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1. Introduction 

1.1 Salt lakes and the classification of hydrochemistry 

Salt lakes are widely distributed in the world, and some famous salt lake resources are shown in 

Tables 1 and 2. In China, salt lakes are mainly located in the area of the Qinghai-Xizang (Tibet) 

Plateau, and the Autonomous Regions of Xinjiang and Inner Mongolia (M.P. Zheng et al., 1989). 

The composition of salt lake brines can be summarized to the complex salt-water multi-

component system (Li - Na – K – Ca - Mg - H - Cl – SO4 – B4O7 – OH- HCO3 – CO3 - H2O). 

According to the chemical type of salt lake brines, it can be divided into five types, i.e. 

chloride type, sulphate type, carbonate type, nitrite type, and borate type among those salt 

lake resources in the world (Gao et al., 2007). 

Chloride type: the component of brines in Death Sea, Mideast and Caerhan Salt Lake in 
China belongs to the system of chloride type (Na – K – Mg - Cl - H2O), and the main 
precipitation of salts are halite (NaCl), sylvite (KCl), carnallite (KCl�MgCl2�7H2O), and 
bischofite (MgCl2�6H2O). 

Sulphate type: this kind of salt lake resources is similar with the sea water system (Na – K – 
Mg – Cl – SO4 – H2O), and it can be divided into two kinds of hypotypes i.e. sodium 
sulphate and magnesium sulphate. As to sodium sulphate hypotype, the Great Salt Lake in 
America, the gulf of Kara-Bogaz-Golin Urkmenistan, and Da-Xiao Qaidan in China belong 
to this hypotype with the main deposit of glauberite (Na2SO4�CaSO4), glauber salt 
(Na2SO4·10H2O), halite, galserite (Na2SO4�3K2SO4), schonenite (K2SO4�MgSO4�6H2O), and 
so on. As to magnesium sulphate hypotype, there are Yunchen Salt Lake in Shanxi Provine 
and Chaka Salt Lakes in Qinghai Province, China, especially Salt Lakes of the Qaidam Basin 
in Qinghai Province are a sub-type of magnesium sulphate brines famous for their 
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abundance of lithium, potassium, magnesium and boron resources (Zheng et al., 1989). The 
main precipitation of salts are halite, glauber salt, blodite (Na2SO4�MgSO4�7H2O), and 
epsom salt (MgSO4�7H2O).  

Carbonate type: this type belongs to the system (Na – K – Cl – CO3 - SO4 – H2O), and 
Atacama Salt Lake in Chile and Zabuye Salt Lake in Tibet are the famous carbonate type of 
salt lake. The main precipitated minerals are thermonatrite (Na2CO3�10H2O), baking soda 
(NaHCO3), natron (Na2CO3�10H2O), glauber salt, and halite. 

Nitrite type: the brine composition of this type salt lake can be summarized as the system 
(Na – K – Mg - Cl – NO3 - SO4 – H2O). The type salt lake main locates in the salt lake area in 
the northern of Chile among the salt lake group of Andes in the South-America, semi and 
dry salts in Luobubo and Wuzunbulake Lakes in Xinjiang, the northern of China. There are 
natratime saltier (NaNO3), niter (KNO3), darapskite (NaNO3�Na2SO4·H2O), POTASSIUM- 
darapskite (KNO3�K2SO4�H2O), humberstonite (NaNO3�Na2SO4�2MgSO4�6H2O).  

Borate type: it can be divided into carbonate-borate hypotype and sulphate-borate 
hypotype. Searles Salt Lake in America, Banguo Lake and Zabuye Salt Lakes in Tibet, China 
belong to the former, and the brines mostly belong to the system (Na - K - Cl - B4O7 - CO3 - 
HCO3 - SO4 - H2O). In order to prove the industrial development of Searles Lake brines, 
Teeple (1929) published a monograph after a series of salt-water equilibrium data on Searles 
lake brine containing carbonate and borate systems. The latter includes Dong-xi-tai Lake, 
Da-xiao-chaidan Lake and Yiliping Lake in Qinghai Province, Zhachangchaka Lake in Tibet, 
China. In those lake area, the natural borate minerals of raphite (NaO�CaO�3B2O3�16H2O), 
pinnoite (MgO�B2O3�3H2O), chloropinnoite (2MgO�2B2O3�MgCl2�14H2O), inderite 
(2MgO�3B2O3�15H2O), hungchanoite (MgO�2B2O3�9H2O), mcallisterite 
(MgO�3B2O3�7.5H2O), kurnakovite (2MgO�3B2O3�15H2O) and hydroborate were 
precipitated (Zheng et al., 1988; Gao et al., 2007). In addition, the concentration of lithium 
ion exists in the surface brine of salt lakes. 

 

Salt lakes Death Sea Great 
lake, 
US

Searles lake, 
US 

Atacama, Chile Caerhan, China Zabuye, 
Tibet 

Altitude, /m 
Area, /km2 
Dept, m 

-400
1000 
329 

1280
3600 
～5 

512
1000 
Intragranular 
brine

2300
1400 
Intragranular 
brine

2900
5882 
Intragranular 
brine

2677 
120 
～3 

KCl 
NaCl 
MgCl2 
MgSO4 
LiCl 
CaCl2 
CaSO4 
MgBr2 
B2O3 
WO3 

2×109

1.2×1010 
2.2×1010 
— 
1.7×107 
6×109 
1×108 
1×109 
— 
—

1×108

3.2×109

1.2×109

1.7×107

3.2×106

— 
— 
— 
1.9×106 

—

2.8×106 

— 

— 
— 

2.7×106 
— 

— 

— 
3×107 
7.5×104

1.1×108 

— 
1.2×108 
— 
2.8×106 
— 
— 
— 
1.6×107 

—

3×108

4.3×1010 
2.7×109 
— 
— 
— 
— 
3.4×105 
5.5×106 
—

6.6×107 
2×108 
5.7×108 
— 
— 
— 
— 
— 
1.8×106 

— 

Table 1. Basic data of salt lakes and their salt reserves in the world. unit, /t (Song, 2000) 
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Type of 
lithium 
resources 

Country and section 
Lithium storage capacity, 
(Li2O) 

Salt lakes 

Uyuni, Bolivia More than 19 million tons 

Silver and Searles, US More than 10 million tons 

Caerhan and Caida, China 10 million tons 

Kata Baca, Argentina Sever million tons 

Type of 
crystalline 
rocks 

America 6.34 million tons 

Chile 4.3 million tons 

Canada 6.6 million tons 

Greenbusbse, Australian 6 million tons 

Table 2. Statistical distribution of the lithium reserves in the world (Song, 2000; Zhao, 2003) 

1.2 Phase equilibria of salt-water systems 

It is essential to study the stable and metastable phase equilibria in multi-component 
systems at different temperatures for its application in the fields of chemical, chemical 
engineering such as dissolution, crystallization, distillation, extraction and separation.  

1.2.1 The stable phase equilibria of salt-water systems 

The research method for the stable phase equilibria of salt-water system is isothermal 

dissolution method. It is worthy of pointing out that the status of the stable phase 

equilibrium of salt-water system is the in a sealed condition under stirring sufficiently, and 

the speed of dissolution and crystallization of equilibrium solid phase is completely equal 

with the marker of no change for the liquid phase composition. As to the thermodynamic 

stable equilibrium studies aiming at sea water system (Na – K – Mg – Cl – SO4 – H2O), J.H. 

Vant’hollf (1912) was in the earliest to report the stable phase diagram at 293.15 K with 

isothermal dissolution method.  

In order to accelerate the exploiting of Qaidam Basin, China, a number of the stable phase 
equilibria of salt-water systems were published at recent decades (Li et al., 2006; Song, 1998, 
2000; Song & Du, 1986; Song & Yao, 2001, 2003). 

1.2.2 The metastable phase equilibria of salt-water systems 

However, the phenomena of super-saturation of brines containing magnesium sulfate, 
borate is often found both in natural salt lakes and solar ponds around the world. Especially 
for salt lake brine and seawater systems, the natural evaporation is in a autogenetic process 
with the exchange of energy and substances in the open-ended system , and it is controlled 
by the radiant supply of solar energy with temperature difference, relative humidity, and air 
current, etc. In other word, it is impossible to reach the thermodynamic stable equilibrium, 
and it is in the status of thermodynamic non-equilibrium.  

For the thermodynamic non-equilibrium phase diagram of the sea water system as called 
“solar phase diagram” in the first, N.S. Kurnakov (1938) was in the first to report the 
experimental diagrams based on the natural brine evaporation, and further called 
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“metastable phase diagram” for the same system (Na – K – Mg – Cl – SO4 – H2O) at (288.15, 
298.15, and 308.15) K was reported on the basis of isothermal evaporation method (Jin, et al., 
1980, 2001, 2002; Sun, 1992). Therefore, the metastable phase equilibria research is essential 
to predict the crystallized path of evaporation of the salt lake brine.  

The isothermal evaporation phase diagrams of the sea water system at different 
temperature show a large difference with Vant’hoff stable phase diagram. The 
crystallization fields of leonite (MgSO4.K2SO4.4H2O), and kainite (KCl.MgSO4.3H2O) are 
all disappear whereas the crystallization field of picromerite (MgSO4.K2SO4.6H2O) 
increases by 20-fold, which is of great importance for producing potassium sulfate or 
potassium-magnesium fertilizer.  

Therefore, in order to separate and utilize the mixture salts effectively by salt-field 
engineering or solar ponds in Qaidam Basin, studies on the phase equilibria of salt-water 
systems are focused on the metastable phase equilibria and phase diagrams at present years 
(Deng et al., 2011; Deng et al., 2008a-g; Deng, et al., 2009a-c; Wang & Deng, 2008, 2010; Li & 
Deng, 2009; Li et al., 2010; Liu et al., 2011; Meng & Deng, 2011; Guo et al., 2010; Gao & Deng, 
2011a-b; Wang et al., 2011a-b). 

1.2.3 Solubility prediction for the phase equilibria of salt-water systems 

Pitzer and co-workers have developed an ion interaction model and published a series of 

papers (Pitzer, 1973a-b, 1974a-b, 1975, 1977, 1995, 2000; Pabalan & Pitzer, 1987) which 

gave a set of expressions for osmotic coefficients of the solution and mean activity 

coefficient of electrolytes in the solution. Expressions of the chemical equilibrium model 

for conventional single ion activity coefficients derived are more convenient to use in 

solubility calculations (Harvie & Weare, 1980; Harvie et al.1984; Felmy & Weare, 1986; 

Donad & Kean, 1985).  

In this chapter, as an example, the stable and metastable phase equilibria in the salt-water 
system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O), which is of great importance to describe the 
metastable behavior in order to separate and purify the mixture salts of borax and halo-
sylvite were introduced in detail. The stable phase diagrams of the sub-ternary systems 
(NaCl - Na2B4O7 - H2O), (KCl –K2B4O7 - H2O), (Na2B4O7 - K2B4O7 - H2O) at 298.15 K and the 
metastable phase diagrams of the sub-ternary systems (NaCl - Na2B4O7 - H2O) at 308.15 K 
for the mentioned reciprocal quaternary system were systematically studied on our 
previous researches under several scientific funding supports. The theoretical prediction for 
the stable solubility of this reciprocal quaternary system was also briefly introduced based 
on the ion-interaction model. 

2. Apparatus  

2.1 Apparatus for the stable phase equilibria in the salt-water system 

Stable phase equilibria are the thermodynamic equilibria. In order to reach the isothermal 
dissolve equilibrium, the apparatus mainly contains two parts i.e. constant temperature 
installing and equilibrator. Therefore, experimental apparatus depends on the target of 
temperature. Generally, thermostatic water-circulator bath is used under normal 
atmospheric temperature, and thermostatic oil-circulator bath is chosen at higher level 
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temperature. Under low temperature, the refrigerator or freezing saline bath is commonly 
used. Figure 1 shows the common used equalizer pipe with a stirrer. The artificial synthesis 
complex put in the pipe to gradually reach equilibria under vigorous stirring. In order to 
avoid the evaporation of water, the fluid seal installing is needed, and the sampling branch 
pipe is also needed to seal. Usually, for aqueous quaternary system study, a series of 
artificial synthesis complex, normally no less than 30, was needed to be done one by one the 
experimental time consume is equivalence large. At present, a thermostatic shaker whose 
temperature could controlled with temperature precision of ± 0.1 K can be used for the 

measurement of stable phase equilibrium (Deng et al., 2002; Deng, 2004). The advantage is 
that a series artificial synthesis complexes which is loading in each sealed bottle can be put 
in and vigorous shaking together.  

In this study, the stable phase equilibria system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 
298.15 K, a thermostatic shaker (model HZQ-C) whose temperature was controlled within 
0.1 K was used for the measurement of phase equilibrium. 

2.2 Apparatus for the metastable phase equilibria in the salt-water system 

The isothermal evaporation method was commonly used, and Figure 2 is our designed 

isothermal evaporation device in our laboratory (Guo et al., 2010). The isothermal 

evaporation chamber was consisted of evaporating container, precise thermometer to keep 

the evaporating temperature as a constant and electric fan to simulate the wind in situ, and 

the solar energy simulating system with electrical contact thermograph, electric relay and 

heating lamp. The temperature controlling apparatus is made up of an electric relay, an 

electrical contact thermograph and heating lamps.  

 

Fig. 1. Apparatus of equalizer pipe. 1, thermostatic water-circulator bath; 2, pipe body;  
3, assay; 4, stirrer; 5, fluid seal; 6, rubber seal lock; 7, sampling branch pipe. 

In this example of the metastable phase equilibria system (NaCl - KCl – Na2B4O7 - K2B4O7 - 
H2O) at 308.15 K, the isothermal evaporation box was used. In an air-conditioned laboratory, 
a thermal insulation material box (70 cm long, 65 cm wide, 60 cm high) with an apparatus to 
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control the temperature was installed. When the solution temperature in the container was 
under (308.15 ± 0.2) K, the apparatus for controlling the temperature formed a circuit and 
the heating lamp began to heat. Conversely, the circuit was broken and the heating lamp 
stopped working when the temperature exceeded 308.15 K. Therefore, the temperature in 
the box could always be kept to (308.15 ± 0.2) K. An electric fan installed on the box always 
worked to accelerate the evaporation of water from the solutions.  

 

Fig. 2. The schematic diagram of the isothermal evaporation chamber. 1, electrical contact 
thermograph; 2, precise thermometer; 3, electric relay; 4, electric fan; 5, heating lamp; 6, 
evaporating container; 7, isothermal container. 

Of course, the experimental conditions of an air flow velocity, a relative humidity, and an 
evaporation rate were controlled as similar as to those of the climate of reaching area in a 
simulative device. 

3. Experimental methods 

3.1 Reagents 

For phase equilibrium study, reagents used should be high-purity grade otherwise the re-
crystallized step was needed. For the stable and metastable phase equilibria in the salt-water 
system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O), the chemicals used were of analytical grade, 
except borax which was a guaranteed reagent (GR), and were obtained from either the 
Tianjin Kermel Chemical Reagent Ltd. or the Shanghai Guoyao Chemical Reagent Co. Ltd: 
sodium chloride (NaCl, ≥0.995 in mass fraction), potassium chloride (KCl, ≥ 0.995 in mass 
fraction), borax (Na2B4O7·10H2O, ≥ 0.995 in mass fraction), potassium borate tetrahydrate 
(K2B4O7·4H2O, ≥ 0.995 in mass fraction), and were re-crystallized before use. Doubly 
deionized water (DDW) with conductivity less than 1.2×10-4 S·m-1 and pH 6.60 at 298.15 K 
was used to prepare the series of the artificial synthesized brines and chemical analysis. 

3.2 Analytical methods 

3.2.1 The chemical analysis of the components in the liquids 

For phase equilibrium study in this phase equilibrium system (NaCl - KCl – Na2B4O7 - 
K2B4O7 - H2O), the composition of the potassium ion in liquids and their corresponding wet 
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solid phases was analyzed by gravimetric methods of sodium tetraphenyl borate with an 
uncertainty of ≤ ±0.0005 in mass fraction; Both with an uncertainty of ≤ ± 0.003 in mass 
fraction, the concentrations of chloride and borate were determined by titration with 
mercury nitrate standard solution in the presence of mixed indicator of diphenylcarbazone 
and bromphenol blue, and by basic titration in the presence of mannitol, respectively 
(Analytical Laboratory of Institute of Salt Lakes at CAS, 1982). The concentration of sodium 
ion was calculated by subtraction via charge balance. 

3.2.2 The measurements of the physicochemical properties 

For the physicochemical properties determinations, a PHS-3C precision pH meter 
supplied by the Shanghai Precision & Scientific Instrument Co. Ltd was used to measure 
the pH of the equilibrium aqueous solutions (uncertainty of ± 0.01). The pH meter was 
calibrated with standard buffer solutions of a mixed phosphate of potassium dihydrogen 
phosphate and sodium dihydrogen phosphate (pH 6.84) as well as borax (pH 9.18); the 
densities (ρ) were measured with a density bottle method with an uncertainty of ± 0.2 
mg.cm-3. The viscosities (η) were determined using an Ubbelohde capillary viscometer, 
which was placed in a thermostat at (308.15 ± 0.1) K. No fewer than five flow times for 
each equilibrium liquid phase were measured with a stopwatch with an uncertainty of 0.1 
s to record the flowing time, and the results calculated were the average. An Abbe 
refractometer (model WZS-1) was used for measuring the refractive index (nD) with an 
uncertainty of ± 0.0001. The physicochemical parameters of density, refractive index and 
pH were also all placed in a thermostat that electronically controlled the set temperature 
at (308.15 ± 0.1) K. 

3.3 Experimental methods of phase equilibria 

3.3.1 Stable phase equilibria 

For the stable equilibrium study, the isothermal dissolution method was used in this study. 

The series of complexes of the quaternary system were loaded into clean polyethylene 

bottles and capped tightly. The bottles were placed in the thermostatic rotary shaker, whose 

temperature was controlled to (298.15 ± 0.1) K, and rotated at 120 rpm to accelerate the 

equilibrium of those complexes. A 5.0 cm3 sample of the clarified solution was taken from 

the liquid phase of each polyethylene bottle with a pipet at regular intervals and diluted to 

50.0 cm3 final volumes in a volumetric flask filled with DDW. If the compositions of the 

liquid phase in the bottle became constant, then equilibrium was achieved. Generally, it 

takes about 50 days to come to equilibrium. 

3.3.2 Metastable phase equilibria 

The isothermal evaporation method was used in metastable phase equilibria study. 
According to phase equilibrium composition, the appropriate quantity of salts and DDW 
calculated were mixed together as a series of artificial synthesized brines and loaded into 
clean polyethylene containers (15 cm in diameter, 6 cm high), then the containers were put 
into the box for the isothermal evaporation at (308.15 ± 0.2) K. The experimental 
conditions with air flowing velocity of 3.5-4.0 m/s, relative humidity of 20-30%, and 
evaporation rate of 4-6 mm/d are presented, just like the climate of the Qaidam Basin. For 
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metastable evaporation, the solutions were not stirred, and the crystal behavior of solid 
phase was observed periodically. When enough new solid phase appeared, the wet 
residue mixtures were taken from the solution. The solids were then approximately 
evaluated by the combined chemical analysis, of XP-300D Digital Polarizing Microscopy 
(Shanghai Caikon Optical Instrument Co,. Ltd., China) using an oil immersion, and 
further identification with X-ray diffraction (X’pert PRO, Spectris. Pte. Ltd., The 
Netherlands). Meanwhile, a 5.0 cm3 sample of the clarified solution was taken from the 
liquid phase of each polyethylene container through a filter pipette, and then diluted to a 
250.0 cm3 final volume in a volumetric flask filled with DDW for the quantitative analysis 
of the compositions of the liquid phase. Some other filtrates were used to measure the 
relative physicochemical properties individually according to the analytical method. The 
remainder of the solution continued to be evaporated and reached a new metastable 
equilibrium.  

4. Experimental results 

4.1 Mineral identification for the solid phase  

For mineral identification when enough new solid phase appeared either in the stable 

equilibrium system or in the metastable equilibrium system, the wet residue mixtures were 

taken from the solution according to the experimental method. Firstly, as to the minerals of 

Na2B4O7·10H2O and K2B4O7·4H2O, the former belongs to monoclinic system, and the dual 

optical negative crystal i.e. 2ν(-) whereas the later belongs to trimetric system, and the dual 

optical positive crystal i.e. 2ν(+). Secondly, to the minerals NaCl and KCl, they can be 

identified through the property of refractive index. The refractive index of NaCl is higher 

than that of KCl. Observed with a XP-300D Digital Polarizing Microscopy using an oil 

immersion method, the crystal photos of the single and orthogonal polarized light on 

representative solid phases in the invariant points (NaCl + KCl + Na2B4O7·10H2O) and 

(Na2B4O7·10H2O + K2B4O7·4H2O + KCl) are presented in Figure 3.  

 
 

  
 

single polarized light (10×10)        orthogonal polarized light (10×10) 

(a) Invariant point (NaCl + KCl + Borax) 

KCl NaCl 

Borax
Borax 
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single polarized light (10×10)            orthogonal polarized light (10×10) 

(b) Invariant point (KCl + Borax + K2B4O7·4H2O) 

Fig. 3. Identification of the invariant points for the solid phase in the reciprocal system 
(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) with a polarized microscopy using an oil-immersion 
method. (a), the invariant point (NaCl + KCl + Na2B4O7·10H2O); (b), the invariant point  
(KCl + Na2B4O7·10H2O + K2B4O7·4H2O). 

The metastable equilibria solid phases in the two invariant points are further confirmed 
with X-ray diffraction analysis, and listed in Figure 4, except in the invariant points (NaCl + 
KCl + Borax) in Figure 4a which shows that the minerals KCl, NaCl, Na2B4O7·10H2O and a 
minor Na2B4O7·5H2O are existed. The minor of Na2B4O7·5H2O maybe is formed due to the 
dehydration of Na2B4O7·10H2O in the processes of transfer operation and/or grinding. 

 
 

No. Visible Ref. Code Chemical Formula Score 
Scale 
Factor 

Semi-
Quant/% 

1 
2 
3 
4 

True  
True  
True  
True 

01-075-0296 
01-075-0296 
01-075-0296 
01-075-0296 

KCl 
NaCl 
B4O5(OH)4(Na2(H2O)8 
Na2B4O7(H2O)5 

49 
45 
39 
13 

0.369 
0.732 
0.030 
0.007 

22 
57 
20 
1 

(a), the X-ray diffraction photograph and the analytical data for the invariant point  
(NaCl + KCl + Borax)  

K2B4O7·4H2O KCl 

Borax 

K2B4O7·4H2O

Borax 
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No. Visible Ref. Code Chemical Formula Score 
Scale 
Factor 

Semi-
Quant/% 

1 
2 
3 

True  
True  
True  

01-072-1540 
01-076-0753 
01-074-0339 

KCl 
K2(B4O5(OH)4)(H2O)2 
B4O5(OH)4(Na2(H2O)8  

39 
37 
10 

0.650 
0.011 
0.004 

72 
22 
5 

(b), the X-ray diffraction photograph and the analytical data for the invariant point  
(KCl + Borax + K2B4O7·4H2O) 

Fig. 4. The X-ray diffraction data of the invariant points. (a), the invariant point  
(NaCl + KCl + Na2B4O7·10H2O); (b), the invariant point (Na2B4O7·10H2O + K2B4O7·4H2O + 
KCl). 

4.2 Stable phase equilibrium of the quaternary system  
(NaCl

 
- KCl – Na2B4O7 - K2B4O7 - H2O) at 298.15 K 

The stable phase equilibrium experimental results of solubilities of the quaternary system 

(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 298.15 K were determined, and are listed in Table 

3, respectively. On the basis of the Jänecke index (JB, JB/[mol/100 mol(2Na+ + 2K+)]) in Table 

3, the stable equilibrium phase diagram of the system at 298.15 K was plotted and shown in 

Figure 5. 

4.3 Metastable phase equilibrium of the quaternary system  
(NaCl

 
- KCl – Na2B4O7 - K2B4O7 - H2O) at 308.15 K 

The experimental results of the metastable solubilities and the physicochemical properties of 
the quaternary system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 308.15 K were determined, 
and are listed in Tables 4 and 5, respectively. On the basis of the Jänecke index (JB, 
JB/[mol/100 mol(2Na+ + 2K+)]) in Table 4, the metastable equilibrium phase diagram of the 
system at 308.15 K was plotted (Figure 6). 
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No. 

Composition of the solution 
100 wB* 

Jänecke index 
JB, /[mol/100mol(2Na++2K+)] 

Equilirium 
solid phase** 

Na+ K+ Cl- B4O72- J(2Cl-) J(2K+) J(H2O) 

1 
2 
3 
4 

5, E1 
6, E2 
7, E3 
8, E4 

9 
10 
11 
12 

13, E 
14 
15 
16 
17 
18 
19 
20 
21 

22, F 
23 

10.25 
0.00 
0.72 
0.00 
8.02 
9.60 
0.00 
1.15 
1.38 
1.57 
1.59 
3.50 
4.72 
1.13 
1.57 
4.18 
4.15 
5.27 
6.11 
6.40 
7.50 
6.16 
9.73 

0.00 
13.87
0.00 
4.74 
5.85 
0.00 

15.87
4.36 
6.11 

11.74
7.55 

11.39
9.62 

13.44
11.74
10.56
9.65 
9.43 
9.83 
9.10 
7.13 
9.64 
1.05 

15.80
12.58
0.00 
0.00 

17.68
14.33
12.35
0.00 
0.92 

12.35
3.83 

12.24
14.55
12.65
12.35
14.96
13.96
15.50
17.52
17.52
17.73
17.55
15.35

0.00 
0.00 
2.41 
9.42 
0.00 
1.04 
4.48 
12.54 
14.77 
1.59 
11.97 
7.62 
3.17 
2.78 
1.59 
2.33 
2.61 
2.58 
1.79 
1.32 
0.67 
1.52 
1.35 

100.00 
100.00 
0.00 
0.00 

100.00 
96.79 
85.85 
0.00 

11.98 
24.64 
41.25 
96.67 
90.05 
90.59 
94.45 
93.36 
92.13 
93.83 
95.55 
96.67 
98.30 
96.19 
96.05 

0.00 
100.00 
0.00 

100.00 
30.03 
0.00 

100.00 
69.24 
72.33 
72.41 
73.74 
45.60 
54.55 
88.46 
81.45 
59.79 
57.77 
51.84 
48.48 
45.60 
35.89 
47.94 
6.12 

1807.5 
2310.8 
34623.3 
7864.1 
1526.2 
1997.5 
1807.8 
5649.7 
3947.5 
3496.9 
3181.6 
1427.4 
1672.8 
2123.7 
2191.0 
1670.9 
181.0 

1602.8 
1386.6 
1427.4 
1462.7 
1406.5 
1830.4 

NaCl 
KCl 
N10 
K4 

NaCl+KCl 
NaCl+N10 
KCl +K4 
N10 + K4 
N10 + K4 
N10 + K4 
N10 + K4 
N10 + K4 

KCl + N10 + K4 
KCl+K4 
KCl+K4 
KCl+K4 
KCl+K4 

KCl + N10 
KCl + N10 

NaCl + KCl 
NaCl + KCl 

NaCl+KCl+N10 
NaCl+N10 

* wB is in mass fraction; ** K4, K2B4O7·4H2O; N10, Na2B4O7·10H2O. 

Table 3. Stable solubilities of the system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 298.15 K 
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Fig. 5. Stable phase diagram of the quaternary system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) 
at 298.15 K. (a), dry-salt phase diagram; (b), water-phase diagram. 
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No. 

Composition of the solution 

100wB 

Jänecke index 

JB, /[mol/100mol(2Na++2K+)]
Equilibrium 

solid phase* 
Na+ K+ Cl- B4O72- J(2Cl-) J(2K+) J(H2O) 

A 

B 

C 

D 

1, E’1 

2 

3 

4, E’ 

5, E’2 

6 

7 

8 

9 

10, E’3 

11 

12 

13 

14 

15 

16, F’ 

17, E’4 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

1.30 

10.47 

0.00 

0.00 

7.85 

7.84 

7.85 

7.87 

10.62 

9.88 

9.36 

9.10 

8.15 

0.00 

0.49 

0.54 

1.22 

1.86 

2.65 

2.84 

2.01 

1.89 

1.74 

1.66 

1.79 

1.87 

2.28 

2.78 

3.11 

3.26 

3.64 

4.06 

4.45 

5.27 

6.17 

0.00 

0.00 

14.87

3.87 

6.56 

6.54 

6.60 

6.56 

0.00 

1.51 

2.87 

3.62 

5.38 

15.22

14.75

14.73

13.68

12.88

12.41

12.36

8.65 

9.86 

9.55 

10.78

12.05

12.73

12.65

12.61

11.86

11.41

10.91

10.43

10.17

9.25 

8.23 

0.00 

16.15 

13.49 

0.00 

18.06 

17.76 

17.66 

17.17 

15.80 

15.89 

16.24 

16.50 

16.57 

11.83 

12.16 

12.29 

12.51 

12.45 

12.51 

12.06 

0.00 

1.78 

4.49 

6.11 

8.55 

9.48 

10.89 

8.30 

12.46 

13.13 

13.59 

14.15 

14.57 

15.16 

15.94 

4.40 

0.00 

0.00 

19.26

0.00 

0.58 

0.95 

1.99 

1.28 

1.59 

1.74 

1.81 

1.94 

4.34 

4.34 

4.15 

3.88 

4.60 

6.19 

7.74 

24.00

22.09

15.01

13.66

11.27

10.86

8.97 

11.95

6.78 

4.90 

4.20 

3.45 

3.30 

2.97 

2.27 

0.00 

100.00 

100 

0.00 

100 

98.54 

97.6 

94.98 

96.47 

95.63 

95.33 

95.22 

94.92 

85.66 

85.99 

86.66 

87.60 

85.56 

81.57 

77.34 

0.00 

15.03 

39.58 

49.49 

62.43 

65.66 

72.68 

75.94 

80.09 

85.45 

87.64 

89.98 

90.62 

91.80 

93.91 

0.00 

0.00 

100 

100 

32.94 

32.89 

33.09 

32.89 

0.00 

8.25 

15.27 

18.97 

27.96 

100 

94.61 

94.16 

86.86 

80.30 

73.39 

71.90 

71.66 

75.41 

76.36 

79.22 

79.81 

79.97 

76.57 

72.72 

69.15 

67.31 

63.8 

60.17 

57.36 

50.79 

43.95 

2090.17 

1788.31 

18468.05 

4311.59 

1471.69 

1469.10 

1456.10 

1445.77 

1736.76 

1684.84 

1612.49 

1566.69 

1532.30 

1955.76 

1899.70 

1894.74 

1893.49 

1844.98 

1699.85 

1641.11 

2346.01 

2134.79 

2000.89 

2160.56 

1906.21 

1773.28 

1712.53 

1838.60 

1664.48 

1723.59 

1717.14 

1699.65 

1652.70 

1604.93 

1562.35 

N10 

NaCl 

KCl 

K4 

NaCl+KCl 

NaCl+KCl 

NaCl+KCl 

NaCl+KCl+N10 

NaCl +N10 

NaCl +N10 

NaCl +N10 

NaCl +N10 

NaCl+N10 

KCl+K4 

KCl+K4 

KCl+K4 

KCl+K4 

KCl+K4 

KCl+K4 

KCl+K4+N10 

N10+K4 

N10+K4 

N10+K4 

N10+K4 

N10+K4 

N10+K4 

N10+K4 

N10+K4 

N10+KCl 

N10+KCl 

N10+KCl 

N10+KCl 

N10+KCl 

N10+KCl 

N10+KCl 

* K4, K2B4O7·4H2O; N10, Na2B4O7·10H2O; wB, in mass fraction. 

Table 4. Metastable solubilities of the quaternary system  
(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 308.15 K 
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No.* 
Density 

ρ, /(g.cm-3) 
pH Refractive index 

Viscosity 

ǈ/(mPa·s) 

A 

B 

C 

D 

1, E’1 

2 

3 

4, ‘E 

5, E’2 

6 

7 

8 

9 

10, E’3 

11 

12 

13 

14 

15 

16, F’ 

17, E’4 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

1.0441 

1.1935 

1.1857 

1.2003 

1.2300 

1.2414 

1.2433 

1.2524 

1.2060 

1.2172 

1.2274 

1.2313 

1.2398 

1.2270 

1.2347 

— 

— 

1.2433 

1.2536 

1.2700 

1.3040 

1.3206 

1.2533 

1.2600 

1.2636 

1.2764 

1.2784 

— 

1.2555 

1.2484 

1.2409 

1.2348 

1.2366 

1.2404 

1.2381 

—** 

— 

— 

— 

5.63 

7.29 

7.72 

7.81 

— 

8.22 

8.66 

9.21 

8.51 

9.55 

9.43 

— 

— 

9.02 

9.10 

9.30 

10.36 

10.12 

9.94 

9.62 

9.58 

9.53 

9.47 

— 

9.08 

9.51 

9.48 

9.02 

9.04 

8.65 

8.38 

1.3405 

1.3800 

1.3742 

1.3678 

1.3869 

1.3872 

1.3880 

1.3890 

1.3802 

1.3836 

1.3860 

1.3862 

1.3879 

1.3782 

1.3798 

— 

1.3792 

1.3814 

1.3840 

1.3863 

1.3868 

1.3868 

1.3803 

1.3823 

1.3840 

— 

1.3856 

— 

1.3857 

1.3842 

1.3828 

1.3827 

1.3835 

1.3841 

1.3849 

— 

— 

— 

— 

1.1241 

1.1452 

1.1930 

1.2620 

— 

1.3023 

1.2865 

1.2829 

1.2729 

0.8499 

0.8443 

— 

0.8844 

1.0625 

1.0876 

1.1963 

2.8279 

2.8032 

1.5661 

1.4548 

— 

1.3900 

— 

— 

1.1682 

1.0812 

1.0480 

1.0252 

1.0421 

1.0809 

1.0130 

* Corresponding to the no. column in Table 4; ** not determined. 

Table 5. Physicochemical properties of the metastable reciprocal quaternary system  
(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 308.15 K 
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Fig. 6. Metastable phase diagram of the quaternary system (NaCl - KCl – Na2B4O7 - K2B4O7 - 
H2O) at 308.15 K. (a), dry-salt phase diagram; (b), water-phase diagram. 

On the basis of physicochemical property data of the metastable system (NaCl - KCl – 

Na2B4O7 - K2B4O7 - H2O) at 308.15 K in Table 5, the diagram of physicochemical properties 

versus composition was drawn and shows in Figure 7. The physicochemical properties of 

the metastable equilibrium solution vary regularly with the composition of borate mass 

fraction. The singular point on every curve of the composition versus property diagram 

corresponds to the same invariant point and on the metastable solubility.  
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Fig. 7. Diagram of physicochemical properties versus composition for the metastable 
quaternary system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 308.15 K 

4.3 Comparison of the stable and metastable phase diagram of the quaternary system 
(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) 

A comparison of the dry-salt diagrams of the metastable phase equilibrium at 308.15 K and 
the stable phase equilibrium at 298.15 K for the same system is shown in Figure 8. The 
metastable crystallization regions of borax and potassium chloride are both enlarged while 
the crystallized area of other minerals existed is decreased. When compared with the stable 
system, the solubility of borax in water in the metastable system is increased from 3.13 % to 
5.70 %. The metastable phenomenon of borax is obvious in this reciprocal quaternary 
system. 
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Fig. 8. Comparison of the metastable phase diagram at 308.15 K in solid line and the stable 
phase diagram at 298.15 K in dashed line for the quaternary system (NaCl - KCl – Na2B4O7 - 
K2B4O7 - H2O). --, metastable experimental points; -○-, stable experimental points. 
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5. Solubility theoretic prediction of salt-water system 

5.1 Ion-interaction model 

As to any electrolyte, its thermodynamic prosperity varied from weak solution to high 
concentration could be calculated through 3 or 4 Pitzer parameters. Pitzer ion-interaction 
model and its extended HW model of aqueous electrolyte solution can be briefly introduced 
in the following (Pitzer, 1975, 1977, 2000; Harvie & Wear, 1980; Harvie et al., 1984; Kim & 
Frederich, 1988a-b). 

As to the ion-interaction model, it is a semiempirical statistical thermodynamics model. In 
this model, the Pitzer approach begins with a virial expansion of the excess free energy of 
the form to consider the three kinds of existed potential energies on the ion-interaction 
potential energy in solution.  

 ex 
ij i j i j k

i j i j k
w ijkG / (n RT ) f ( I ) ǌ ( I )m m m m m .....µ= + + +    (1) 

Where nw is kilograms of solvent (usually in water), and mi is the molality of species i 
(species may be chosen to be ions); i, j, and k express the solute ions of all cations or anions; I 
is ion strength and given by 

 21

2
i iI m z=  , here zi is the number of charges on the i-th solute.  

The first term on the right in equation (1) is the first virial coefficients. The first virial 

coefficients i.e. the Debye-Hückel limiting law, f(I), is a function only of ionic strength to 

express the long-range ion-interaction potential energy of one pair of ions in solution and 

not on individual ionic molalities or other solute properties.  

Short-range potential effects are accounted for by the parameterization and functionality of 
the second virial coefficients, ǌij, and the third virial coefficients, Ǎijk. The quantity ǌij 
represents the short-range interaction in the presence of the solvent between solute particles 
i and j. This binary interaction parameter of the second virial coefficient does not itself have 
any composition dependence for neutral species, but for ions it is dependent it is ionic 
strength.  

The quantity Ǎijk represents short-range interaction of ion triplets and are important only at 
high concentration. The parameters Ǎijk are assumed to by independent of ionic strength and 
are taken to be zero when the ions i, j and k are all cations or all anions. 

Taking the derivatives of equation ? with respect to the number of moles of each 

components yields expressions for the osmotic and activity coefficients.  

5.1.1 For pure electrolytes 

For the pure single-electrolyte MX, the osmotic coefficient defined by Pitzer (2000): 

 
3 2

22 2
1  

/
M X M X

M X MX MX

v v ( v v )
z z f m B m C

v v
φ φ φφ − = + +   (2) 
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φ is the osmotic coefficient; ZM and ZX are the charges of anions and cautions in the solution. 

m is the molality of solute; ǖM, ǖX, and ǖ (ǖ = ǖM + ǖX) represent the stiochiometric 

coefficients of the anion, cation, and the total ions on the electrolyte MX. 

In equation (1), fφ, BǗMX and CǗMX are defined as following equations. In equation (1a), here b 

is a universal empirical constant to be equal 1.2 kg1/2·mol-1/2. 

  

1 2

1 21

/

/

A I
f

bI

φ
φ = −

+
  (2a) 

For non 2-2 type of electrolytes, such as several 1-1-,2-1-, and 1-2-type pure salts, the best 
form of BǗMX is following (Pitzer, 1973): 

 
0 1( ) ( ) I

MX MX MXB eφ αβ β −= +   (2b) 

For 2-2 type of electrolytes, such as several 3-1- and even 4-1-type pure salts, an additional 
term is added (Pizter, 1977): 

 1 20 1 2( ) ( ) I ( ) I
MX MX MX MXB e eφ α αβ β β− −= + +   (2c) 

 

3 21 2 2
01 2

3 1000

//
WN e

A
DkT

φ π ρ   
=        

  (2d) 

Aφ is the Debye-Hückel coefficient for the osmotic coefficient and equal to 0.3915 at 298.15 K. 
Where, N0 is Avogadro’s number, dw and D are the density and static dielectric constant of 
the solvent (water in this case) at temperature and e is the electronic charge. k is Boltzmann’s 
constant. In equation (1b), ǃ(0) MX, ǃ(1)MX, CφMX are specific to the salt MX, and are the single-
electrolyte parameters of MX. The universal parameters α = 2.0 kg1/2·mol-1/2 and omit ǃ(2)MX 
for several 1-1-,2-1-, and 1-2-type salts at 298.15 K. As salts of other valence types, the values 
α1 = 1.4 kg1/2·mol-1/2, and α2 = 12 kg1/2·mol-1/2 were satisfactory for all 2-2 or higher valence 
pairs electrolytes at 298.15 K. The parameter ǃ(2)MX is negative and is related to the 
association equilibrium constant.  

The mean activity coefficient Ǆ± is defined as: 

 
3 2

22 2 /
M X M X

M X MX MX
v v (v v )

ln z z f m B m C
v v

γ γ γγ ± = + +   (3) 

 1 2 1 2 1 21 2 1/ / /f A [ I / ( bI ) ( / b)ln( bI )]γ φ= − + + +   (3a) 

  MXMX MXB B Bγ φ= +   (3b) 

 0 1 1 2 2 1 2
1 2MX

( ) ( ) / ( ) /
MX MX MXB g( I ) g( I )]β β α β α= + +   (3c) 

 22 1 1g(x) [ ( x)exp( x) / x ]= − + −   (3d) 
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  3 2MX MXC C /γ φ=   (3e) 

5.1.2 For mixture electrolytes 

In order to treat mixed electrolytes, the following sets of equations are identical with the 
form used by Harvie & Weare (1984) for modeling the osmotic coefficient and the activity 
coefficient of a neutral electrolyte based on Pitzer Equations. 

                         

                      

c a

c c a a a

c

3 2 1 2
c a ca ca

=1 =1

1 1

c c' a cc'a a a'cc' aa'
c=1 c c+1 a=1 a=1 a' a 1

c aa'c n c n
c=1

1 2 1 1 2
N N

/ /
i

i c a

N N N N N

'

N

m ( ) ( A I / ( . I ) m m (B ZC )

m m ( m ) m m (

m ) m m

φ φ

φ φ

φ

ψ

ψ λ

− −

= = +

− = − + + +

+ Φ + + Φ

+ +

 

    


cn

c
n=1 c=1

NN



  (4) 

 

                          

a c a

a a c a n

2
M M a Ma Ma c Mc a Mca

a=1 c=1 a=1

1

a a' aa'M M c a ca n nM
a=1 a'=a 1 c=1 a 1 n=1

2 2

2

N N N

N N N N N

ln z F m ( B ZC ) m ( m )

m m z m m C m ( )

γ ψ

ψ λ
−

+ =

= + + + Φ + +

+ +

  

   
  (5) 

 

                        

c a c

c c c a n

2
X X c cX cX a Xa c Xac

c=1 a=1 c=1

1

c c' cc'X X c a ca n nX
c=1 c'=c+1 c=1 a=1 n=1

2 2

2

N N N

N N N N N

ln z F m ( B ZC ) m ( m )

m m z m m C m ( )

γ ψ

ψ λ
−

= + + + Φ + +

+ +

  

   
  (6) 

 
c a

N c nc a na
c=1 a=1

2 2
N N

ln m ( ) m ( )γ λ λ= +    (7) 

In equations (3), (4), (5) and (6), the subscripts M, c, and c' present cations different cations; 
X, a, and a' express anions in mixture solution. Nc, Na and Nn express the numbers of cations, 
anions, and neutral molecules; rM, ZM, mC and rX, ZX, ma, Ф present the ion activity 
coefficient, ion valence number, ion morality, and the permeability coefficient; Ǆn, mn, ǌnc, 
and ǌna express activity coefficient of neutral molecule, morality of neutral molecule the 
interaction coefficient between neutral molecules with cations c and anion a. 

In equations from (3) to (6), the function symbols of , , , , , , ,F C Z A B Bφ φψ Φ  are as following, 

respectively: 

1. The term of F in equations (4) to (5) depends only on ionic strength and temperature. 
The defining equation of F is given by equation (7).  

 

              

c a

ca

c c a a

cc' aa'

1 2 1 2 1 2
c a

c=1 a=1

1 1

c c' a a'
c=1 c'=c+1 a=1 a'=a+1

1 1 2 2 1 2 1 1 2
N N

/ / / '

N N N N
' '

F A [I / ( . I ) / . ln( . I )] m m B

m m m m

φ

− −

= − + + + +

+ Φ + Φ



   
  (8) 
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2. The single-electrolyte third virial coefficient, CMX, account for short-range interaction of 
ion triplets and are important only at high concentration. These terms are independent 

of ionic strength. The parameters CMX and 
MX

Cφ , the corresponding coefficients for 

calculating the osmotic coefficient, are related by the equation (1-6) (Pitzer & Mayorga, 
1973): 

  
MX

1 2
MX M X2

/
C C / ( Z Z )φ=   (9) 

3. The function Z in the equation (8) is defined by: 

  i i
i

Z z m=   (10) 

Where, m is the molality of species i, and z is its charge. 

4. Aφ is the Debye-Hückel coefficient for the osmotic coefficient and equal to 0.3915 at 
298.15 K, and it is decided by solvent and temperature as equation (1d). 

5. The third virial coefficients, i , j ,kψ in equations (3) to (5) are mixed electrolyte 

parameters for each cation-cation-anion and anion-anion-cation triplet in mixed 
electrolyte solutions. 

6. The parameters  '
CACAB ,B, Bφ which describe the interaction of pair of oppositely charged 

ions represent measurable combinations of the second virial coefficients. They are 
defined as explicit functions of ionic strength by the following equations (Kim & 
Frederick, 1988).  

 0 1 1 2 2 1 2
1 2CA CA CA CA

( ) ( ) / ( ) /B exp( I ) exp( I )φ β β α β α= + − + −   (11) 

 0 1 1 2 2 1 2
CA 1 2CA CA CA

( ) ( ) / ( ) /B g( I ) g( I )β β α β α= + +   (12) 

 1 1 2 2 1 2
CA 1 2CA CA
' ( ) / ( ) /B [ g'( I ) g'( I )] / Iβ α β α= +   (13) 

Where the functions g and g’ in equations (10), (11) and (12) are defined by 

 22 1 1g(x) [ ( x)exp( x)] / x= − + −   (14) 

 2 22 1 1 2  g'(x) [ ( x x / )exp( x)] / x= − − + + −   (15) 

In equations (13) and (14), x = 1I1/2 or = 2I1/2. 

In Pitzer’s model expression in Eqns. (10) to (12),  is a function of electrolyte type and does 

not vary with concentration or temperature. Following Harvie et al. (1984), when either 

cation or anion for an electrolyte is univalent, the first two terms in equations (10) to (12) are 

considered, 2( )
CAβ can be neglect and α1 =2.0 kg1/2·mol-1/2, α2 = 0 at 298.15 K. For higher 

valence type, such as 2-2 electrolytes for these higher valence species accounts for their 

increased tendency to associate in solution, the full equations from (10) to (12) are used, and 

α1=1.4 kg1/2·mol-1/2 and α2=12 kg1/2·mol-1/2 at 298.15 K. 
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7. ij ijij
', ,φΦ Φ Φ which depend upon ionic strength, are the second virial coefficients, and are 

given the following form (Pitzer, 1973). 

 '
ij ij ijij

E EIφ θ θ θΦ = + +   (16) 

 ij ij ij
Eθ θΦ = +   (17) 

 ' '
ij ij

EθΦ =   (18) 

In equations (15), (16) and (17), i , jθ is an adjustable parameter for each pair of anions or 

cations for each cation-cation and anion-anion pair, called triplet-ion-interaction parameter. 

The functions, ij
Eθ  and '

ij
Eθ are functions only of ionic strength and the electrolyte pair type. 

Pitzer (1975) derived equations for calculating these effects, and Harvie and Weare (1981) 

summarized Pitzer’s equations in a convenient form as following: 

 
ij i j ij ii jj4 2 2E (Z Z / I )[ J(x ) J(x ) / J(x ) / ]θ = − −   (19) 

 ' 2
ij ij i j ij ij ii ii jj jj8 2 2E E( / I ) (Z Z / I )[x J'(x ) x J'(x ) / x J'(x ) / ]θ θ= − + − −   (20) 

 1 2
ij i j6 /x Z Z A Iφ=   (21) 

In equations (18) and (19), J(x) is the group integral of the short-range interaction potential 

energy. J'(x) is the single-order differential quotient of J(x) , and both are independent of 

ionic strength and ion charges. In order to give the accuracy in computation, J(x)  can be 

fitted as the following function: 

 2 4 1
1 30

1 4 1 1 1 C CJ(x) / x / x [ exp( x / yeC x exp( C x )]
∞ − −= − + − − ⋅ −   (22) 

 
4

2 4 4 2 4 2

2 1
1 3

2 1 1
1 3 1 3 2 3 4

4

4

C C

C C C C C C

J'(x) [ C x exp( C x )]

[ C x exp( C x )] [C x exp( C x )(C x C C x x )]

− −

− − − − − −

= + ⋅ −

+ + − − +
  (23) 

In equations (21) and (22), C1 = 4.581, C2 = 0.7237, C3 = 0.0120, C4 = 0.528.  

Firstly, xij can be calculated according to equation (20), and J(x) and J'(x) were obtained 

from equations (21) and (22), and then to obtained ij
Eθ and '

ij
Eθ from equations (18) and (19); 

finally, ij ijij
', ,φΦ Φ Φ can be got through equations from (15) to (17). Using the values 

of ij ijij
', ,φΦ Φ Φ , the osmotic and activity coefficients of electrolytes can be calculated via 

equations from (3) to (6). 

Using the osmotic coefficient, activity coefficient and the solubility products of the 
equilibrium solid phases allowed us to identify the coexisting solid phases and their 
compositions at equilibrium. 

On Pitzer ion-interaction model and its extended HW model, a numbers of papers were 
successfully utilized to predict the solubility behaviors of natural water systems, salt-water 
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systems, and even geological fluids (Felmy & Weare, 1986; Kim & Frederich, 1988a, 1988b; 
Fang et al., 1993; Song, 1998; Song & Yao, 2001, 2003; Yang, 1988, 1989, 1992, 2005). 

By the way, additional work has centered on developing variable-temperature models, 
which will increase the applicability to a number of diverse geochemical systems. The 
primary focus has been to broaden the models by generating parameters at higher or lower 
temperatures (Pabalan & Pitzer, 1987; Spencer et al., 1990; Greenberg & Moller, 1989).  

5.2 Model parameterization and solubility predictions 

As to the borate solution, the crystallized behavior of borate salts is very complex. The 
coexisted polyanion species of borate in the liquid phase is difference with the differences of 
boron concentration, pH value, solvent, and the positively charged ions. The ion of B4O72- is 
the general statistical express for various possible existed borates. Therefore, the structural 
formulas of Na2B4O7·10H2O and K2B4O7·4H2O in the solid phases of the quaternary system 
(NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) are Na2[B4O5(OH)4]·8H2O and K2[B4O5(OH)4]·2H2O, 
respectively. Borate in the liquid phase corresponding to the equilibrium solid phase maybe 
coexists as B4O5(OH)42-, B3O3(OH)4-, B(OH)4-, and son on due to the reactions of 
polymerization or depolymerization of boron anion.  

Therefore, in this part of predictive solubility of the quaternary system (NaCl - KCl – 

Na2B4O7 - K2B4O7 - H2O), the predictive solubilities of this system were calculated on the 

basis of two assumptions: Model I: borate in the liquid phase exists all in statistical form of 

B4O72- i.e. B4O5(OH)42-; Model II: borate in the liquid phase exists as various boron species of 

B4O5(OH)42-, B3O3(OH)4-, B(OH)4-. 

The necessary model parameters for the activity coefficients of electrolytes in the system at 
298.15 K were fit from obtained osmotic coefficients and the sub-ternary subsystems by the 
multiple and unary linear regression methods. 

5.2.1 Model I for the solubility prediction 

Model I: Suppose that borate in solution exists as in the statistical expression form of B4O72- 

i.e. B4O5(OH)42-, and the dissolved equilibria in the system could be following: 

  Na2B4O7·10H2O = 2Na+ + B4O5(OH)42- + 8H2O 

  K2B4O7·4H2O = 2K+ + B4O5(OH)42- + 2H2O 

  NaCl = Na+ + Cl-  

  KCl = K+ + Cl- 

So, the dissolved equilibrium constants can be expressed as: 

 2 8
10 4 4N B B wNa Na

K (m ) (m ) aγ γ+ += ⋅ ⋅ ⋅ ⋅   (24) 

    
2 2

4 4 4K B B wK K
K (m ) (m ) aγ γ+ += ⋅ ⋅ ⋅ ⋅   (25) 

 NaCl Na Na Cl Cl
K (m ) (m )γ γ+ + − −= ⋅ ⋅ ⋅   (26) 
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    KCl K K Cl Cl
K (m ) (m )γ γ+ + − −= ⋅ ⋅ ⋅   (27) 

And the electric charge balance exists as: 

 2
4 5 4

2Na K Cl B O (OH )
m m m m+ + − −+ = +   (28) 

Where, K, r, m, and aw express equilibrium constant, activity coefficient, and water activity, 
and N10, K4 instead of the minerals of Na2B4O7·10H2O, K2B4O7·4H2O (the same in the 
following), respectively. Then, the equilibria constants K are calculated with Ǎ0/RT and 
shown in Table 6. 

The single salt parameters ǃ(0), ǃ(1), C(Ǘ) of NaCl, KCl, Na2[B4O5(OH)4], and K2[B4O5(OH)4], 

two-ion interaction Pitzer parameters of ǉNa, K, ǉCl, B4O5(OH)4 and the triplicate-ion Pitzer 

parameters of ΨCl, B4O5(OH)4, Na, ΨCl, B4O5(OH)4, K, ΨNa, K, Cl, ΨNa, K, B4O5(OH)4 in the reciprocal 

quaternary system at 298.15 K were chosen from Harvie et al. (1984), Felmy & Weare (1986), 

Kim & Frederick (1988), and Deng (2001) and summarized in Tables 7 and 8.  

According to the equilibria constants and the Pitzer ion-interaction parameters, the 

solubilities of the quaternary system at 298.15 K have been calculated though the Newton’s 

Iteration Method to solve the non-linearity simultaneous equations system, and shown in 

Table 9. 

5.2.2 Model II for the solubility prediction 

Model II: Suppose that borate in solution exists as in various boron species of B4O5(OH)42-, 

B3O3(OH)4-, B(OH)4- to further describe the behaviors of the polymerization and 

depolymerization of borate anion in solution, and the dissolved equilibria in the system 

could be following: 

  Na2B4O7·10H2O = 2Na+ + B4O5(OH)42- + 8H2O 

  K2B4O7·4H2O = 2K+ + B4O5(OH)42- + 2H2O 

  B4O5(OH)42- + 2H2O = B3O3(OH)4- + B(OH)4- 

  NaCl = Na+ + Cl-  

  KCl = K+ + Cl- 

So, the dissolved equilibrium constants can be expressed as: 

     
2 8

10 4 4N B B wNa Na
K (m ) (m ) aγ γ+ += ⋅ ⋅ ⋅ ⋅   (29) 

       
2 2

4 4 4K B B wK K
K (m ) (m ) aγ γ+ += ⋅ ⋅ ⋅ ⋅   (30) 

 3 3
4 3 2

4 4

B B B B
B B B

B B w

(m ) (m )
K

(m ) a

γ γ

γ

⋅ ⋅ ⋅
=

⋅ ⋅
  (31) 

    NaCl Na Na Cl Cl
K (m ) (m )γ γ+ + − −= ⋅ ⋅ ⋅   (32) 
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      KCl K K Cl Cl
K (m ) (m )γ γ+ + − −= ⋅ ⋅ ⋅   (33) 

Where, B4, B3 and B to instead of B4O5(OH)42-, B3O3(OH)4-, and B(OH)4- for short; KB4B3B 

expresses the equilibrium constant of the polymerized species reaction of B4O5(OH)42-, 

B3O3(OH)4-, B(OH)4-. 

And the electric charge balance exists as: 

 2
3 3 4 44 5 4

2Na K Cl B O (OH ) B(OH )B O (OH )
m m m m m m+ + − − −−+ = + + +   (34) 

From this reaction of B4, B3 and B, i.e. B4O5(OH)42- + 2H2O = B3O3(OH)4- + B(OH)4-, the 

molalities of B3 and B are in equal. In the meantime, we suppose that two-ion and triplicate-

ion interaction of different boron species would be weak, and the mixture ions parameters 

of different boron species should be ignored.  

Similar as in model I, then, the equilibrium constant K existed solid phase is calculated 

with Ǎ0/RT, and also shown in Table 6, where another four possible borate salts of 

NaB3O3(OH)4, NaB(OH)4, KB3O3(OH)4, KB(OH)4 were also listed. The single salt 

parameters, binary ion interaction parameters, triplet mixture parameters and more 

parameters of ǉCl,B3O3(OH)4, ǉCl,B(OH)4,ΨCl,B3O3(OH)4,Na, and ΨCl,B(OH)4,Na were considered, and 

shown in Table 8. According to the equilibria constants and the Pitzer ion-interaction 

parameters, the solubilities of the quaternary system at 298.15 K have been calculated 

though the Newton’s Iteration Method to solve the non-linearity simultaneous equations 

system, and shown in Table 10. In fact, this theoretic calculation for the reciprocal 

quaternary system is equivalence of the calculated solubilities for the six-component 

system (Na – K – Cl - B4O5(OH)4 - B3O3(OH)4 - B(OH)4 – H2O). It is worthy saying that 

although the concentrations of Na+, K+, Cl-, B4O5(OH)42-, B3O3(OH)4-, B(OH)4- in molalities 

could be got (Table 10), the concentrations including B4O5(OH)42-, B3O3(OH)4-, B(OH)4- 

should be all inverted into the concentration of B4O72- when the Jänecke index of B4O72- 

calculation. 

 
Species Ǎ0/RT Refs Species Ǎ0/RT Refs 

H2O -95.6635 

Harvie et al., 

1984 

B(OH)4- -465.20 

Felmy & 

Weare, 1986 

Na+ -105.651 Na2B4O5(OH)4·8H2O -2224.16 

K+ -113.957 
K2B4O5(OH)4·2H2O -1663.47 

Cl- -52.955 

B4O5(OH)42- -1239.10 Felmy & Weare, 

1986 

NaCl -154.99 Harvie et al.,  

1984 B3O3(OH)4- -963.77 KCl -164.84 

Table 6. Ǎ0/RT of species in the system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 298.15 K 

On the basis of the calculated solubilities, a comparison diagram among model I, model II, 

experimental values for the reciprocal quaternary system at 298.15 K are shown in  

Figure 9. 
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Cation Anion 0( )

MXβ  MXC
φ 1( )

MXβ
( )
MXC
φ  Refs 

Na+ Cl- 0.07722 0.25183 0.00106 Kim & Frederick, 1988 

Na+ B4O5(OH)42- -0.11 -0.40 0.0 

Felmy & Weare, 1986 Na+ B3O3(OH)4- -0.056 -0.91 0.0 

Na+ B(OH)4- -0.0427 0.089 0.0114 

K+ Cl- 0.04835 0.2122 -0.00084 Harvie et al., 1984 

K+ B4O5(OH)42- -0.022 0.0 0.0 

Felmy & Weare, 1986 K+ B3O3(OH)4- -0.13 0.0 0.0 
K+ B(OH)4- 0.035 0.14 0.0 

Table 7. Single-salt Pitzer parameters in the system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 
298.15 K 

Parameters Values Refs 

ǉNa+, K+ -0.012 Harvie et al., 1984 

ǉCl-, B4O5(OH)42- 0.074 

Felmy & Weare, 1986 ǉCl-, B3O3(OH)4- 0.12 

ǉCl-, B(OH)4- -0.065 

ǉB4O5(OH)42-, B3O3(OH)4- —  — 

ǉB4O5(OH)42-, B(OH)4- —  — 

ǉB3O3(OH)4-, B(OH)4- —  — 

ΨCl-, B4O5(OH)42-, Na+ 0.025 

Felmy & Weare, 1986 ΨCl-, B3O3(OH)4-, Na+ -0.024 

ΨCl-, B(OH)4-, Na+ -0.0073 

ΨB4O5(OH)42-, B3O3(OH)4-, Na+ —  — 

ΨB4O5(OH)42-, B(OH)4-, Na+ —  — 

ΨB3O3(OH)4-, B(OH)4-, Na+ —  — 

ΨCl-, B4O5(OH)42-, K+ 0.0185245 Deng, 2004 

ΨCl-, B3O3(OH)4-, K+ —  — 

ΨCl-, B(OH)4-, K+ —  — 

ΨB4O5(OH)42-, B3O3(OH)4-, K+ —  — 

ΨB4O5(OH)42-, B(OH)4-, K+ —  — 

ΨB3O3(OH)4-, B(OH)4-, K+ —  — 

ΨNa+, K+, Cl-  -0.0018 Harvie et al., 1984 

ΨNa+, K+, B4O5(OH)42- 0.289823 Deng, 2004 

ΨNa+, K+, B3O3(OH)4- —  — 

ΨNa+, K+, B(OH)4- —  — 

Table 8. Mixing ion-interaction Pitzer parameters in the system (NaCl - KCl – Na2B4O7 - 
K2B4O7 - H2O) at 298.15 K 

Though the theoretical calculation on the basis of model II, it was found that the boron 

species are mainly existed B3O3(OH)4- and B(OH)4- while the concentration of B4O5(OH)42- is 

very low when the total concentration of boron is low in weak solution. This result 

demonstrated that the polymerization or depolymerization behaviors of borate are complex.  
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No. 

Composition liquid phase 
molality, /(mol/kgH2O) 

Jänecke index, 
J/(mol/100mol dry 

salts) 
Equilibrium 
solid phases* 

Na+ K+ Cl- B4O72- J(2Na+) J(B4O72-) 

1 0.2748 1.2843 0.00 0.7796 17.62 100.00 N10+K4 
2 0.2768 1.3032 0.2000 0.6900 17.52 87.34 N10+K4 
3 0.2804 1.3279 0.3500 0.6292 17.43 78.24 N10+K4 
4 0.2863 1.3619 0.5000 0.5741 17.37 69.66 N10+K4 
5 0.3014 1.4496 0.7800 0.4855 17.21 55.45 N10+K4 
6 0.3177 1.5386 1.0000 0.4282 17.11 46.13 N10+K4 
7 0.3603 1.7573 1.4400 0.3388 17.02 32.00 N10+K4 
8 0.4297 2.0854 2.0000 0.2575 17.08 20.48 N10+K4 
9 0.5028 2.4030 2.5000 0.2029 17.30 13.97 N10+K4 
10 0.5858 2.7319 3.0000 0.1589 17.66 9.58 N10+K4 
11 0.6774 3.0673 3.5000 0.1224 18.09 6.54 N10+K4 
12 0.8903 3.7442 4.5000 0.06725 19.21 2.90 N10+K4 

13,A1 1.0298 4.1687 5.1107 0.04392 19.81 1.69 N10+K4+KCl 
14 0.00 4.8834 4.7149 0.08423 0.00 3.45 K4+KCl 
15 0.1500 4.7688 4.7699 0.07444 3.05 3.03 K4+KCl 
16 0.3000 4.6592 4.8262 0.06649 6.05 2.68 K4+KCl 
17 0.4500 4.5534 4.8835 0.05996 8.99 2.40 K4+KCl 
18 0.6000 4.4509 4.9418 0.05457 11.88 2.16 K4+KCl 
19 0.7500 4.3511 5.0009 0.05009 14.70 1.96 K4+KCl 
20 0.9000 4.2536 5.0609 0.04636 17.46 1.80 K4+KCl 
21 4.8000 2.2523 7.0507 8.13E-4 68.06 0.023 N10+KCl 
22 4.3000 2.4641 6.7621 9.67E-4 63.57 0.029 N10+KCl 
23 3.6000 2.7821 6.3794 0.00139 56.41 0.044 N10+KCl 
24 3.2000 2.9750 6.1713 0.00185 51.82 0.060 N10+KCl 
25 2.8000 3.1758 5.9705 0.00263 46.86 0.088 N10+KCl 
26 2.4000 3.3843 5.7762 0.00405 41.49 0.14 N10+KCl 
27 2.0000 3.6007 5.5869 0.00686 35.71 0.25 N10+KCl 
28 1.6000 3.8255 5.3992 0.01316 29.49 0.49 N10+KCl 
29 5.2183 1.9000 7.1163 9.75E-4 73.31 0.027 N10+NaCl 
30 5.4046 1.5000 6.9014 0.00159 78.28 0.046 N10+NaCl 

31 5.6432 1.0000 6.6369 0.00313 84.95 0.094 N10+NaCl 

32 5.8894 0.5000 6.3762 0.0066 92.17 0.21 N10+NaCl 

33 6.1479 0.00 6.1178 0.01504 100.00 0.49 N10+NaCl 

34,B1 5.1148 2.1256 7.2389 7.53E-4 70.64 0.021 
N10+NaCl+K

Cl 

35 5.1147 2.1259 7.2394 6.00E-4 70.64 0.017 NaCl+KCl 

36 5.1145 2.1264 7.2401 4.00E-4 70.63 0.011 NaCl+KCl 

37 5.1143 2.1269 7.2408 2.00E-4 70.63 0.0055 NaCl+KCl 

38 5.1142 2.1273 7.2415 0.00 70.62 0.00 NaCl+KCl 

Table 9. Calculated solubility data of the system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 
298.15 K on the basis of Model I. * N10, Na2B4O7·10H2O; K4, K2B4O7·4H2O. 
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No. 

Composition liquid phase 
molality, /(mol/kgH2O)* 

Jänecke index, 
J /(mol/100mol 

dry-salt) 
Equilibrium 
solid phases 

Na+ K+ Cl- B4 B3 B J(2Na+) J(B4O72-)

1 0.3362 1.4923 0.00 0.7084 0.2058 0.2058 18.38 100.00 N10+K4 
2 0.3394 1.5158 0.2000 0.6362 0.1914 0.1914 18.28 89.22 N10+K4 
3 0.3431 1.5428 0.3500 0.5868 0.1812 0.1812 18.19 81.44 N10+K4 
4 0.3485 1.5771 0.5000 0.5413 0.1715 0.1715 18.10 74.03 N10+K4 
5 0.3628 1.6608 0.7800 0.4667 0.1551 0.1551 17.93 61.45 N10+K4 
6 0.3777 1.7431 1.0000 0.4165 0.1439 0.1439 17.81 52.85 N10+K4 
7 0.4168 1.9432 1.4400 0.3347 0.1253 0.1253 17.66 38.98 N10+K4 
8 0.4818 2.2464 2.0000 0.2562 0.1079 0.1079 17.66 26.69 N10+K4 
9 0.5519 2.5451 2.5000 0.2018 0.0967 0.0967 17.82 19.28 N10+K4 
10 0.6326 2.8591 3.0000 0.1574 0.0884 0.0884 18.12 14.08 N10+K4 
11 0.7234 3.1822 3.5000 0.1207 0.0821 0.0821 18.52 10.38 N10+K4 
12 0.9355 3.8426 4.5000 0.0654 0.0736 0.0736 19.58 5.82 N10+K4 

13,A2 1.0770 4.2295 5.0794 0.04305 0.0705 0.0705 20.30 4.28 N10+K4+KCl 
14 0.00 4.9588 4.6844 0.08694 0.0502 0.0502 0.00 5.53 K4+KCl 
15 0.1500 4.8452 4.7369 0.07661 0.0525 0.0525 3.00 5.17 K4+KCl 
16 0.3000 4.7368 4.7905 0.06822 0.0549 0.0549 5.96 4.89 K4+KCl 
17 0.4500 4.6326 4.8449 0.06133 0.0576 0.0576 8.85 4.68 K4+KCl 
18 0.6000 4.5320 4.8999 0.05563 0.0604 0.0604 11.69 4.52 K4+KCl 
19 0.7500 4.4342 4.9558 0.05089 0.0633 0.0633 14.47 4.41 K4+KCl 
20 0.9000 4.3390 5.0122 0.04692 0.0665 0.0665 17.18 4.33 K4+KCl 
21 4.8000 2.2665 7.0005 8.237E-4 0.0322 0.0322 67.93 0.93 N10+KCl 
22 4.3000 2.4815 6.7150 9.779E-4 0.0323 0.0323 63.41 0.98 N10+KCl 
23 3.6000 2.8052 6.3356 0.00141 0.0334 0.0334 56.20 1.09 N10+KCl 
24 3.2000 3.0021 6.1289 0.00188 0.0347 0.0347 51.60 1.18 N10+KCl 
25 2.8000 3.2078 5.9289 0.00268 0.0368 0.0368 46.61 1.31 N10+KCl 
26 2.4000 3.4226 5.7346 0.00415 0.0398 0.0398 41.22 1.51 N10+KCl 
27 2.0000 3.6474 5.5442 0.0071 0.0445 0.0445 35.41 1.83 N10+KCl 
28 1.6000 3.8845 5.3532 0.0138 0.0519 0.0519 29.17 2.40 N10+KCl 
29 5.2316 1.9000 7.0663 9.963E-4 0.0316 0.0316 73.36 0.91 N10+NaCl 
30 5.4169 1.5000 6.8530 0.00163 0.0303 0.0303 78.31 0.92 N10+NaCl 

31 5.6544 1.0000 6.5902 0.00321 0.0289 0.0289 84.97 0.96 N10+NaCl 

32 5.8998 0.5000 6.3310 0.00679 0.0276 0.0276 92.19 1.07 N10+NaCl 
33 6.1580 0.00 6.0739 0.0155 0.0266 0.0266 100.00 1.37 N10+NaCl 

34,B2 5.1668 2.1309 7.2304 7.463E-4 0.0329 0.0329 70.80 0.92 N10+KCl+NaCl 
35 5.1612 2.1307 7.2318 6.00E-4 0.0294 0.0294 70.78 0.82 NaCl+KCl 
36 5.1523 2.1303 7.2339 4.00E-4 0.0239 0.0239 70.75 0.67 NaCl+KCl 
37 5.1410 2.1296 7.2364 2.00E-4 0.0168 0.0168 70.71 0.47 NaCl+KCl 
38 5.1142 2.1273 7.2415 0.00 0.00 0.00 70.62 0.00 NaCl+KCl 

Table 10. Calculated solubility data of the system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 
298.15 K on the basis of Model II. * B4, B3, B express for B4O5(OH)42-, B3O3(OH)4-, B(OH)4-; 
N10, Na2B4O7·10H2O; K4, K2B4O7·4H2O. 
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In Figure 9, compared with Models I and II, the calculated values in the boundary points 
and the cosaturated point of (Na2B4O7·10H2O + KCl + NaCl) based on model II were in good 
agreement with the experimental data. However, in the cosaturated point of 
(Na2B4O7·10H2O + K2B4O7·4H2O + KCl), a large difference on the solubility curve still 
existed. Reversely, the predictive result based on model II closed to the experimental curve. 
There were two possible reasons: one is that the structure of borate in solution is very 
complex, an the Pitzer’s parameters of borate salts is scarce; the other one is the high 
saturation degree of borate, the difference between the experimental equilibrium constant 
and the theoretic calculated equilibrium constant was large enough. 
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Fig. 9. Comparison of the experimental and calculated phase diagram of the quaternary 
system (NaCl - KCl – Na2B4O7 - K2B4O7 - H2O) at 298.15 K. -●-, Calculated based on Model 

I; -▲-, Calculated based on Model II; -○-, Experimental. 
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