined for markers in to quantify exposures to 

pharmaceuticals (Reiter et al., 2008) or toxicology to certain drug targets (Kim et al., 2006).  

Hair follicles are obtained using tweezers, grasping at the hair as near to the scalp as 
possible, and quickly yanking upwards. The follicle should be clearly present and 
immediately preserved in the appropriate preservation solution. For those with longer hair, 
we have found it helpful to cut the hair close to the follicle, before preservation. Although it 
is possible to achieve results with a single or a few (3 follicles), it is often better to acquire a 
larger set (15 follicles), to ensure the needed mass for evaluation will be met. The follicles for 
the experiment should be taken from a similar location for each extraction, as there might be 
slight gene expression changes with different hair locations (head, arm, and eyebrow). We 
recommend behind the ear for collection of the desired hairs for most applications. There are 
several different preservation solutions such as RNAlater (Ambion) or SD Lysis Buffer 
(Promega). Following preservation, follow the manufacturer guidelines on storage and 
extraction/isolation of the RNA.  

2.6 Feces 

Often overlooked, stool is an important source of potential biomarkers for a number of 
clinical indications. While the identification of infection and various metabolic imbalances 
are easily identified, feces can also yield RNA, DNA and miRNA for use in biomarker 
development. This is largely due to the shedding of epithelial cells in the gastrointestinal 
track (Osborn & Ahlquist, 2005). With the use of highly sensitive detection techniques, one 
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can identify genetic aberrations in the genomes of these cells and understand or diagnose, 
non-invasively, the pathology of the patient’s disease. However, the extraction and 
purification of nucleic acids in feces is quite challenging due to its low abundance and the 
high level of contaminants like humic acid. Thankfully, there are a number of commercial 
kits available for fecal DNA isolation, and new techniques such as synchronous coefficient 
of drag alteration (SCODA) show promise in further purifying and concentrating this rare 
DNA (Broemeling et al., 2008; Marziali et al., 2005). Interestingly, both the amount and 
integrity of DNA in feces have been shown to identify colorectal cancer patients (Klaassen et 
al., 2003; Osborn & Ahlquist, 2005). A variety of mutations found in this DNA have been 
identified in the stool of colorectal cancer patients. Genes identified with mutations include 
KRAS, TP53 and APC, among several others (Osborn & Ahlquist, 2005; Young & Bosch, 
2011). The most interesting of these is the adenomatous polyposis coli gene (APC). 
Mutations in the APC gene have been shown to drive the growth of adenomas, and their 
identification in stool samples allows the early detection of early stage colorectal neoplasia 
(Jen et al., 1994; Traverso et al., 2002). Analysis of fecal DNA has also been used to identify 
pancreatic adenocarcinoma (Caldas et al., 1994). 

The isolation and analysis of RNA from fecal samples has also gained a great deal of 
attention. While less stable than DNA, RNA provides a snapshot of the transcriptional 
activity of exfoliated cells; reflecting both genomic and environmental influences. Changes 
in gene expression may more fully reflect a target tissue’s response to therapeutic agents. 
Alexander and Raicht demonstrated the ability to extract RNA from stool and suggested its 
use as a method for the early detection of colon tumors (Alexander & Raicht, 1998). One 
such transcript with potentially diagnostic value is cyclooxygenase 2 (COX-2) which can 
separate colorectal cancer patients from healthy patients (Kanaoka et al., 2004). Still others 
are exploiting fecal RNA to better understand infant health (Chapkin et al., 2010; Davidson 
et al., 1995; Kaeffer et al., 2007).  

2.7 Urine 

Urine is an ideal source for the identification of new biomarkers as it is easily and non-
invasively collected. It has long been a standard fluid for the measurement of metabolites, 
proteins, and infectious agents. Recent data has demonstrated that not only can these 
traditional analytes can be identified, but RNA, DNA miRNA can be extracted and profiled. 
While less stable than the other nucleic acids, mRNA can be detected in urine. Keller and 
colleagues have demonstrated that this stability is likely due to protection of the mRNA in 
protein/lipid vesicles called exosomes (Keller et al., 2011; Nilsson et al., 2009). Further, 
mRNA patterns from urine sediments have been suggested for the development of 
ovulation and fertility biomarkers (Campbell & Rockett, 2006). miRNAs have also been 
uniquely identified in urine (Weber et al., 2010), and their stability has also been linked to 
exosomes (Record et al., 2011; Valadi et al., 2007). Differential detection of miRNAs in urine 
is showing promise in the non-invasive detection of lupus, nephropathy, renal allograft 
rejection and urothelial cancer (Lorenzen et al., 2011; Wang et al., 2010; Wang et al., 2011; 
Yamada et al., 2011). 

Urinary DNA is a complex target, with both host and non-host DNA being present and 
clinically relevant. Patient DNA is readily extracted from urine with methylation patterns 
that have been shown to have utility in the diagnosis of cancer and kidney injury (Chen et 
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al., 2011; Kang et al., 2011). Microbial DNA is also extracted in urine. Through the 
expanding discipline of microbial metagenomics, we now understand that the relative 
distribution of microbial DNA has important clinical utility (Nelson et al., 2010; Virgin & 
Todd, 2011). New improvements in next generation sequencing and microarray technology 
are showing how the interactions between microbial communities and their host are 
measurable and are correlated with the health of the host. Urine, like feces, has the potential 
to provide an easily accessed fluid type, whose flora may provide an exquisitely sensitive 
measure of pathological state. For example, the microbiome of urine can be used to monitor 
asymptomatic sexually transmitted disease and is highly correlated to data generated from 
the urethra swabs (Dong et al., 2011; Nelson et al., 2010). As more work is done in this field, 
it is likely that more examples will be uncovered. 

2.8 Nipple aspirate fluid 

The breast is a complex organ whose architecture is intertwined with its biology. Even the 
structure of the nipple is multifaceted and not completely well understood (Love & Barsky, 
2004). However, it does provide unique access to fluid that can be leveraged for biomarker 
development. Nipple aspirate fluid (NAF) and ductal lavage contain cells that have been 
used for the diagnosis and monitoring of breast cancer (Lang & Kuerer, 2007; Li et al., 2005; 
Mendrinos et al., 2005; Sauter et al., 1997). NAF is generally obtained either through 
spontaneous emission or suction, while ductal lavage requires the use of a microcatheter to 
enter the duct orifice to rinse and collect fluid. Although more invasive, ductal lavage yields 
more cells (Dooley et al., 2001; Li et al., 2005). These cells originate from the ductal 
epithelium and by studying them in the NAF, we can glean important information about the 
active biology within the ducts without the risks associated with biopsy (Dooley et al., 2001; 
King & Love, 2006; Miller et al., 2006). Much of this work has focused on the early 
identification of neoplasia using proteomic or cytological analysis of the cells isolated from 
this fluid (Dooley et al., 2001; Harigopal & Chhieng, 2010; King & Love, 2006; Mendrinos et 
al., 2005; Wrensch et al., 1992; Wrensch et al., 2001). Recent work has focused on the genomic 
profiling of NAF cells in order to identify early biomarkers that may predict progression, 
before morphological changes are evident. For example, the methylation of key tumor 
suppressor genes can be a highly effective means of predicting tumorgenesis. Preliminary 
work using NAF samples has demonstrated this as a feasible biomarker of early cancer 
detection (Krassenstein, 2004). However, measuring the methylation status of key genes in 
NAF-derived cells is generally not a sensitive enough technique on its own to diagnose 
disease or predict progression (Euhus et al., 2007; Fackler et al., 2006; Locke et al., 2007).  

Mitochondrial sequencing has been shown to be a sensitive way of identifying neoplastic 
tissues (Czarnecka et al., 2006; Jakupciak et al., 2008; Jakupciak et al., 2008). Mutations in the 
mitochondrial genome are often found at higher rates than in normal tissues. It is likely that 
in many cases, these mutations are directly linked to disease pathogenesis, while in others 
this linkage may only be an effect of other processes. Various groups have applied different 
techniques to sequence mtDNA from NAF. Zhu and colleagues showed that mutations in 
mtDNA can be detected non-invasively from NAF using sequencing (Zhu et al., 2005). 
Jakupciak and colleagues used a mitochondrial resequencing microarray and were able to 
demonstrate the detection of mutations and a high correlation to traditional sequencing 
methods (Jakupciak et al., 2008). These methods show great promise for clinical use, 
although further work is required to validate the approaches. Interestingly, traditional 
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methodologies for mtDNA sequencing, such as Sanger sequencing or hybridization-based 
resequencing, are substantially impacted by the presence of normal cells. This background 
of normal cells attenuates the positive mutational signals, leading to poor discrimination of 
bases. While Zhu and colleagues did not find this to be true in their study, it is likely that as 
next generation sequencing methodologies are applied to NAF profiling, we will be able to 
discriminate and quantify the differences between normal and tumor cells with high 
resolution (Zhu et al., 2005). 

Genomic and mitochondrial DNA statuses are important factors in understanding the 
genetic context of disease. However, tumorigenesis is a dynamic process that is influenced 
by heredity and environment. RNA profiling is a way of linking these factors in a 
measurable way. Due to their low numbers, breast fluid-derived cells are difficult targets for 
gene expression profiling. With recent advances in mRNA amplification methodologies, 
there are now tools that allow these studies (Van Gelder et al., 1990). For example, Single-
Primer, Isothermal Amplification (SPIA) is one of several techniques that can amplify and 
label mRNA for microarray or RT-qPCR analysis (Kurn et al., 2005). Various studies have 
shown the utility of gene expression in identifying gene expression patterns of tumors that 
subclassify breast cancer and help to predict outcome (Cronin et al., 2007; Ma et al., 2003; 
van de Vijver et al., 2002). It is conceivable that these same transcript signatures will be 
obtained from isolated cells from ductal fluid.  

3. Factors that impact genomic sample quality and utility 

3.1 Sample collection 

The utility of a given sample to yield a clinically meaningful result is dependent on many 
factors. These include when and how samples were collected, the preservation method used 
to stabilize the analytes, shipping and storage effects, and the correct association of patient 
data with the sample. Variation in any of these areas can have a substantial impact on the 
usefulness of a sample. 

There is conflicting data as far as the effect of time delay between sample collection and the 
time of extraction of RNA. Some studies report that any delay in getting the sample from the 
living state to a preserved state (frozen, in formalin (FFPE) or RNAlater) will decrease the 
quality of the sample (Hong et al., 2010). There are other studies that indicate that there is at 
least a 16 hour window in which the sample collection and the QC metrics of BioAnalyzer 
assessment do not show any degradation (Micke et al., 2006). In our experience, we have 
found that any interruption of sample collection state en route to preservation could lead to 
degradation of the RNA (unpublished observation). Lisowski and colleagues found that as 
FFPE sample slices aged, signal intensity by in situ hybridization (ISH) was impacted. If 
they sliced from the block right before extracting RNA, the signal was clearer and stronger 
(Lisowski et al., 2001). While some tissues are considered homogenous, studies by Irwin and 
Dyroff show that there are different physiological responses to different sections of liver in 
response to drugs (Dyroff et al., 1986; Irwin et al., 2005).  

3.2 Shipping and storage 

With the advent of electronic tracking by the shipping industry, as well as a societal 
expectation of overnight shipments, samples can safely and quickly travel from a clinical 
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site to a separate processing facility. FedEx pioneered the idea of hub shipments and 
overnight travel, but others have adopted and emulated their practices. Some couriers will 
replenish dry ice on shipments traveling more than 24 hours (World Courier). Coupled with 
this is the need for the initial shipper to pack the samples in such a fashion that they will be 
held at the correct temperature for at least 24 hours. Written or web based guidance should 
be given to all collection sites with explicit details as to size of shipping containers and 
amount of dry ice to use to ensure safe passage of the samples. 

3.3 Sample handling and logistics – Barcoding and annotation 

Clinical studies need the support of large numbers of samples to confirm the efficacy and 

safety of a drug. With the expanded usage of biomarkers in clinical trials, even more 

samples and patients may be needed to fully discover the population that will best be 

served by a given therapy. One clinical collection set can consist of as little as one sample or 

up to potentially 100 samples from a single patient in one day. The number of samples 

needed to generate statistically significant data will number in the tens of thousands across 

the different stages of a clinical trial. Clinical trial involvement necessitates scrupulous 

tracking of many details about each sample. Historically, this was all done on paper, but 

with increasing computing power and usage, tracking of the samples can be more 

effectively done by utilizing well built database systems. Effective use of computers also 

increases the option of analyzing samples across multiple trials, including the option of 

comparing biomarkers for a more customized treatment approach. To accomplish this, 

companies are relying on electronic data capture such as LIMS (Laboratory Information 

Management system), EMR (Electronic Medical Records) or CTMS (Clinical Trial 

Management System) and barcodes on individual samples (Burczynski et al., 2005; B. Choi 

et al., 2005; Niland & Rouse, 2010). 

There is more than one approach towards connecting the annotation about a sample and an 

identifier on the sample container. Some systems rely on human readable text on the labels 

to tell the person handling the container what should be in it. There is the potential for error 

when depending on a human to read or type (Turner et al., 2003). Sometimes these labels 

with text also have a barcode on them. This type of barcoding system is referred to as an 

intelligent barcode system, only because there is specific sample information, other than the 

barcode, on the label. Other systems make full use of contemporary technology to track 

samples (naïve barcodes). With the use of the naïve barcode system, the sample collector 

needs to be able to associate the sample with a related database. This can be done by the 

collector writing on a piece of paper, which is then entered into the database at a later time 

by a data entry clerk. Alternatively, technology may be fully leveraged by supplying the 

collection sites with barcode readers, and access to the appropriate database, to associate the 

barcode on the container, with the given patient ID.  

There are pros and cons for each of these barcoding methods. Having an intelligent barcode 

(pre-association of barcode with patient ID/time point) means that the person doing the 

collection needs only to find the correct label for the given sample, as the time point 

information should already be tracked in a database. If the labels are printed in a sequential 

fashion, then this may be simple. The con to this system is that if for some reason the correct 

label cannot be found, there is not usually a means to associate a new label with the sample. 
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Generally, projects that use this kind of labeling do not have any computer connection from 

the collection sites to the database storing the sample information. Before the advent of 

ubiquitous computers and hand held devices, associating the sample label information to a 

matching piece of paper seemed an effective way to track samples. 

The major drawback with the naïve barcode system (barcoded tubes that are associated at 

the point of collection with the sample) is that if the association of sample to barcode is not 

made by the collection site, then the container is just a tube of tissue, useless for further 

study. To effectively use the naïve barcode, sites benefit from having access to the database 

while collecting samples. This can be as simple as barcode scanners that allow some amount 

of data entry. In some instances, double barcode labels can be supplied to the sites, one is 

affixed to the form and one is placed on the tube, with the association in to the database to 

be made later.  

One method of association, which is a compromise between the intelligent barcode method 

and the naïve barcode method, is done by associating barcoded containers into a kit at a 

central laboratory assembly site. Then the kits are shipped to various collection sites. As the 

kit leaves the facility, the internal containers are still a naïve barcoded container, however at 

this point, they are associated with a tube type and a destination, all of this information is 

tracked at a the central laboratory, not on the containers. At the collection site, the kit is 

associated to a patient. This reduces the amount of data entry needed. The practice of 

associating the kit barcode at the site of collection to the patient ID allows some flexibility, 

while still allowing tracking of the tubes within the kits to be organized. This method 

ensures the highest quality association between a given sample and the donor.  

In addition, given the current increase of hand held scanners with WiFi access, immediate 

computer access is no longer a large barrier. Car rental agencies and store inventory systems 

have been using portable scanners to track inventory for decades; similarly, it isn’t too 

difficult to adopt similar technology for use in clinical trial data collection. The New York 

subway system integrates data from barcoded tickets, generated from identified machines, 

all with customer anonymity, to track where passenger flow is most active. There are some 

groups who have started to study the benefits of this type of live data association in studies 

involving human donors or patients (Avilés et al., 2008). While it is not essential for the sites 

to have computer access, as the paper trail of requisition forms is still common,, instant 

computer contact by the collection site does make the tracking easier. Handwriting barcodes 

and manual association outside of the database defeats the efficiency of the naïve barcode 

system, although downstream sample processing can make use of the barcoding system if 

there is a barcode and the association is made to the patient identifier. 

In addition, there is an added benefit of naïve barcodes for double blind studies. Double 

blind studies mask the sample identity, including patient and treatment information. This is 

to prevent bias in the study and to protect the identity of the study patients. In the past a 

double tier system of identification numbers would cryptically hide the patient information 

from those involved in the collection or the analysis of the study. Only a select few would 

have access to source information about both the patient and drug information. Unique 

barcodes on the container, without any study information on the label, can provide a double 

blind labeling system, as long as the sample is always tracked in the LIMS system. 
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4. Conclusion 

Technology has finally caught up with science fiction. The idea of a pin prick to divine ones’ 
future is fast becoming a reality. Science is moving medicine in a direction where patient 
care will be predicted and prevented, and not watched from afar. Data-rich and highly 
sensitive techniques like microarray profiling, quantitative PCR, and Next Generation 
Sequencing are the genomics tools that are helping to drive these changes. However, to 
extract the greatest utility, tests need to be simple to complete, cost effective and as non-
invasive as possible. Clinical impact is directly related to the availability and cost of a test. 
Consider the case of standard tumor biopsy. Depending on the disease and tumor location, 
a biopsy can be minor surgery involving a team of doctors, nurses, radiologists, and 
specialists. Recovery from a biopsy is often brief, but in some cases can lead to a costly 
overnight hospital stay. In the end, the actual cost of obtaining material for a test can be in 
the thousands of dollars, while the test itself, may only be a couple of hundred of dollars. 
For many biomarkers, there is more cost associated with the acquisition of sample, than the 
test itself. It is for this reason it makes both clinical and financial sense to find ways to make 
sample acquisition more cost effective and less precarious for the patient.  

By studying often overlooked sample types, we may identify a treasure trove of clinically 
useful biomarkers. While not every surrogate tissue will yield a disease or response-specific 
biomarker, there is substantial data to justify the investigation. There is undeniable value in 
the use of biomarkers in drug development and patient care, but this value is tempered with 
the cost of sample acquisition. Developing methods for the acquisition of clinically useful 
and easily obtainable samples is important as we move from a drug discovery process that 
is focused on finding the right drugs to one that focuses on finding the right patients. 
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